Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Myasthenia gravis (MG) is an acquired autoimmune disease that is mediated by humoral immunity, supplemented by cellular immunity, along with participation of the complement system. The pathogenesis of MG is complex; although autoimmune dysfunction is clearly implicated, the specific mechanism remains unclear. Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with lengths greater than 200 nucleotides, with increasing evidence of their rich biological functions and high-level structure conservation. LncRNAs can directly interact with proteins and microRNAs to regulate the expression of target genes at the transcription and post-transcription levels. In recent years, emerging studies have suggested that lncRNAs play roles in the differentiation of immune cells, secretion of immune factors, and complement production in the human body. This suggests the involvement of lncRNAs in the occurrence and progression of MG through various mechanisms. In addition, the differentially expressed lncRNAs in peripheral biofluid may be used as a biomarker to diagnose MG and evaluate its prognosis. Moreover, with the development of lncRNA expression regulation technology, it is possible to regulate the differentiation of immune cells and influence the immune response by regulating the expression of lncRNAs, which will provide a potential therapeutic option for MG. Here, we review the research progress on the role of lncRNAs in different pathophysiological events contributing to MG, focusing on specific lncRNAs that may largely contribute to the pathophysiology of MG, which could be used as potential diagnostic biomarkers and therapeutic targets.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240281531231228051037
2024-01-08
2025-01-31
Loading full text...

Full text loading...

References

  1. GilhusN.E. VerschuurenJ.J. Myasthenia gravis: Subgroup classification and therapeutic strategies.Lancet Neurol.201514101023103610.1016/S1474‑4422(15)00145‑3 26376969
    [Google Scholar]
  2. DrachmanD.B. Myasthenia gravis.N. Engl. J. Med.1994330251797181010.1056/NEJM199406233302507 8190158
    [Google Scholar]
  3. CarrA.S. CardwellC.R. McCarronP.O. McConvilleJ. A systematic review of population based epidemiological studies in Myasthenia Gravis.BMC Neurol.20101014610.1186/1471‑2377‑10‑46 20565885
    [Google Scholar]
  4. HeldalA.T. OweJ.F. GilhusN.E. RomiF. Seropositive myasthenia gravis: A nationwide epidemiologic study.Neurology200973215015110.1212/WNL.0b013e3181ad53c2 19597135
    [Google Scholar]
  5. HuangX. LiY. FengH. ChenP. LiuW. Clinical characteristics of juvenile myasthenia gravis in southern China.Front. Neurol.201897710.3389/fneur.2018.00077 29535672
    [Google Scholar]
  6. HuarteM. The emerging role of lncRNAs in cancer.Nat. Med.201521111253126110.1038/nm.3981 26540387
    [Google Scholar]
  7. LiY. JiangT. ZhouW. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers.Nat. Commun.2020111100010.1038/s41467‑020‑14802‑2 32081859
    [Google Scholar]
  8. RoyS. AwasthiA. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases.Int. Rev. Immunol.201938523224510.1080/08830185.2019.1648454 31411520
    [Google Scholar]
  9. WestK.A. LagosD. Long non-coding RNA function in CD4+ T cells: What we know and what next?Noncoding RNA2019534310.3390/ncrna5030043 31336952
    [Google Scholar]
  10. HuangD. ChenJ. YangL. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death.Nat. Immunol.201819101112112510.1038/s41590‑018‑0207‑y 30224822
    [Google Scholar]
  11. ShuiX. ChenS. LinJ. KongJ. ZhouC. WuJ. Knockdown of lncRNA NEAT1 inhibits Th17/CD4+ T cell differentiation through reducing the STAT3 protein level.J. Cell. Physiol.201923412224772248410.1002/jcp.28811 31119756
