Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Introduction

This study employs Density Functional Theory (DFT) to investigate the interactions between Teriflunomide and β-cyclodextrin in the gas phase.

Methods

The non-bonded interaction effects of the Teriflunomide compound with β-cyclodextrin on the chemical shift tensors, electronic properties, and natural charge were also observed. An analysis of the natural bond orbital (NBO) indicated that the molecule β-cyclodextrin as an electron donor functions while Teriflunomide functions as an electron acceptor in the complex β-cyclodextrin/Teriflunomide.

Results

The electronic spectra of the Teriflunomide drug and complex β-cyclodextrin/ Teriflunomide were calculated by Time-Dependent Density Functional Theory (TD-DFT) to investigate the adsorption effects of the Teriflunomide drug over β-cyclodextrin on maximum wavelength.

Conclusion

As a result, the possibility of the use of β-cyclodextrin for Teriflunomide delivery to the diseased cells has been established.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240270161231112120838
2024-01-15
2025-03-15
Loading full text...

Full text loading...

References

  1. MatsudaH. ArimaH. Cyclodextrins in transdermal and rectal delivery.Adv. Drug Deliv. Rev.1999361819910.1016/S0169‑409X(98)00056‑8 10837710
    [Google Scholar]
  2. SzejtliJ. Medicinal applications of cyclodextrins.Med. Res. Rev.199414335338610.1002/med.2610140304 8007740
    [Google Scholar]
  3. PalA. GabaR. SoniS. Effect of presence of α-cyclodextrin and β-cyclodextrin on solution behavior of sulfathiazole at different temperatures: Thermodynamic and spectroscopic studies.J. Chem. Thermodyn.201811910211310.1016/j.jct.2017.12.017
    [Google Scholar]
  4. SongN. LouX.Y. MaL. GaoH. YangY.W. Supramolecular nanotheranostics based on pillarenes.Theranostics20199113075309310.7150/thno.31858 31244942
    [Google Scholar]
  5. AkashaA. ElwahediM.A. EldeebA.M. Cyclodextrins and their pharmaceutical applications.PharmaTutor2014274046
    [Google Scholar]
  6. MiyazawaI. UedaH. NagaseH. EndoT. KobayashiS. NagaiT. Physicochemical properties and inclusion complex formation of δ-cyclodextrin.Eur. J. Pharm. Sci.19953315316210.1016/0928‑0987(95)00006‑Y
    [Google Scholar]
  7. SkoldM.E. ThyneG.D. DrexlerJ.W. McCrayJ.E. Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD).J. Contam. Hydrol.20091073-410811310.1016/j.jconhyd.2009.04.006 19487046
    [Google Scholar]
  8. YilmazA.S. OzturkS. SalihB. AyyalaR.S. SahinerN. ESI-IM-MS characterization of cyclodextrin complexes and their chemically cross-linked alpha (α-), beta (β-) and gamma (γ-) cyclodextrin particles as promising drug delivery materials with improved bioavailability.Colloids Surf. B Biointerfaces202323011352210.1016/j.colsurfb.2023.113522 37657404
    [Google Scholar]
  9. ArslanM. SanyalR. SanyalA. Cyclodextrin embedded covalently crosslinked networks: Snthesis and applications of hydrogels with nano-containers.Polym. Chem.202011361562910.1039/C9PY01679A
    [Google Scholar]
  10. YouG.J. SunL-L. CaoX-X. Comprehensive evaluation of solubilization of flavonoids by various cyclodextrins using high performance liquid chromatography and chemometry.Lebensm. Wiss. Technol.20189417217710.1016/j.lwt.2018.04.035
    [Google Scholar]
  11. ManchineellaS. MuruganN.A. GovindarajuT. Cyclic dipeptide-based ambidextrous supergelators: Minimalistic rational design, structure-gelation studies, and in situ hydrogelation.Biomacromolecules201718113581359010.1021/acs.biomac.7b00924 28856890
    [Google Scholar]
  12. TerekhovaI. KritskiyI. AgafonovM. KumeevR. Martínez-Cortés C, Pérez-Sánchez H. Selective binding of cyclodextrins with leflunomide and its pharmacologically active metabolite teriflunomide.Int. J. Mol. Sci.20202123910210.3390/ijms21239102 33265979
    [Google Scholar]
  13. SalmasoS. SemenzatoA. CalicetiP. Specific antitumor targetable β-cyclodextrin-poly(ethylene glycol)-folic acid drug delivery bioconjugate.Bioconjug. Chem.2004155997100410.1021/bc034186d 15366952
    [Google Scholar]
  14. MichaelisM. CinatlJ. VogelJ.U. PouckovaP. DrieverP.H. CinatlJ. Treatment of drug-resistant human neuroblastoma cells with cyclodextrin inclusion complexes of aphidicolin.Anticancer Drugs200112546747310.1097/00001813‑200106000‑00008 11395575
