Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Obesity dramatically increases the risk of type 2 diabetes, fatty liver, hypertension, cardiovascular disease, and cancer, causing both declines in quality of life and life expectancy, which is a serious worldwide epidemic. At present, more and more patients with obesity are choosing drug therapy. However, given the high failure rate, high cost, and long design and testing process for discovering and developing new anti-obesity drugs, drug repurposing could be an innovative method and opportunity to broaden and improve pharmacological tools in this context. Because different diseases share molecular pathways and targets in the cells, anti-obesity drugs discovered in other fields are a viable option for treating obesity. Recently, some drugs initially developed for other diseases, such as treating diabetes, tumors, depression, alcoholism, erectile dysfunction, and Parkinson's disease, have been found to exert potential anti-obesity effects, which provides another treatment prospect. In this review, we will discuss the potential benefits and barriers associated with these drugs being used as obesity medications by focusing on their mechanisms of action when treating obesity. This could be a viable strategy for treating obesity as a significant advance in human health.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240270426231123155924
2024-01-04
2025-01-19
Loading full text...

Full text loading...

References

  1. BlüherM. Obesity: Global epidemiology and pathogenesis.Nat. Rev. Endocrinol.201915528829810.1038/s41574‑019‑0176‑8 30814686
    [Google Scholar]
  2. WangY.Y. WangY.D. QiX.Y. LiaoZ.Z. MaiY.N. XiaoX.H. Organokines and exosomes: Integrators of adipose tissue macrophage polarization and recruitment in obesity.Front. Endocrinol.20221383984910.3389/fendo.2022.839849 35273574
    [Google Scholar]
  3. Obesity and overweight.2021Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  4. ReidT.J. KornerJ. Medical and surgical treatment of obesity.Med. Clin. North Am.2022106583785210.1016/j.mcna.2022.03.002 36154703
    [Google Scholar]
  5. GuzmanA.K. DingM. XieY. MartinK.A. Pharmacogenetics of obesity drug therapy.Curr. Mol. Med.201414789190810.2174/1566524014666140811120307 25109792
    [Google Scholar]
  6. BeharyP. CeglaJ. TanT.M. BloomS.R. Obesity: Lifestyle management, bariatric surgery, drugs, and the therapeutic exploitation of gut hormones.Postgrad. Med.2015127549450210.1080/00325481.2015.1048181 26040552
    [Google Scholar]
  7. KaleV.P. HabibH. ChitrenR. Old drugs, new uses: Drug repurposing in hematological malignancies.Semin. Cancer Biol.20216824224810.1016/j.semcancer.2020.03.005 32151704
    [Google Scholar]
  8. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  9. PaulS.M. MytelkaD.S. DunwiddieC.T. How to improve R&D productivity: The pharmaceutical industry’s grand challenge.Nat. Rev. Drug Discov.20109320321410.1038/nrd3078 20168317
    [Google Scholar]
  10. KhachigianL.M. Repurposing drugs for skin cancer.Curr. Med. Chem.202027427214722110.2174/0929867327666191220103901 31858902
    [Google Scholar]
  11. KheniserK. SaxonD.R. KashyapS.R. Long-term weight loss strategies for obesity.J. Clin. Endocrinol. Metab.202110671854186610.1210/clinem/dgab091 33595666
    [Google Scholar]
  12. VerbovenK. HansenD. Critical reappraisal of the role and importance of exercise intervention in the treatment of obesity in adults.Sports Med.202151337938910.1007/s40279‑020‑01392‑8 33332014
    [Google Scholar]