    [Google Scholar]
  12. QiuY. WuY. LinM. BianT. XiaoY. QinC. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/RORγt.Biomed. Pharmacother.201911138639410.1016/j.biopha.2018.12.080 30594051
    [Google Scholar]
  13. JiangR. TangJ. ChenY. The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion.Nat. Commun.2017811512910.1038/ncomms15129 28541302
    [Google Scholar]
  14. SpurlockC.F.III TossbergJ.T. GuoY. CollierS.P. CrookeP.S.III AuneT.M. Expression and functions of long noncoding RNAs during human T helper cell differentiation.Nat. Commun.201561693210.1038/ncomms7932 25903499
    [Google Scholar]
  15. RanzaniV. RossettiG. PanzeriI. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4.Nat. Immunol.201516331832510.1038/ni.3093 25621826
    [Google Scholar]
  16. ChiaR. Saez-AtienzarS. MurphyN. Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: A genome-wide association study.Proc. Natl. Acad. Sci.20221195e210867211910.1073/pnas.2108672119 35074870
    [Google Scholar]
  17. GilhusN.E. Myasthenia gravis.N. Engl. J. Med.2016375262570258110.1056/NEJMra1602678 28029925
    [Google Scholar]
  18. DalakasM.C. Immunotherapy in myasthenia gravis in the era of biologics.Nat. Rev. Neurol.201915211312410.1038/s41582‑018‑0110‑z 30573759
    [Google Scholar]
  19. GilhusN.E. SkeieG.O. RomiF. LazaridisK. ZisimopoulouP. TzartosS. Myasthenia gravis - autoantibody characteristics and their implications for therapy.Nat. Rev. Neurol.201612525926810.1038/nrneurol.2016.44 27103470
    [Google Scholar]
  20. EiberN. RehmanM. KravicB. RudolfR. SandriM. HashemolhosseiniS. Loss of protein kinase Csnk2b/CK2β at neuromuscular junctions affects morphology and dynamics of aggregated nicotinic acetylcholine receptors, neuromuscular transmission, and synaptic gene expression.Cells20198894010.3390/cells8080940 31434353
    [Google Scholar]
  21. BinksS. VincentA. PalaceJ. Myasthenia gravis: A clinical-immunological update.J. Neurol.2016263482683410.1007/s00415‑015‑7963‑5 26705120
    [Google Scholar]
  22. SmithS.V. LeeA.G. Update on ocular myasthenia gravis.Neurol. Clin.201735111512310.1016/j.ncl.2016.08.008 27886889
    [Google Scholar]
  23. HouH. SunY. MiaoJ. GaoM. GuoL. SongX. Ponesimod modulates the Th1/Th17/Treg cell balance and ameliorates disease in experimental autoimmune encephalomyelitis.J. Neuroimmunol.202135657758310.1016/j.jneuroim.2021.577583 33940233
    [Google Scholar]
  24. KongQ. SunB. BaiS. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-β.J. Neuroimmunol.20092071-2839110.1016/j.jneuroim.2008.12.005 19174310
    [Google Scholar]
  25. DanikowskiK.M. JayaramanS. PrabhakarB.S. Regulatory T cells in multiple sclerosis and myasthenia gravis.J. Neuroinflammation201714111710.1186/s12974‑017‑0892‑8 28599652
    [Google Scholar]
  26. MengQ.F. ZhangX.X. ZhangZ. Therapeutic potential of artesunate in experimental autoimmune myasthenia gravis by upregulated T regulatory cells and regulation of Th1/Th2 cytokines.Pharmazie2018739526532 30223936
    [Google Scholar]
  27. LiuZ. ZhuL. LuZ. IL-37 represses the autoimmunity in myasthenia gravis via directly targeting follicular Th and B cells.J. Immunol.202020471736174510.4049/jimmunol.1901176 32111731
    [Google Scholar]
  28. AshidaS. OchiH. HamataniM. FujiiC. KimuraK. OkadaY. Immune skew of circulating follicular helper T cells associates with myasthenia gravis severity.Neurol. Neuroimmunol. Neuroinflamm.202182e945
    [Google Scholar]
  29. UzawaA. KuwabaraS. SuzukiS. ImaiT. MuraiH. OzawaY. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis.Clin. Exp. Immunol.2021203336637410.1111/cei.13546 33184844
    [Google Scholar]
