Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Unlocking the secrets of reproductive success in domestic animals requires a deep understanding of the molecular biology and immunology of spermatozoa, capacitation, fertilization, and conception. This review highlights the complex processes involved in spermatogenesis and sperm capacitation, including changes in membrane properties, signaling pathways, and the crucial acrosome reaction. The interaction with the zona pellucida in species-specific gamete recognition and binding is emphasized. The implications of fertilization defects for infertility and assisted reproduction are discussed, underscoring the challenges faced in breeding programs. The future directions for research in this field involve advancements in molecular techniques, understanding the immune regulation of spermatozoa, investigating environmental factors' impact, and integrating multi-omics approaches to enhance assisted reproduction techniques in domestic animals. This review contributes to our understanding of the intricate mechanisms underlying successful reproduction and provides insights into potential strategies for improving fertility outcomes in domestic animals.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240306965240802075331
2024-11-21
2025-04-10
Loading full text...

Full text loading...

References

  1. SutovskyP. Review: Sperm–oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin–proteasome system.Animal201812s1s121s13210.1017/S1751731118000253 29477154
    [Google Scholar]
  2. SutovskyP. SchattenG. Paternal contributions to the mammalian zygote: Fertilization after sperm-egg fusion.Int. Rev. Cytol.2000195165 10603574
    [Google Scholar]
  3. StaubC. JohnsonL. Review: Spermatogenesis in the bull.Animal201812s1s27s3510.1017/S1751731118000435 29882505
    [Google Scholar]
  4. NetoF.T.L. BachP.V. NajariB.B. LiP.S. GoldsteinM. Spermatogenesis in humans and its affecting factors.Semin. Cell Dev. Biol.201659102610.1016/j.semcdb.2016.04.009 27143445
    [Google Scholar]
  5. ZhouS. FengS. QinW. WangX. TangY. YuanS. Epigenetic regulation of spermatogonial stem cell homeostasis: From DNA methylation to histone modification.Stem Cell Rev. Rep.202117256258010.1007/s12015‑020‑10044‑3 32939648
    [Google Scholar]
  6. VasilevaA. TiedauD. FiroozniaA. Müller-ReichertT. JessbergerR. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression.Curr. Biol.200919863063910.1016/j.cub.2009.02.047 19345099
    [Google Scholar]
  7. O’DonnellL. Mechanisms of spermiogenesis and spermiation and how they are disturbed.Spermatogenesis201442e97962310.4161/21565562.2014.979623 26413397
    [Google Scholar]
  8. AitkenR.J. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation.J. Cell Sci.1998111Pt 564565610.1242/jcs.111.5.645
    [Google Scholar]
  9. AldanaA. CarneiroJ. Martínez-MeklerG. DarszonA. Discrete dynamic model of the mammalian sperm acrosome reaction: The influence of acrosomal pH and physiological heterogeneity.Front. Physiol.20211268279010.3389/fphys.2021.682790 34349664
    [Google Scholar]
  10. BreitbartH. CohenG. RubinsteinS. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction.Reproduction2005129326326810.1530/rep.1.00269 15749953
    [Google Scholar]
  11. Rodriguez-MartinezH. Role of the oviduct in sperm capacitation.Theriogenology200768Suppl. 1S138S14610.1016/j.theriogenology.2007.03.018 17452049
    [Google Scholar]
  12. GhersevichS. MassaE. ZumoffenC. Oviductal secretion and gamete interaction.Reproduction20151491R1R1410.1530/REP‑14‑0145 25190504
    [Google Scholar]