  13. MehtaM. IstfanN.W. ApovianC.M. Obesity: Overview of weight management.Endocr. Pract.202127662663510.1016/j.eprac.2021.04.001 33901648
    [Google Scholar]
  14. SrivastavaG. ApovianC.M. Current pharmacotherapy for obesity.Nat. Rev. Endocrinol.2018141122410.1038/nrendo.2017.122 29027993
    [Google Scholar]
  15. WolfeB.M. KvachE. EckelR.H. Treatment of obesity.Circ. Res.2016118111844185510.1161/CIRCRESAHA.116.307591 27230645
    [Google Scholar]
  16. MaloneM. McDonaldR. VittitowA. Extended-release vs. oral naltrexone for alcohol dependence treatment in primary care (XON).Contemp. Clin. Trials20198110210910.1016/j.cct.2019.04.006 30986535
    [Google Scholar]
  17. KhanS.R. BerendtR.T. EllisonC.D. Bupropion hydrochloride.Profiles Drug Subst. Excip. Relat. Methodol.20164113010.1016/bs.podrm.2015.12.001 26940167
    [Google Scholar]
  18. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  19. KonstantinosHatzimouratidis Sildenafil in the treatment of erectile dysfunction: an overview of the clinical evidence.Clin. Interv. Aging20061440341410.2147/ciia.2006.1.4.403 18046917
    [Google Scholar]
  20. CroomK.F. CurranM.P. Sildenafil.Drugs200868338339710.2165/00003495‑200868030‑00009 18257613
    [Google Scholar]
  21. García-SanzR. Thalidomide in multiple myeloma.Expert Opin. Pharmacother.20067219521310.1517/14656566.7.2.195 16433584
    [Google Scholar]
  22. FranksM.E. MacphersonG.R. FiggW.D. Thalidomide.Lancet200436394231802181110.1016/S0140‑6736(04)16308‑3 15172781
    [Google Scholar]
  23. ItoT. AndoH. HandaH. Teratogenic effects of thalidomide: Molecular mechanisms.Cell. Mol. Life Sci.20116891569157910.1007/s00018‑010‑0619‑9 21207098
    [Google Scholar]
  24. MorganG.J. DaviesF.E. Role of thalidomide in the treatment of patients with multiple myeloma.Crit. Rev. Oncol. Hematol.201388Suppl. 1S14S2210.1016/j.critrevonc.2013.05.012 23827438
    [Google Scholar]
  25. FujiokaK. BrazgR.L. RazI. Efficacy, dose–response relationship and safety of once‐daily extended‐release metformin (Glucophage ® XR) in type 2 diabetic patients with inadequate glycaemic control despite prior treatment with diet and exercise: Results from two double‐blind, placebo‐controlled studies.Diabetes Obes. Metab.200571283910.1111/j.1463‑1326.2004.00369.x 15642073
    [Google Scholar]
  26. Diabetes Prevention Program Research GroupLong-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study.Diabetes Care201235473173710.2337/dc11‑1299 22442396
    [Google Scholar]
  27. PreissD. LloydS.M. FordI. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): A randomised controlled trial.Lancet Diabetes Endocrinol.20142211612410.1016/S2213‑8587(13)70152‑9 24622715
    [Google Scholar]
  28. VirtanenK.A. HällstenK. ParkkolaR. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects.Diabetes200352228329010.2337/diabetes.52.2.283 12540598
    [Google Scholar]
  29. GolayA. Metformin and body weight.Int. J. Obes.2008321617210.1038/sj.ijo.0803695 17653063
    [Google Scholar]
  30. GlueckC.J. FontaineR.N. WangP. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30.Metabolism200150785686110.1053/meta.2001.24192 11436194
    [Google Scholar]
  31. Pastor-VillaescusaB. CañeteM.D. Caballero-VillarrasoJ. Metformin for obesity in prepubertal and pubertal children: A randomized controlled trial.Pediatrics20171401e2016428510.1542/peds.2016‑4285 28759403
    [Google Scholar]
  32. SrinivasanS. AmblerG.R. BaurL.A. Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: Improvement in body composition and fasting insulin.J. Clin. Endocrinol. Metab.20069162074208010.1210/jc.2006‑0241 16595599