  30. WangL. ZhangY. ZhuM. Effects of follicular helper T cells and inflammatory cytokines on myasthenia gravis.Curr. Mol. Med.2019191073974510.2174/1566524019666190827162615 31453784
    [Google Scholar]
  31. JingF. YangF. CuiF. ChenZ. LingL. HuangX. Rapamycin alleviates inflammation and muscle weakness, while altering the Treg/Th17 balance in a rat model of myasthenia gravis.Biosci. Rep.2017374BSR2017076710.1042/BSR20170767 28655853
    [Google Scholar]
  32. ShengJ.R. RezaniaK. SolivenB. Impaired regulatory B cells in myasthenia gravis.J. Neuroimmunol.2016297384510.1016/j.jneuroim.2016.05.004 27397074
    [Google Scholar]
  33. WuY. LuoJ. GardenO.A. Immunoregulatory cells in myasthenia gravis.Front. Neurol.20201159343110.3389/fneur.2020.593431 33384654
    [Google Scholar]
  34. XinN. FuL. ShaoZ. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice.Mol. Cell. Neurosci.201458859410.1016/j.mcn.2013.12.006 24361642
    [Google Scholar]
  35. Ghafouri-FardS. AzimiT. HussenB.M. TaheriM. Jalili KhoshnoudR. A review on the role of non-coding RNAs in the pathogenesis of myasthenia gravis.Int. J. Mol. Sci.202122231296410.3390/ijms222312964 34884767
    [Google Scholar]
  36. TillP. PucherM.E. MachR.L. Mach-AignerA.R. A long noncoding RNA promotes cellulase expression in Trichoderma reesei.Biotechnol. Biofuels20181117810.1186/s13068‑018‑1081‑4 29588663
    [Google Scholar]
  37. ClarkM.B. JohnstonR.L. Inostroza-PontaM. Genome-wide analysis of long noncoding RNA stability.Genome Res.201222588589810.1101/gr.131037.111 22406755
    [Google Scholar]
  38. KoppF. MendellJ.T. Functional classification and experimental dissection of long noncoding RNAs.Cell2018172339340710.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  39. WangK.C. ChangH.Y. Molecular mechanisms of long noncoding RNAs.Mol. Cell201143690491410.1016/j.molcel.2011.08.018 21925379
    [Google Scholar]
  40. ManH.S.J. MarsdenP.A. LncRNAs and epigenetic regulation of vascular endothelium: genome positioning system and regulators of chromatin modifiers.Curr. Opin. Pharmacol.201945728010.1016/j.coph.2019.04.012 31125866
    [Google Scholar]
  41. HeR.Z. LuoD.X. MoY.Y. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer.Genes Dis.20196161510.1016/j.gendis.2019.01.003 30906827
    [Google Scholar]
  42. FernandesJ. AcuñaS. AokiJ. Floeter-WinterL. MuxelS. Long non-coding RNAs in the regulation of gene expression: Physiology and disease.Noncoding RNA2019511710.3390/ncrna5010017 30781588
    [Google Scholar]
  43. QuinnJ.J. ChangH.Y. Unique features of long non-coding RNA biogenesis and function.Nat. Rev. Genet.2016171476210.1038/nrg.2015.10 26666209
    [Google Scholar]
  44. JarrouxJ. MorillonA. PinskayaM. History, discovery, and classification of lncRNAs.Adv. Exp. Med. Biol.2017100814610.1007/978‑981‑10‑5203‑3_1 28815535
    [Google Scholar]
  45. BaiY. DaiX. HarrisonA.P. ChenM. RNA regulatory networks in animals and plants: A long noncoding RNA perspective.Brief. Funct. Genomics20151429110110.1093/bfgp/elu017 24914100
    [Google Scholar]
  46. ZhangF. LiuG. BuY. MaX. HaoJ. Expression profile of long noncoding RNAs and mRNAs in peripheral blood mononuclear cells from myasthenia gravis patients.J. Neuroimmunol.201629912412910.1016/j.jneuroim.2016.09.005 27725110
    [Google Scholar]
  47. LiG. FengH. ChenQ. Identification of immune infiltration-related LncRNA FAM83C-AS1 for predicting prognosis and immunotherapy response in colon cancer.Transpl. Immunol.20216910148110.1016/j.trim.2021.101481 34624486
    [Google Scholar]
  48. TsoiL.C. IyerM.K. StuartP.E. Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin.Genome Biol.20151612410.1186/s13059‑014‑0570‑4 25723451
    [Google Scholar]