  13. MahéC. ZlotkowskaA.M. ReynaudK. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct.Biol. Reprod.2021105231733110.1093/biolre/ioab105 34057175
    [Google Scholar]
  14. Marín-BriggilerC.I. González-EcheverríaM.F. MunuceM.J. Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm–zona pellucida binding.Fertil. Steril.20109351574158410.1016/j.fertnstert.2008.12.132 19296942
    [Google Scholar]
  15. BrenkerC. RehfeldA. SchifferC. Synergistic activation of CatSper Ca2+ channels in human sperm by oviductal ligands and endocrine disrupting chemicals.Hum. Reprod.201833101915192310.1093/humrep/dey275 30189007
    [Google Scholar]
  16. DuL. ChenW. ChengZ. Novel gene regulation in normal and abnormal spermatogenesis.Cells202110366610.3390/cells10030666 33802813
    [Google Scholar]
  17. Dordas-PerpinyàM. SergeantN. RuelleI. ProAKAP4 semen concentrations as a valuable marker protein of post-thawed semen quality and bull fertility: A retrospective study.Vet. Sci.20229522410.3390/vetsci9050224 35622752
    [Google Scholar]
  18. AdnaneM. ChapwanyaA. KaidiR. MeadeK.G. O’FarrellyC. Profiling inflammatory biomarkers in cervico-vaginal mucus (CVM) postpartum: Potential early indicators of bovine clinical endometritis?Theriogenology201710311712210.1016/j.theriogenology.2017.07.039 28780482
    [Google Scholar]
  19. AbramsE.T. MillerE.M. The roles of the immune system in Women’s reproduction: Evolutionary constraints and life history trade‐offs.Am. J. Phys. Anthropol.2011146S53Suppl. 5313415410.1002/ajpa.21621 22101690
    [Google Scholar]
  20. AlonsoC.A.I. Osycka-SalutC.E. CastellanoL. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines.Mol. Hum. Reprod.201723852153410.1093/molehr/gax030 28521061
    [Google Scholar]
  21. HansenP.J. Current and future assisted reproductive technologies for mammalian farm animals.Adv. Exp. Med. Biol.201475212210.1007/978‑1‑4614‑8887‑3_1 24170352
    [Google Scholar]
  22. BansalA.K. BilaspuriG.S. Effect of ferrous sulphate and ascorbic acid on motility, viability and lipid peroxidation of crossbred cattle bull spermatozoa.Animal20082110010410.1017/S1751731107000961 22444968
    [Google Scholar]
  23. TamburrinoL. TrainiG. MarcelliniA. VignozziL. BaldiE. MarchianiS. Cryopreservation of human spermatozoa: Functional, molecular and clinical aspects.Int. J. Mol. Sci.2023245465610.3390/ijms24054656 36902084
    [Google Scholar]
  24. ParrishJ.J. Susko-ParrishJ.L. Leibfried-RutledgeM.L. CritserE.S. EyestoneW.H. FirstN.L. Bovine in vitro fertilization with frozen-thawed semen.Theriogenology198625459160010.1016/0093‑691X(86)90143‑3 16726150
    [Google Scholar]
  25. TodorovicB.P. Sperm Cryopreservation.Female and Male Fertility Preservation.ChamSpringer International Publishing202245347010.1007/978‑3‑030‑47767‑7_36
    [Google Scholar]
  26. AgarwalA. Panner SelvamM.K. BaskaranS. Proteomic analyses of human sperm cells: Understanding the role of proteins and molecular pathways affecting male reproductive health.Int. J. Mol. Sci.2020215162110.3390/ijms21051621 32120839
    [Google Scholar]
  27. LeeE. ZhangJ. Which assisted reproductive technology (ART) treatment strategy is the most clinically and cost-effective for women of advanced maternal age: A Markov model.BMC Health Serv. Res.2022221119710.1186/s12913‑022‑08485‑2 36151546
    [Google Scholar]
  28. Battista La SalaG. NicoliA. FornaciariE. Retraction Note: Intracytoplasmic morphologically selected sperm injection versus conventional intracytoplasmic sperm injection: A randomized controlled trial.Reprod. Biol. Endocrinol.20171516210.1186/s12958‑017‑0279‑9 28800745
    [Google Scholar]