    [Google Scholar]
  33. CooperJ.P. ReynoldsC.P. ChoH. KangM.H. Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives.Exp. Biol. Med.2017242111178118410.1177/1535370217706952 28429653
    [Google Scholar]
  34. MohrbacherA.M. YangA.S. GroshenS. Phase I study of fenretinide delivered intravenously in patients with relapsed or refractory hematologic malignancies: A california cancer consortium trial.Clin. Cancer Res.201723164550455510.1158/1078‑0432.CCR‑17‑0234 28420721
    [Google Scholar]
  35. PuduvalliV.K. LiJ.T. ChenL. McCutcheonI.E. Induction of apoptosis in primary meningioma cultures by fenretinide.Cancer Res.20056541547155310.1158/0008‑5472.CAN‑04‑0786 15735044
    [Google Scholar]
  36. BarazzoniR. Gortan CappellariG. RagniM. NisoliE. Insulin resistance in obesity: An overview of fundamental alterations.Eat. Weight Disord.201823214915710.1007/s40519‑018‑0481‑6 29397563
    [Google Scholar]
  37. JohanssonH. GandiniS. Guerrieri-GonzagaA. Effect of fenretinide and low-dose tamoxifen on insulin sensitivity in premenopausal women at high risk for breast cancer.Cancer Res.200868229512951810.1158/0008‑5472.CAN‑08‑0553 19010927
    [Google Scholar]
  38. IzquierdoA.G. CrujeirasA.B. CasanuevaF.F. CarreiraM.C. Leptin, obesity, and leptin resistance: Where Are We 25 Years Later?Nutrients20191111270410.3390/nu11112704 31717265
    [Google Scholar]
  39. MyersM.G.Jr HeymsfieldS.B. HaftC. Challenges and opportunities of defining clinical leptin resistance.Cell Metab.201215215015610.1016/j.cmet.2012.01.002 22326217
    [Google Scholar]
  40. ZhangW. QuW. WangH. YanH. Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress.Transl. Psychiatry202111113110.1038/s41398‑021‑01254‑5 33602895
    [Google Scholar]
  41. WardA.S. ComerS.D. HaneyM. FischmanM.W. FoltinR.W. Fluoxetine-maintained obese humans: Effect on food intake and body weight.Physiol. Behav.199966581582110.1016/S0031‑9384(99)00020‑7 10405110
    [Google Scholar]
  42. MichelsonD. AmsterdamJ.D. QuitkinF.M. Changes in weight during a 1-year trial of fluoxetine.Am. J. Psychiatry199915681170117610.1176/ajp.156.8.1170 10450256
    [Google Scholar]
  43. Siavash DastjerdiM. KazemiF. NajafianA. MohammadyM. AminorroayaA. AminiM. An open-label pilot study of the combination therapy of metformin and fluoxetine for weight reduction.Int. J. Obes.200731471371710.1038/sj.ijo.0803447 16969361
    [Google Scholar]
  44. WernickeJ.F. Safety and side effect profile of fluoxetine.Expert Opin. Drug Saf.20043549550410.1517/14740338.3.5.495 15335304
    [Google Scholar]
  45. LuC. LiX. RenY. ZhangX. Disulfiram: A novel repurposed drug for cancer therapy.Cancer Chemother. Pharmacol.202187215917210.1007/s00280‑020‑04216‑8 33426580
    [Google Scholar]
  46. FarciA.M.G. PirasS. MurgiaM. Disulfiram for binge eating disorder: An open trail.Eat. Behav.201516848710.1016/j.eatbeh.2014.10.008 25464072
    [Google Scholar]
  47. GrazianoS. MontanaA. ZaamiS. Sildenafil-associated hepatoxicity: A review of the literature.Eur. Rev. Med. Pharmacol. Sci.20172111722 28379598
    [Google Scholar]
  48. FioreD. GianfrilliD. GiannettaE. PDE5 Inhibition ameliorates visceral adiposity targeting the miR-22/SIRT1 pathway: Evidence from the CECSID trial.J. Clin. Endocrinol. Metab.201610141525153410.1210/jc.2015‑4252 26964730
    [Google Scholar]
  49. LiS. LiY. XiangL. DongJ. LiuM. XiangG. Sildenafil induces browning of subcutaneous white adipose tissue in overweight adults.Metabolism20187810611710.1016/j.metabol.2017.09.008 28986166
    [Google Scholar]