  49. BarzagoC. LumJ. CavalcanteP. A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients.Immunobiology2016221111227123610.1016/j.imbio.2016.06.012 27387891
    [Google Scholar]
  50. LuoZ. LiY. LiuX. Systems biology of myasthenia gravis, integration of aberrant lncRNA and mRNA expression changes.BMC Med. Genomics2015811310.1186/s12920‑015‑0087‑z 25889429
    [Google Scholar]
  51. YanP. LuoS. LuJ.Y. ShenX. Cis- and trans-acting lncRNAs in pluripotency and reprogramming.Curr. Opin. Genet. Dev.20174617017810.1016/j.gde.2017.07.009 28843809
    [Google Scholar]
  52. SaulsR.S. McCauslandC. TaylorB.N. Histology, T-cell lymphocyte.In: StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  53. HaegertD.G. HackenbrochJ.D. DuszczyszynD. Reduced thymic output and peripheral naïve CD4 T-cell alterations in primary progressive multiple sclerosis (PPMS).J. Neuroimmunol.20112331-223323910.1016/j.jneuroim.2010.12.007 21272945
    [Google Scholar]
  54. KohlerS. KeilT. AlexanderT. Altered naive CD4+ T cell homeostasis in myasthenia gravis and thymoma patients.J. Neuroimmunol.2019327101410.1016/j.jneuroim.2019.01.005 30686546
    [Google Scholar]
  55. NieJ. ZhaoQ. Lnc-ITSN1-2, derived from RNA sequencing, correlates with increased disease risk, activity and promotes CD4+ T cell activation, proliferation and Th1/Th17 cell differentiation by serving as a ceRNA for IL-23R via sponging miR-125a in inflammatory bowel disease.Front. Immunol.20201185210.3389/fimmu.2020.00852 32547537
    [Google Scholar]
  56. VigneauS. RohrlichP.S. BrahicM. BureauJ.F. Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon.J. Virol.200377105632563810.1128/JVI.77.10.5632‑5638.2003 12719555
    [Google Scholar]
  57. GorisA. HeggartyS. MarrosuM.G. GrahamC. BilliauA. VandenbroeckK. Linkage disequilibrium analysis of chromosome 12q14–15 in multiple sclerosis: delineation of a 118-kb interval around interferon-γ (IFNG) that is involved in male versus female differential susceptibility.Genes Immun.20023847047610.1038/sj.gene.6363913 12486605
    [Google Scholar]
  58. CollierS.P. CollinsP.L. WilliamsC.L. BoothbyM.R. AuneT.M. Cutting edge: Influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells.J. Immunol.201218952084208810.4049/jimmunol.1200774 22851706
    [Google Scholar]
  59. CollierS.P. HendersonM.A. TossbergJ.T. AuneT.M. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet.J. Immunol.201419383959396510.4049/jimmunol.1401099 25225667
    [Google Scholar]
  60. LuoM. LiuX. MengH. IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1.Clin. Immunol.201718312113110.1016/j.clim.2017.08.008 28822831
    [Google Scholar]
  61. HuB. NiuL. JiangZ. XuS. HuY. CaoK. LncRNA XLOC_003810 promotes T cell activation and inhibits PD‐1/PD‐L1 expression in patients with myasthenia gravis‐related thymoma.Scand. J. Immunol.2020921e1288610.1111/sji.12886 32243615
    [Google Scholar]
  62. ShaoQ. GuJ. ZhouJ. Tissue tregs and maintenance of tissue homeostasis.Front. Cell Dev. Biol.2021971790310.3389/fcell.2021.717903 34490267
    [Google Scholar]
  63. ShevyrevD. TereshchenkoV. Treg heterogeneity, function, and homeostasis.Front. Immunol.202010310010.3389/fimmu.2019.03100 31993063
    [Google Scholar]
  64. WenY. YangB. LuJ. ZhangJ. YangH. LiJ. Imbalance of circulating CD4+CXCR5+FOXP3+ Tfr-like cells and CD4+CXCR5+FOXP3−Tfh-like cells in myasthenia gravis.Neurosci. Lett.201663017618210.1016/j.neulet.2016.07.049 27473945
    [Google Scholar]
  65. KohlerS. KeilT.O.P. HoffmannS. CD4+ FoxP3+ T regulatory cell subsets in myasthenia gravis patients.Clin. Immunol.2017179404610.1016/j.clim.2017.03.003 28286113
    [Google Scholar]
  66. ThiruppathiM. RowinJ. GaneshB. ShengJ.R. PrabhakarB.S. MeriggioliM.N. Impaired regulatory function in circulating CD4+CD25highCD127low/−T cells in patients with myasthenia gravis.Clin. Immunol.2012145320922310.1016/j.clim.2012.09.012 23110942