    [Google Scholar]
  15. BaiY. AnN. ChenD. Facile construction of shape-regulated β-cyclodextrin-based supramolecular self-assemblies for drug delivery.Carbohydr. Polym.202023111571410.1016/j.carbpol.2019.115714 31888845
    [Google Scholar]
  16. Machín R, Isasi JR, Vélaz I. β-Cyclodextrin hydrogels as potential drug delivery systems.Carbohydr. Polym.20128732024203010.1016/j.carbpol.2011.10.024
    [Google Scholar]
  17. RajewskiR.A. StellaV.J. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery.J. Pharm. Sci.199685111142116910.1021/js960075u 8923319
    [Google Scholar]
  18. AreeT. How cyclodextrin encapsulation improves molecular stability of apple polyphenols phloretin, phlorizin, and ferulic acid: Atomistic insights through structural chemistry.Food Chem.202340913532610.1016/j.foodchem.2022.135326 36610226
    [Google Scholar]
  19. KumarP. BhardwajV.K. PurohitR. Dispersion-corrected DFT calculations and umbrella sampling simulations to investigate stability of Chrysin-cyclodextrin inclusion complexes.Carbohydr. Polym.202331912116210.1016/j.carbpol.2023.121162 37567706
    [Google Scholar]
  20. LiX. LiuJ. QiuN. Cyclodextrin-based polymeric drug delivery systems for cancer therapy.Polymers2023156140010.3390/polym15061400 36987181
    [Google Scholar]
  21. LoftssonT. SigurdssonH.H. JansookP. Anomalous properties of cyclodextrins and their complexes in aqueous solutions.Materials2023166222310.3390/ma16062223 36984102
    [Google Scholar]
  22. RoyA. MannaK. DeyS. PalS. Chemical modification of β-cyclodextrin towards hydrogel formation.Carbohydr. Polym.202330612057610.1016/j.carbpol.2023.120576 36746567
    [Google Scholar]
  23. WangQ. ZhangA. ZhuL. YangX. FangG. TangB. Cyclodextrin-based ocular drug delivery systems: A comprehensive review.Coord. Chem. Rev.202347621491910.1016/j.ccr.2022.214919
    [Google Scholar]
  24. BognanniN. VialeM. DistefanoA. Cyclodextrin polymers as delivery systems for targeted anti-cancer chemotherapy.Molecules20212619604610.3390/molecules26196046 34641590
    [Google Scholar]
  25. VyasV.K. VariyaB. GhateM.D. Design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents.Eur. J. Med. Chem.20148238539310.1016/j.ejmech.2014.05.064 24929289
    [Google Scholar]
  26. TanrehS. RezvaniM. Darvish GanjiM. Molecular simulation investigations on interaction properties of the teriflunomide–chitosan complex in aqueous solution.J. Phys. Chem. Solids202317411117110.1016/j.jpcs.2022.111171
    [Google Scholar]
  27. HuangO. ZhangW. ZhiQ. Featured Article: Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells.Exp. Biol. Med.2015240442643710.1177/1535370214554881 25304315
    [Google Scholar]
  28. WarnkeC. StüveO. KieseierB.C. Teriflunomide for the treatment of multiple sclerosis.Clin. Neurol. Neurosurg.2013115Suppl. 1S90S9410.1016/j.clineuro.2013.09.030 24321165
    [Google Scholar]
  29. CamposC. Development and optimization of teriflunomide-loaded chondroitin sulphate-coated nanostructured lipid carriers (NLCs) through box behnken design.J. Chil. Chem. Soc.202368258325838
    [Google Scholar]
  30. GadhaveD. GorainB. TagalpallewarA. KokareC. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma.J. Drug Deliv. Sci. Technol.20195127628910.1016/j.jddst.2019.02.013
    [Google Scholar]
  31. GadhaveD.G. KokareC.R. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies.Drug Dev. Ind. Pharm.201945583985110.1080/03639045.2019.1576724 30702966
    [Google Scholar]
  32. XuanJ. RenZ. QingT. Mitochondrial dysfunction induced by leflunomide and its active metabolite.Toxicology2018396-397334510.1016/j.tox.2018.02.003 29427785
    [Google Scholar]
  33. MistryA. StolnikS. IllumL. Nanoparticles for direct nose-to-brain delivery of drugs.Int. J. Pharm.2009379114615710.1016/j.ijpharm.2009.06.019 19555750
    [Google Scholar]
  34. PawlakT. SudgenI. BujaczG. IugaD. BrownS.P. PotrzebowskiM.J. Synergy of solid-state NMR, single-crystal X-ray diffraction, and crystal structure prediction methods: A case study of teriflunomide (TFM).Cryst. Growth Des.20212163328334310.1021/acs.cgd.1c00123 34267599
    [Google Scholar]
  35. PatelA. ShahS. PatelM.S. VyasG. Quality by design approach to the development of self-microemulsifying systems for oral delivery of teriflunomide: Design, optimization, and in vitro and in vivo evaluation.Egyptian Pharmaceutical Journal202221216710.4103/epj.epj_84_21