  50. RebelloC.J. ZemelM.B. KoltermanO. FlemingG.A. GreenwayF.L. Leucine and sildenafil combination therapy reduces body weight and metformin enhances the effect at low dose: A randomized controlled trial.Am. J. Ther.2021281e1e1310.1097/MJT.0000000000001303 33369909
    [Google Scholar]
  51. GopalakrishnanR. JacobK.S. KuruvillaA. VasantharajB. JohnJ.K. Sildenafil in the treatment of antipsychotic-induced erectile dysfunction: A randomized, double-blind, placebo-controlled, flexible-dose, two-way crossover trial.Am. J. Psychiatry2006163349449910.1176/appi.ajp.163.3.494 16513872
    [Google Scholar]
  52. Chau-VanC. GambaM. SalviR. GaillardR.C. PralongF.P. Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons.Endocrinology2007148250751110.1210/en.2006‑1237 17095593
    [Google Scholar]
  53. YerevanianA. SoukasA.A. Metformin: Mechanisms in human obesity and weight loss.Curr. Obes. Rep.20198215616410.1007/s13679‑019‑00335‑3 30874963
    [Google Scholar]
  54. MulherinA.J. OhA.H. KimH. GriecoA. LaufferL.M. BrubakerP.L. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell.Endocrinology2011152124610461910.1210/en.2011‑1485 21971158
    [Google Scholar]
  55. NapolitanoA. MillerS. NichollsA.W. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus.PLoS One201497e10077810.1371/journal.pone.0100778 24988476
    [Google Scholar]
  56. DeFronzoR.A. BuseJ.B. KimT. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: Results from two randomised trials.Diabetologia20165981645165410.1007/s00125‑016‑3992‑6 27216492
    [Google Scholar]
  57. BaileyC.J. WilcockC. DayC. Effect of metformin on glucose metabolism in the splanchnic bed.Br. J. Pharmacol.199210541009101310.1111/j.1476‑5381.1992.tb09093.x 1504710
    [Google Scholar]
  58. TokubuchiI. TajiriY. IwataS. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats.PLoS One2017122e017129310.1371/journal.pone.0171293 28158227
    [Google Scholar]
  59. ZhouJ. MasseyS. StoryD. LiL. Metformin: An old drug with new applications.Int. J. Mol. Sci.20181910286310.3390/ijms19102863 30241400
    [Google Scholar]
  60. GomesA.C. HoffmannC. MotaJ.F. The human gut microbiota: Metabolism and perspective in obesity.Gut Microbes20189411810.1080/19490976.2018.1465157 29667480
    [Google Scholar]
  61. SongZ. ChenJ. JiY. Amuc attenuates high-fat diet-induced metabolic disorders linked to the regulation of fatty acid metabolism, bile acid metabolism, and the gut microbiota in mice.Int. J. Biol. Macromol.2023242Pt 212465010.1016/j.ijbiomac.2023.124650 37119914
    [Google Scholar]
  62. EverardA. BelzerC. GeurtsL. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.Proc. Natl. Acad. Sci.2013110229066907110.1073/pnas.1219451110 23671105
    [Google Scholar]
  63. ShinN.R. LeeJ.C. LeeH.Y. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice.Gut201463572773510.1136/gutjnl‑2012‑303839 23804561
    [Google Scholar]
  64. ZhangX. ZhaoY. XuJ. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.Sci. Rep.2015511440510.1038/srep14405 26396057
    [Google Scholar]
  65. MorrisonD.J. PrestonT. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.Gut Microbes20167318920010.1080/19490976.2015.1134082 26963409
    [Google Scholar]
  66. WuH. EsteveE. TremaroliV. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug.Nat. Med.201723785085810.1038/nm.4345 28530702
    [Google Scholar]
  67. LazzaroniE. Ben NasrM. LoretelliC. Anti-diabetic drugs and weight loss in patients with type 2 diabetes.Pharmacol. Res.202117110578210.1016/j.phrs.2021.105782 34302978
    [Google Scholar]
