Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Colorectal cancer (CRC) is a malignant tumor. Slug has been found to display a key role in diversified cancers, but its relevant regulatory mechanisms in CRC development are not fully explored.

Objective

Hence, exploring the function and regulatory mechanisms of Slug is critical for the treatment of CRC.

Methods

Protein expressions of Slug, N-cadherin, E-cadherin, Snail, HIF-1α, SUMO-1, Drp1, Opa1, Mfn1/2, PGC-1α, NRF1, and TFAM were measured through western blot. To evaluate the protein expression of Slug and SUMO-1, an immunofluorescence assay was used. Cell migration ability was tested through transwell assay. The SUMOylation of Slug was examined through CO-IP assay.

Results

Slug displayed higher expression and facilitated tumor metastasis in CRC. In addition, hypoxia treatment was discovered to upregulate HIF-1α, Slug, and SUMO-1 levels, as well as induce Slug SUMOylation. Slug SUMOylation markedly affected mitochondrial biosynthesis, fusion, and mitogen-related protein expression levels to trigger mitochondrial stress. Additionally, the induced mitochondrial stress by hypoxia could be rescued by Slug inhibition and TAK-981 treatment.

Conclusion

Our study expounded that hypoxia affects mitochondrial stress and facilitates tumor metastasis of CRC through Slug SUMOylation.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240271525231112121008
2023-11-27
2025-01-19
Loading full text...

Full text loading...