    [Google Scholar]
  67. HuangN. FanZ. MaL. Long non-coding RNA RP11-340F14.6 promotes a shift in the Th17/Treg ratio by binding with P2X7R in juvenile idiopathic arthritis.Int. J. Mol. Med.202046285986810.3892/ijmm.2020.4618 32467993
    [Google Scholar]
  68. ReuschelE.L. WangJ. ShiversD.K. REDD1 is essential for optimal T cell proliferation and survival.PLoS One2015108e013632310.1371/journal.pone.0136323 26301899
    [Google Scholar]
  69. ZhangF. LiuG. LiD. WeiC. HaoJ. DDIT4 and associated lncDDIT4 modulate Th17 Differentiation through the DDIT4/TSC/mTOR Pathway.J. Immunol.201820051618162610.4049/jimmunol.1601689 29378913
    [Google Scholar]
  70. NiuL. JiangJ. YinY. HuB. LncRNA XLOC_003810 modulates thymic Th17/Treg balance in myasthenia gravis with thymoma.Clin. Exp. Pharmacol. Physiol.202047698999610.1111/1440‑1681.13280 32048308
    [Google Scholar]
  71. XuY. OuyangY. Long non-coding RNA growth arrest specific 5 regulates the T helper 17/regulatory T balance by targeting miR-23a in myasthenia gravis.J. Int. Med. Res.202250610.1177/03000605211053703 35707849
    [Google Scholar]
  72. CronM.A. MaillardS. VillegasJ. Thymus involvement in early‐onset myasthenia gravis.Ann. N. Y. Acad. Sci.20181412113714510.1111/nyas.13519 29125185
    [Google Scholar]
  73. HuanX. LuoS. ZhongH. In‐depth peripheral CD4+ T profile correlates with myasthenic crisis.Ann. Clin. Transl. Neurol.20218474976210.1002/acn3.51312 33616296
    [Google Scholar]
  74. LiL. ZhangJ. ChenJ. B-cell receptor–mediated NFATc1 activation induces IL-10/STAT3/PD-L1 signaling in diffuse large B-cell lymphoma.Blood2018132171805181710.1182/blood‑2018‑03‑841015 30209121
    [Google Scholar]
  75. HuangY-M. KivisäkkP. ÖzenciV. PirskanenR. LinkH. Increased levels of circulating acetylcholine receptor (AChR)-reactive IL-10-secreting cells are characteristic for myasthenia gravis (MG).Clin. Exp. Immunol.2001118230430810.1046/j.1365‑2249.1999.01062.x 10540195
    [Google Scholar]
  76. ÇebiM. DurmusH. AysalF. CD4+ T cells of myasthenia gravis patients are characterized by increased IL-21, IL-4, and IL-17A productions and higher presence of PD-1 and ICOS.Front. Immunol.20201180910.3389/fimmu.2020.00809 32508812
    [Google Scholar]
  77. GilhusN.E. TzartosS. EvoliA. PalaceJ. BurnsT.M. VerschuurenJ.J.G.M. Myasthenia gravis.Nat. Rev. Dis. Primers2019513010.1038/s41572‑019‑0079‑y 31048702
    [Google Scholar]
  78. VerschuurenJ. StrijbosE. VincentA. Neuromuscular junction disorders.Handb. Clin. Neurol.201613344746610.1016/B978‑0‑444‑63432‑0.00024‑4 27112691
    [Google Scholar]
  79. BohacovaP. KosslJ. HajkovaM. Interleukin-10 production by B cells is regulated by cytokines, but independently of GATA-3 or FoxP3 expression.Cell. Immunol.202034710398710.1016/j.cellimm.2019.103987 31787200
    [Google Scholar]
  80. ZhuH. ZengY. ZhouC. YeW. SNHG16/miR-216-5p/ZEB1 signal pathway contributes to the tumorigenesis of cervical cancer cells.Arch. Biochem. Biophys.20186371810.1016/j.abb.2017.11.003 29126969
    [Google Scholar]
  81. LianD. AminB. DuD. YanW. Enhanced expression of the long non-coding RNA SNHG16 contributes to gastric cancer progression and metastasis.Cancer Biomark.201721115116010.3233/CBM‑170462 29081409
    [Google Scholar]
  82. SalmenaL. PolisenoL. TayY. KatsL. PandolfiP.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?Cell2011146335335810.1016/j.cell.2011.07.014 21802130
    [Google Scholar]
  83. WangW. LouC. GaoJ. ZhangX. DuY. LncRNA SNHG16 reverses the effects of miR-15a/16 on LPS-induced inflammatory pathway.Biomed. Pharmacother.20181061661166710.1016/j.biopha.2018.07.105 30119242