  68. MasarwaR. BrunettiV.C. AloeS. HendersonM. PlattR.W. FilionK.B. Efficacy and safety of metformin for obesity: A systematic review.Pediatrics20211473e2020161010.1542/peds.2020‑1610 33608415
    [Google Scholar]
  69. PreitnerF. ModyN. GrahamT.E. PeroniO.D. KahnB.B. Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis.Am. J. Physiol. Endocrinol. Metab.20092976E1420E142910.1152/ajpendo.00362.2009 19826103
    [Google Scholar]
  70. YangQ. GrahamT.E. ModyN. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.Nature2005436704935636210.1038/nature03711 16034410
    [Google Scholar]
  71. FormelliF. CarsanaR. CostaA. Plasma retinol level reduction by the synthetic retinoid fenretinide: A one year follow-up study of breast cancer patients.Cancer Res.1989492161496152 2529028
    [Google Scholar]
  72. BerniR. FormelliF. In vitro interaction of fenretinide with plasma retinol‐binding protein and its functional consequences.FEBS Lett.19923081434510.1016/0014‑5793(92)81046‑O 1386578
    [Google Scholar]
  73. McilroyG.D. DelibegovicM. OwenC. Fenretinide treatment prevents diet-induced obesity in association with major alterations in retinoid homeostatic gene expression in adipose, liver, and hypothalamus.Diabetes201362382583610.2337/db12‑0458 23193184
    [Google Scholar]
  74. McilroyG.D. TammireddyS.R. MaskreyB.H. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue.Biochem. Pharmacol.2016100869710.1016/j.bcp.2015.11.017 26592777
    [Google Scholar]
  75. GutiérrezA. SaracíbarG. CasisL. Effects of fluoxetine administration on neuropeptide y and orexins in obese zucker rat hypothalamus.Obes. Res.200210653254010.1038/oby.2002.72 12055330
    [Google Scholar]
  76. ScabiaG. BaroneI. MainardiM. The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF.Sci. Rep.201881178110.1038/s41598‑018‑19886‑x 29379096
    [Google Scholar]
  77. ChurrucaI. PortilloM.P. CasisL. GutiérrezA. MacarullaM.T. EchevarríaE. Effects of fluoxetine administration on hypothalamic melanocortin system in obese Zucker rats.Neuropeptides200842329329910.1016/j.npep.2008.02.002 18359080
    [Google Scholar]
  78. ChiuY.J. TuH.H. KungM.L. WuH.J. ChenY.W. Fluoxetine ameliorates high-fat diet-induced metabolic abnormalities partially via reduced adipose triglyceride lipase-mediated adipocyte lipolysis.Biomed. Pharmacother.202114111184810.1016/j.biopha.2021.111848 34198047
    [Google Scholar]
  79. CerkI.K. WechselbergerL. ObererM. Adipose triglyceride lipase regulation: An overview.Curr. Protein Pept. Sci.2018192221233 28925902
    [Google Scholar]
  80. SchreiberR. HoferP. TaschlerU. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity.Proc. Natl. Acad. Sci.201511245138501385510.1073/pnas.1516004112 26508640
    [Google Scholar]
  81. RoumestanC. MichelA. BichonF. Anti-inflammatory properties of desipramine and fluoxetine.Respir. Res.2007813510.1186/1465‑9921‑8‑35 17477857
    [Google Scholar]
  82. MeggyesyP.M. MasaldanS. ClatworthyS.A.S. Copper ionophores as novel antiobesity therapeutics.Molecules20202521495710.3390/molecules25214957 33120881
    [Google Scholar]
  83. BernierM. MitchellS.J. WahlD. Disulfiram treatment normalizes body weight in obese mice.Cell Metab.2020322203214.e410.1016/j.cmet.2020.04.019 32413333
    [Google Scholar]
  84. OmranZ. SheikhR. BaothmanO.A. ZamzamiM.A. AlarjahM. Repurposing disulfiram as an anti-obesity drug: Treating and preventing obesity in high-fat-fed rats.Diabetes Metab. Syndr. Obes.2020131473148010.2147/DMSO.S254267 32440176
    [Google Scholar]
  85. ZiouzenkovaO. OrasanuG. SharlachM. Retinaldehyde represses adipogenesis and diet-induced obesity.Nat. Med.200713669570210.1038/nm1587 17529981