References

  1. BrennerH. KloorM. PoxC.P. Colorectal cancer.Lancet201438399271490150210.1016/S0140‑6736(13)61649‑9 24225001
    [Google Scholar]
  2. VoutsadakisI.A. The pluripotency network in colorectal cancer pathogenesis and prognosis: An update.Biomarkers Med.201812665366510.2217/bmm‑2017‑0369 29944017
    [Google Scholar]
  3. YuH. HemminkiK. Genetic epidemiology of colorectal cancer and associated cancers.Mutagenesis202035320721910.1093/mutage/gez022 31424514
    [Google Scholar]
  4. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  5. BürtinF. MullinsC.S. LinnebacherM. Mouse models of colorectal cancer: Past, present and future perspectives.World J. Gastroenterol.202026131394142610.3748/wjg.v26.i13.1394 32308343
    [Google Scholar]
  6. BalchenV. SimonK. Colorectal cancer development and advances in screening.Clin. Interv. Aging20161196797610.2147/CIA.S109285 27486317
    [Google Scholar]
  7. JohdiN.A. SukorN.F. Colorectal cancer immunotherapy: Options and strategies.Front. Immunol.202011162410.3389/fimmu.2020.01624 33042104
    [Google Scholar]
  8. ThomasG. Radiation and thyroid cancer—an overview.Radiat. Prot. Dosimetry20181821535710.1093/rpd/ncy146 30165692
    [Google Scholar]
  9. YounisN.K. RoumiehR. BassilE.P. GhoubairaJ.A. KobeissyF. EidA.H. Nanoparticles: Attractive tools to treat colorectal cancer.Semin. Cancer Biol.202286Pt 211310.1016/j.semcancer.2022.08.006 36028154
    [Google Scholar]
  10. HamzeK. AbdallahR.H. YounisN.K. 2-Nucleobase-substituted 4,6-diaminotriazine analogs: Synthesis and anti-cancer activity in 5-fluorouracil-sensitive and resistant colorectal cancer cells.Curr. Med. Chem.202330263032304910.2174/0929867329666220914112042 36111761
    [Google Scholar]
  11. RuffS.M. PawlikT.M. A review of translational research for targeted therapy for metastatic colorectal cancer.Cancers2023155139510.3390/cancers15051395 36900187
    [Google Scholar]
  12. Al ZeinM. BoukhdoudM. ShammaaH. Immunotherapy and immunoevasion of colorectal cancer.Drug Discov. Today202328910366910.1016/j.drudis.2023.103669 37328052
    [Google Scholar]
  13. TirendiS. MarengoB. DomenicottiC. BassiA.M. AlmontiV. VernazzaS. Colorectal cancer and therapy response: A focus on the main mechanisms involved.Front. Oncol.202313120814010.3389/fonc.2023.1208140 37538108
    [Google Scholar]
  14. HemavathyK. AshrafS.I. IpY.T. Snail/Slug family of repressors: Slowly going into the fast lane of development and cancer.Gene2000257111210.1016/S0378‑1119(00)00371‑1 11054563
    [Google Scholar]
  15. PhillipsS. KuperwasserC. SLUG: Critical regulator of epithelial cell identity in breast development and cancer.Cell Adhes. Migr.20148657858710.4161/19336918.2014.972740 25482617
    [Google Scholar]
  16. ShihJ.Y. YangP.C. The EMT regulator slug and lung carcinogenesis.Carcinogenesis20113291299130410.1093/carcin/bgr110 21665887
    [Google Scholar]
  17. RecouvreuxM.V. MoldenhauerM.R. GalenkampK.M.O. Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer.J. Exp. Med.20202179e2020038810.1084/jem.20200388 32510550
    [Google Scholar]
  18. ChenD.D. ChengJ.T. ChandooA. microRNA-33a prevents epithelial-mesenchymal transition, invasion, and metastasis of gastric cancer cells through the Snail/Slug pathway.Am. J. Physiol. Gastrointest. Liver Physiol.20193172G147G16010.1152/ajpgi.00284.2018 30943047
    [Google Scholar]
  19. AnJ.S. RhoY.S. MoonJ.H. LimY.C. Notch1 inactivation promotes invasion and metastasis of nasopharyngeal carcinoma cells partly through Slug activation.Neoplasma202067225926610.4149/neo_2019_190313N220 31777263
    [Google Scholar]
  20. YangL. QiuJ. XiaoY. AP-2β inhibits hepatocellular carcinoma invasion and metastasis through Slug and Snail to suppress epithelial-mesenchymal transition.Theranostics20188133707372110.7150/thno.25166 30026878
    [Google Scholar]
  21. ChengD. JinL. ChenY. XiX. GuoY. YAP promotes epithelial mesenchymal transition by upregulating Slug expression in human colorectal cancer cells.Int. J. Clin. Exp. Pathol.2020134701710 32355518
    [Google Scholar]
  22. QianJ. LiuH. ChenW. Knockdown of Slug by RNAi inhibits the proliferation and invasion of HCT116 colorectal cancer cells.Mol. Med. Rep.2013841055105910.3892/mmr.2013.1604 23900394
    [Google Scholar]
  23. JiangH. LiT. QuY. Long non-coding RNA SNHG15 interacts with and stabilizes transcription factor Slug and promotes colon cancer progression.Cancer Lett.2018425788710.1016/j.canlet.2018.03.038 29604394
    [Google Scholar]
  24. JingX. YangF. ShaoC. Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol. Cancer201918115710.1186/s12943‑019‑1089‑9 31711497
    [Google Scholar]
  25. WicksE.E. SemenzaG.L. Hypoxia-inducible factors: Cancer progression and clinical translation.J. Clin. Invest.202213211e15983910.1172/JCI159839 35642641
    [Google Scholar]
  26. HsuC.C. TsengL.M. LeeH.C. Role of mitochondrial dysfunction in cancer progression.Exp. Biol. Med.2016241121281129510.1177/1535370216641787 27022139
    [Google Scholar]
  27. FearonU. CanavanM. BinieckaM. VealeD.J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis.Nat. Rev. Rheumatol.201612738539710.1038/nrrheum.2016.69 27225300
    [Google Scholar]
  28. ZhaoM. WangY. LiL. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance.Theranostics20211141845186310.7150/thno.50905 33408785
    [Google Scholar]
  29. KuoC.L. Ponneri BabuharisankarA. LinY.C. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend?J. Biomed. Sci.20222917410.1186/s12929‑022‑00859‑2 36154922
    [Google Scholar]
  30. NishidaM. YamashitaN. OgawaT. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes.J. Immunother. Cancer202199e00295410.1136/jitc‑2021‑002954 34531248
    [Google Scholar]