    [Google Scholar]
  36. GadhaveD. RasalN. SonawaneR. SekarM. KokareC. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies.Int. J. Biol. Macromol.202116790692010.1016/j.ijbiomac.2020.11.047 33186648
    [Google Scholar]
  37. PawlakT. PaluchP. DolotR. BujaczG. PotrzebowskiM.J. New salts of teriflunomide (TFM) – Single crystal X-ray and solid state NMR investigation.Solid State Nucl. Magn. Reson.202212210182010.1016/j.ssnmr.2022.101820 36067621
    [Google Scholar]
  38. SheikhiM. ShahabS. KhaleghianM. HajikolaeeF.H. BalakhanavaI. AlnajjarR. Adsorption properties of the molecule resveratrol on CNT(8,0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations.J. Mol. Struct.2018116047948710.1016/j.molstruc.2018.01.005
    [Google Scholar]
  39. OuaketA. ChrakaA. RaissouniI. AmraniM.A.E. BerradaM. KnouziN. Synthesis, spectroscopic (13C/1H-NMR, FT-IR) investigations, quantum chemical modelling (FMO, MEP, NBO analysis), and antioxidant activity of the bis-benzimidazole molecule.J. Mol. Struct.2022125913272910.1016/j.molstruc.2022.132729
    [Google Scholar]
  40. KhajehzadehM. MoghadamM. RahmaniaslS. RajabiM. Synthesis and spectroscopic behavior for Copper (II) poly N–heterocyclic carben modified on nano silica: A comparative experimental and DFT studies.J. Mol. Struct.2021123012966010.1016/j.molstruc.2020.129660
    [Google Scholar]
  41. ErfuH. ShahabS. SheikhiM. AlnajjarR. PengL. Quantum chemical modeling, synthesis, FT-IR, 1H NMR, 13C NMR and UV/Vis of new azomethine derivatives.J. Mol. Struct.2020122112879910.1016/j.molstruc.2020.128799
    [Google Scholar]
  42. AzarakhshiF. SheikhiM. ShahabS. Investigation of encapsulation of Talzenna drug into carbon and boron-nitride nanotubes [CNT(8,8-7) and BNNT(8,8-7)]: a DFT study.Chem. Pap.20217541521153310.1007/s11696‑020‑01407‑8
    [Google Scholar]
  43. ShahiM. AzarakhshiF. Theoretical study of interaction between temozolomide anticancer drug and hydroxyethyl carboxymethyl cellulose nanocarriers for targeted drug delivery by DFT quantum mechanical calculation.BMC Chem.202317111410.1186/s13065‑023‑01029‑7 37710338
    [Google Scholar]
  44. FrischM Gaussian 09, revision a 02. Wallingford, ct: gaussian, inc 2015
    [Google Scholar]
  45. SheikhiM. ShahabS. AlnajjarR. AhmadianarogM. KavianiS. Investigation of adsorption tyrphostin AG528 anticancer drug upon the CNT (6, 6-6) nanotube: A DFT study.Curr. Mol. Med.20191929110410.2174/1566524019666190226111823 30813875
    [Google Scholar]
  46. FrischA. NielsonA. HolderA. Gaussview user manual.Pittsburgh, PAGaussian Inc.2000556
    [Google Scholar]
  47. ShahabS. FilippovichL. SheikhiM. Polarization, excited states, trans - cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl) aniline in PVA matrix.J. Mol. Struct.2017114170370910.1016/j.molstruc.2017.04.014
    [Google Scholar]
  48. KhajehzadehM. RajabiM. RahmaniaslS. Synthesis, spectroscopic (UV–vis, FT-IR and NMR), solubility in various solvents, X–ray, NBO, NLO and FMO analysis of (L1) and [(L1)PdCl2] complex: A comprehensive experimental and computational study.J. Mol. Struct.2019117513915110.1016/j.molstruc.2018.07.084
    [Google Scholar]
  49. WeinholdF. LandisC.R. Natural bond orbitals and extensions of localized bonding concepts.Chem. Educ. Res. Pract.2001229110410.1039/B1RP90011K
    [Google Scholar]
  50. HalimSA IbrahimMA Synthesis, DFT calculations, electronic structure, electronic absorption spectra, natural bond orbital (NBO) and nonlinear optical (NLO) analysis of the novel 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6] naphthyridine-6(5H),8-dione (MBCND).J Mol Struct2017113054355810.1016/j.molstruc.2016.10.058
    [Google Scholar]
  51. SheikhiM. SheikhD. Quantum chemical investigations on phenyl-7, 8-dihydro-[1, 3]-dioxolo [4, 5-g] quinolin-6 (5h)-one.Rev. Roum. Chim.2014599761767
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240270161231112120838
Loading
/content/journals/cmm/10.2174/0115665240270161231112120838
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): DFT; Disease; Drug delivery; NBO; Teriflunomide; β-cyclodextrin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test