    [Google Scholar]
  86. GilorC. YangK. LeeA. Thermogenic crosstalk occurs between adipocytes from different species.Sci. Rep.2019911517710.1038/s41598‑019‑50628‑9 31645582
    [Google Scholar]
  87. FanX. MolotkovA. ManabeS.I. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina.Mol. Cell. Biol.200323134637464810.1128/MCB.23.13.4637‑4648.2003 12808103
    [Google Scholar]
  88. Di MaioG. AlessioN. DemirsoyI.H. Evaluation of browning agents on the white adipogenesis of bone marrow mesenchymal stromal cells: A contribution to fighting obesity.Cells202110240310.3390/cells10020403 33669222
    [Google Scholar]
  89. MitschkeM.M. HoffmannL.S. GnadT. Increased cGMP promotes healthy expansion and browning of white adipose tissue.FASEB J.20132741621163010.1096/fj.12‑221580 23303211
    [Google Scholar]
  90. HaasB. MayerP. JennissenK. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis.Sci. Signal.2009299ra7810.1126/scisignal.2000511 19952371
    [Google Scholar]
  91. LeissV. IllisonJ. DomesK. HofmannF. LukowskiR. Expression of cGMP-dependent protein kinase type I in mature white adipocytes.Biochem. Biophys. Res. Commun.2014452115115610.1016/j.bbrc.2014.08.071 25152402
    [Google Scholar]
  92. HoffmannL.S. LarsonC.J. PfeiferA. cGMP and brown adipose tissue.Handb. Exp. Pharmacol.201523328329910.1007/164_2015_3 25903412
    [Google Scholar]
  93. MiyashitaK. ItohH. TsujimotoH. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity.Diabetes200958122880289210.2337/db09‑0393 19690065
    [Google Scholar]
  94. NikolicD.M. LiY. LiuS. WangS. Overexpression of constitutively active PKG-I protects female, but not male mice from diet-induced obesity.Obesity201119478479110.1038/oby.2010.223 20930715
    [Google Scholar]
  95. ColomboG. ColomboM.D.H.P. SchiavonL.D.L. d’AcamporaA.J. Phosphodiesterase 5 as target for adipose tissue disorders.Nitric Oxide20133518619210.1016/j.niox.2013.10.006 24177060
    [Google Scholar]
  96. WallerC.F. Imatinib mesylate.Recent Results Cancer Res.201821212710.1007/978‑3‑319‑91439‑8_1 30069623
    [Google Scholar]
  97. ZitvogelL. RusakiewiczS. RoutyB. AyyoubM. KroemerG. Immunological off-target effects of imatinib.Nat. Rev. Clin. Oncol.201613743144610.1038/nrclinonc.2016.41 27030078
    [Google Scholar]
  98. PichavaramP. ShawkyN.M. HartneyT.J. JunJ.Y. SegarL. Imatinib improves insulin resistance and inhibits injury-induced neointimal hyperplasia in high fat diet-fed mice.Eur. J. Pharmacol.202189017366610.1016/j.ejphar.2020.173666 33131722
    [Google Scholar]
  99. AbderrahmaniA. YengoL. CaiazzoR. Increased hepatic PDGF-AA signaling mediates liver insulin resistance in obesity-associated type 2 diabetes.Diabetes20186771310132110.2337/db17‑1539 29728363
    [Google Scholar]
  100. RainesS.M. RichardsO.C. SchneiderL.R. Loss of PDGF-B activity increases hepatic vascular permeability and enhances insulin sensitivity.Am. J. Physiol. Endocrinol. Metab.20113013E517E52610.1152/ajpendo.00241.2011 21673305
    [Google Scholar]
  101. LimY.M. LimH. HurK.Y. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes.Nat. Commun.201451493410.1038/ncomms5934 25255859
    [Google Scholar]
  102. LyytinenJ. KaakkolaS. GordinA. KultalahtiE.R. TeräväinenH. SovijärviA. The effect of COMT inhibition with entacapone on cardiorespiratory responses to exercise in patients with Parkinson’s disease.Parkinsonism Relat. Disord.20028534935510.1016/S1353‑8020(01)00050‑5 15177064
    [Google Scholar]
  103. PengS. XiaoW. JuD. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1.Sci. Transl. Med.201911488eaau711610.1126/scitranslmed.aau7116 30996080