  31. Manoochehri KhoshinaniH. AfsharS. NajafiR. Hypoxia: A double-edged sword in cancer therapy.Cancer Invest.2016341053654510.1080/07357907.2016.1245317 27824512
    [Google Scholar]
  32. YangG. ShiR. ZhangQ. Hypoxia and oxygen-sensing signaling in gene regulation and cancer progression.Int. J. Mol. Sci.20202121816210.3390/ijms21218162 33142830
    [Google Scholar]
  33. Brahimi-HornM.C. ChicheJ. PouysségurJ. Hypoxia and cancer.J. Mol. Med.200785121301130710.1007/s00109‑007‑0281‑3 18026916
    [Google Scholar]
  34. TianT. DongY. ZhuY. Hypoxia-induced CNPY2 upregulation promotes glycolysis in cervical cancer through activation of AKT pathway.Biochem. Biophys. Res. Commun.2021551637010.1016/j.bbrc.2021.02.116 33721832
    [Google Scholar]
  35. ZhuZ.J. PangY. JinG. Hypoxia induces chemoresistance of esophageal cancer cells to cisplatin through regulating the lncRNA-EMS/miR-758-3p/WTAP axis.Aging20211313171551717610.18632/aging.203062 34081626
    [Google Scholar]
  36. Qureshi-BaigK. KuhnD. ViryE. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway.Autophagy20201681436145210.1080/15548627.2019.1687213 31775562
    [Google Scholar]
  37. HanZ.J. FengY.H. GuB.H. LiY.M. ChenH. The post-translational modification, SUMOylation, and cancer (Review).Int. J. Oncol.20185241081109410.3892/ijo.2018.4280 29484374
    [Google Scholar]
  38. EiflerK. VertegaalA.C.O. SUMOylation-mediated regulation of cell cycle progression and cancer.Trends Biochem. Sci.2015401277979310.1016/j.tibs.2015.09.006 26601932
    [Google Scholar]
  39. ChenQ. DengR. ZhaoX. Sumoylation of EphB1 suppresses neuroblastoma tumorigenesis via inhibiting PKCγ activation.Cell. Physiol. Biochem.20184562283229210.1159/000488174 29550816
    [Google Scholar]
  40. ShangguanX. HeJ. MaZ. SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis.Nat. Commun.2021121181210.1038/s41467‑021‑22163‑7 33753739
    [Google Scholar]
  41. LiangZ. YangY. HeY. SUMOylation of IQGAP1 promotes the development of colorectal cancer.Cancer Lett.2017411909910.1016/j.canlet.2017.09.046 28987385
    [Google Scholar]
  42. HungP.F. HongT.M. ChangC.C. Hypoxia-induced Slug SUMOylation enhances lung cancer metastasis.J. Exp. Clin. Cancer Res.2019381510.1186/s13046‑018‑0996‑8 30612578
    [Google Scholar]
  43. ChenJ. BianX. LiY. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes.Mol. Med. Rep.20202242617262610.3892/mmr.2020.11374 32945433
    [Google Scholar]
  44. KohM.Y. NguyenV. LemosR.Jr Hypoxia-induced SUMOylation of E3 ligase HAF determines specific activation of HIF2 in clear-cell renal cell carcinoma.Cancer Res.201575231632910.1158/0008‑5472.CAN‑13‑2190 25421578
    [Google Scholar]
  45. CaiQ. VermaS.C. KumarP. MaM. RobertsonE.S. Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification.PLoS One201053e972010.1371/journal.pone.0009720 20300531
    [Google Scholar]
  46. NunnariJ. SuomalainenA. Mitochondria: In sickness and in health.Cell201214861145115910.1016/j.cell.2012.02.035 22424226
    [Google Scholar]
  47. GormanG.S. ChinneryP.F. DiMauroS. Mitochondrial diseases.Nat. Rev. Dis. Primers2016211608010.1038/nrdp.2016.80 27775730
    [Google Scholar]
  48. KudryavtsevaA.V. KrasnovG.S. DmitrievA.A. Mitochondrial dysfunction and oxidative stress in aging and cancer.Oncotarget2016729448794490510.18632/oncotarget.9821 27270647
    [Google Scholar]
  49. SorrentinoV. MenziesK.J. AuwerxJ. Repairing mitochondrial dysfunction in disease.Annu. Rev. Pharmacol. Toxicol.201858135338910.1146/annurev‑pharmtox‑010716‑104908 28961065
    [Google Scholar]
  50. HerzigS. ShawR.J. AMPK: guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.201819212113510.1038/nrm.2017.95 28974774
    [Google Scholar]
  51. ForsströmS. JacksonC.B. CarrollC.J. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions.Cell Metab.201930610401054.e710.1016/j.cmet.2019.08.019 31523008
    [Google Scholar]
  52. Guerra de SouzaA.C. PredigerR.D. CimarostiH. SUMO ‐regulated mitochondrial function in Parkinson’s disease.J. Neurochem.2016137567368610.1111/jnc.13599 26932327
    [Google Scholar]
  53. HeJ. ChengJ. WangT. SUMOylation-mediated response to mitochondrial stress.Int. J. Mol. Sci.20202116565710.3390/ijms21165657 32781782
    [Google Scholar]
  54. KimC. JunckerM. ReedR. SUMOylation of mitofusins: A potential mechanism for perinuclear mitochondrial congression in cells treated with mitochondrial stressors.Biochim. Biophys. Acta Mol. Basis Dis.20211867616610410.1016/j.bbadis.2021.166104 33617988
    [Google Scholar]
  55. YuY. ChenY. LiuK. ChengJ. TuJ. SUMOylation enhances the activity of IDH2 under oxidative stress.Biochem. Biophys. Res. Commun.2020532459159710.1016/j.bbrc.2020.08.089 32900482
    [Google Scholar]
  56. MaR. MaL. WengW. DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation.Sci. Adv.2020613eaaz036110.1126/sciadv.aaz0361 32232156
    [Google Scholar]
  57. XiuD. WangZ. CuiL. JiangJ. YangH. LiuG. Sumoylation of SMAD 4 ameliorates the oxidative stress-induced apoptosis in osteoblasts.Cytokine201810217318010.1016/j.cyto.2017.09.003 29221668
    [Google Scholar]
  58. SomashekaraSC DhyaniKM ThakurM MuniyappaK SUMOylation of yeast Pso2 enhances its translocation and accumulation in the mitochondria and suppresses methyl methanesulfonate‐induced mitochondrial DNA damage.Mol Microbiol2023mmi.1514510.1111/mmi.15145 37649278
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240271525231112121008
Loading
/content/journals/cmm/10.2174/0115665240271525231112121008
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): colorectal cancer; CRC; hypoxia; mitochondrial stress; slug SUMOylation; tumor metastasis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test