    [Google Scholar]
  84. WangJ. CaoY. LuX. Identification of the regulatory role of lncRNA SNHG16 in myasthenia gravis by constructing a competing endogenous RNA network.Mol. Ther. Nucleic Acids2020191123113310.1016/j.omtn.2020.01.005 32059338
    [Google Scholar]
  85. RenS. LiuY. XuW. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer.J. Urol.201319062278228710.1016/j.juro.2013.07.001 23845456
    [Google Scholar]
  86. HuangJ. MaL. SongW. LncRNA‐MALAT1 promotes angiogenesis of thyroid cancer by modulating tumor‐associated macrophage FGF2 protein secretion.J. Cell. Biochem.2017118124821483010.1002/jcb.26153 28543663
    [Google Scholar]
  87. KongX. WangJ. CaoY. The long noncoding RNA MALAT‐1 functions as a competing endogenous RNA to regulate MSL2 expression by sponging miR‐338‐3p in myasthenia gravis.J. Cell. Biochem.201912045542555010.1002/jcb.27838 30362606
    [Google Scholar]
  88. PengS. HuangY. LncRNA GAS5 positively regulates IL‐10 expression in patients with generalized myasthenia gravis.Brain Behav.2022121e245710.1002/brb3.2457 34936242
    [Google Scholar]
  89. YangJ. HuangQ. LiaoP. ZhangP. SunS. XuQ. Mechanism of miR-338-3p in sepsis-induced acute lung injury via indirectly modulating ATF4.Transpl. Immunol.20237610168110.1016/j.trim.2022.101681 35926799
    [Google Scholar]
  90. ZhengC. ChuM. ChenQ. ChenC. WangZ.W. ChenX. The role of lncRNA OIP5-AS1 in cancer development and progression.Apoptosis2022275-631132110.1007/s10495‑022‑01722‑3 35316453
    [Google Scholar]
  91. ZhangY. GuoS. WangS. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling.Ecotoxicol. Environ. Saf.202122011237610.1016/j.ecoenv.2021.112376 34051661
    [Google Scholar]
  92. WangX. ZhangH. LuX. LncRNA OIP5-AS1 modulates the proliferation and apoptosis of Jurkat cells by sponging miR-181c-5p to regulate IL-7 expression in myasthenia gravis.PeerJ202210e1345410.7717/peerj.13454 35602889
    [Google Scholar]
  93. CaiY. HanL. ZhuD. A stable cell line expressing clustered AChR: A novel cell-based assay for anti-AChR antibody detection in myasthenia gravis.Front. Immunol.20211266604610.3389/fimmu.2021.666046 34305897
    [Google Scholar]
  94. KonecznyI. HerbstR. Myasthenia gravis: Pathogenic effects of autoantibodies on neuromuscular architecture.Cells20198767110.3390/cells8070671 31269763
    [Google Scholar]
  95. WeiG.H. WangX. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway.Eur. Rev. Med. Pharmacol. Sci.2017211738503856 28975980
    [Google Scholar]
  96. UrodaT. AnastasakouE. RossiA. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway.Mol. Cell2019755982995.e910.1016/j.molcel.2019.07.025 31444106
    [Google Scholar]
  97. HongY. LiangX. GilhusN.E. AChR antibodies show a complex interaction with human skeletal muscle cells in a transcriptomic study.Sci. Rep.20201011123010.1038/s41598‑020‑68185‑x 32641696
    [Google Scholar]
  98. GibbonsH.R. ShaginurovaG. KimL.C. ChapmanN. SpurlockC.F.III AuneT.M. Divergent lncRNA GATA3-AS1 Regulates GATA3 Transcription in T-Helper 2 Cells.Front. Immunol.20189251210.3389/fimmu.2018.02512 30420860
    [Google Scholar]
  99. ZhangH. NestorC.E. ZhaoS. Profiling of human CD4+ T-cell subsets identifies the TH2-specific noncoding RNA GATA3-AS1.J. Allergy Clin. Immunol.201313241005100810.1016/j.jaci.2013.05.033 23870669
    [Google Scholar]
  100. KeJ. DuX. CuiJ. YuL. LiH. LncRNA and mRNA expression associated with myasthenia gravis in patients with thymoma.Thorac. Cancer2022131152310.1111/1759‑7714.14201 34773374
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240281531231228051037
Loading
/content/journals/cmm/10.2174/0115665240281531231228051037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test