    [Google Scholar]
  104. LoosR.J.F. BouchardC. FTO: The first gene contributing to common forms of human obesity.Obes. Rev.20089324625010.1111/j.1467‑789X.2008.00481.x 18373508
    [Google Scholar]
  105. FraylingT.M. TimpsonN.J. WeedonM.N. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.Science2007316582688989410.1126/science.1141634 17434869
    [Google Scholar]
  106. LanN. LuY. ZhangY. FTO – A common genetic basis for obesity and cancer.Front. Genet.20201155913810.3389/fgene.2020.559138 33304380
    [Google Scholar]
  107. ChurchC. MoirL. McMurrayF. Overexpression of Fto leads to increased food intake and results in obesity.Nat. Genet.201042121086109210.1038/ng.713 21076408
    [Google Scholar]
  108. FischerJ. KochL. EmmerlingC. Inactivation of the Fto gene protects from obesity.Nature2009458724089489810.1038/nature07848 19234441
    [Google Scholar]
  109. PengS. LiW. HouN. HuangN. A review of FoxO1-regulated metabolic diseases and related drug discoveries.Cells20209118410.3390/cells9010184 31936903
    [Google Scholar]
  110. Ortega-MolinaA. EfeyanA. Lopez-GuadamillasE. Pten positively regulates brown adipose function, energy expenditure, and longevity.Cell Metab.201215338239410.1016/j.cmet.2012.02.001 22405073
    [Google Scholar]
  111. NakaeJ. CaoY. OkiM. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure.Diabetes200857356357610.2337/db07‑0698 18162510
    [Google Scholar]
  112. BarteltA. HeerenJ. Adipose tissue browning and metabolic health.Nat. Rev. Endocrinol.2014101243610.1038/nrendo.2013.204 24146030
    [Google Scholar]
  113. HarmsM. SealeP. Brown and beige fat: Development, function and therapeutic potential.Nat. Med.201319101252126310.1038/nm.3361 24100998
    [Google Scholar]
  114. InagakiT. SakaiJ. KajimuraS. Transcriptional and epigenetic control of brown and beige adipose cell fate and function.Nat. Rev. Mol. Cell Biol.201617848049510.1038/nrm.2016.62 27251423
    [Google Scholar]
  115. LiaoZ.Z. QiX.Y. WangY.D. Betatrophin knockdown induces beiging and mitochondria biogenesis of white adipocytes.J. Endocrinol.202024519310010.1530/JOE‑19‑0447 32027602
    [Google Scholar]
  116. NajibJ. Entacapone: A catechol-O-methyltransferase inhibitor for the adjunctive treatment of parkinson’s disease.Clin. Ther.200123680283210.1016/S0149‑2918(01)80071‑0 11440283
    [Google Scholar]
  117. MyllyläV.V. KultalahtiE.R. HaapaniemiH. LeinonenM. Twelve‐month safety of entacapone in patients with Parkinson’s disease.Eur. J. Neurol.200181536010.1046/j.1468‑1331.2001.00168.x 11509081
    [Google Scholar]
  118. BessesenD.H. Van GaalL.F. Progress and challenges in anti-obesity pharmacotherapy.Lancet Diabetes Endocrinol.20186323724810.1016/S2213‑8587(17)30236‑X 28919062
    [Google Scholar]
  119. MüllerT.D. BlüherM. TschöpM.H. DiMarchiR.D. Anti-obesity drug discovery: Advances and challenges.Nat. Rev. Drug Discov.202221320122310.1038/s41573‑021‑00337‑8 34815532
    [Google Scholar]
  120. TakY.J. LeeS.Y. Long-term efficacy and safety of anti-obesity treatment: Where do we stand?Curr. Obes. Rep.2021101143010.1007/s13679‑020‑00422‑w 33410104
    [Google Scholar]
  121. RoesslerH.I. KnoersN.V.A.M. van HaelstM.M. van HaaftenG. Drug repurposing for rare diseases.Trends Pharmacol. Sci.202142425526710.1016/j.tips.2021.01.003 33563480
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240270426231123155924
Loading
/content/journals/cmm/10.2174/0115665240270426231123155924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test