  29. Payan-CarreiraR. PauloB. FernandoM. FontbonneA. Molecular markers in sperm analysisInsemination - Quality of Semen and Diagnostics Employed.L. Alemayehu20139311410.5772/52231
    [Google Scholar]
  30. KumaresanA. Semen Proteomics and Metabolomics: Emerging Tools for Discovering Fertility Markers.Frontier Technologies in Bovine Reproduction. Singapore: Springer.Nat. Singap.202214717510.1007/978‑981‑19‑3072‑0_8
    [Google Scholar]
  31. MehtaP. SinghR. Small RNAs: An ideal choice as sperm quality biomarkers.Frontiers in Reproductive Health20246132976010.3389/frph.2024.1329760 38406667
    [Google Scholar]
  32. RitzenE.M. BoitaniC. ParvinenM. FrenchF.C. FeldmanM. Stage-dependent secretion of ABP by rat seminiferous tubules.Mol. Cell. Endocrinol.1982251253310.1016/0303‑7207(82)90166‑6 6802692
    [Google Scholar]
  33. GüneşS. KulaçT. The role of epigenetics in spermatogenesis. Türk Üroloji Dergisi.Turk. J. Urol.201439318118710.5152/tud.2013.037 26328105
    [Google Scholar]
  34. MauduitC. HamamahS. BenahmedM. Growth Factors in Testis Development and Function.In: Male Sterility and Motility Disorders. Serono Symposia USA.SpringerNew York, NY199910.1007/978‑1‑4612‑1522‑6_16
    [Google Scholar]
  35. NiF.D. HaoS.L. YangW.X. Multiple signaling pathways in Sertoli cells: Recent findings in spermatogenesis.Cell Death Dis.201910854110.1038/s41419‑019‑1782‑z 31316051
    [Google Scholar]
  36. TakaseH.M. NusseR. Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis.Proc. Natl. Acad. Sci. USA201611311E1489E149710.1073/pnas.1601461113 26929341
    [Google Scholar]
  37. DyceP.W. TennN. KidderG.M. Retinoic acid enhances germ cell differentiation of mouse skin-derived stem cells.J. Ovarian Res.20181111910.1186/s13048‑018‑0390‑3 29490681
    [Google Scholar]
  38. HuangG. LiuL. WangH. Tet1 deficiency leads to premature reproductive aging by reducing spermatogonia stem cells and germ cell differentiation.iScience202023310090810.1016/j.isci.2020.100908 32114381
    [Google Scholar]
  39. DengC.Y. LvM. LuoB.H. ZhaoS.Z. MoZ.C. XieY.J. The role of the PI3K/AKT/mTOR signalling pathway in male reproduction.Curr. Mol. Med.202121753954810.2174/18755666MTEyfMDM0x 33272176
    [Google Scholar]
  40. NusseR. CleversH. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell2017169698599910.1016/j.cell.2017.05.016 28575679
    [Google Scholar]
  41. Ghaffari NovinM. MirfakhraieR. NazarianH. Aberrant Wnt/β-catenin signaling pathway in testis of azoospermic men.Adv. Pharm. Bull.20155337337710.15171/apb.2015.051 26504759
    [Google Scholar]
  42. XueR. LinW. SunJ. The role of Wnt signaling in male reproductive physiology and pathology.Mol. Hum. Reprod.2021271gaaa08510.1093/molehr/gaaa085 33543289
    [Google Scholar]
  43. ZhangM. LiuC. HuM. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats.J. Pharmacol. Sci.2015127443043810.1016/j.jphs.2015.03.001 25953270
    [Google Scholar]
  44. MakishimaM. Nuclear receptors as targets for drug development: Regulation of cholesterol and bile acid metabolism by nuclear receptors.J. Pharmacol. Sci.200597217718310.1254/jphs.FMJ04008X4 15725701
    [Google Scholar]
  45. KrzastekS.C. FarhiJ. GrayM. SmithR.P. Impact of environmental toxin exposure on male fertility potential.Transl. Androl. Urol.2020962797281310.21037/tau‑20‑685 33457251
    [Google Scholar]
  46. QiuL.L. WangX. ZhangX. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A.Toxicol. Lett.2013219211612410.1016/j.toxlet.2013.03.011 23528252
    [Google Scholar]
  47. KelceW.R. StoneC.R. LawsS.C. GrayL.E. KemppainenJ.A. WilsonE.M. Persistent DDT metabolite p,p′–DDE is a potent androgen receptor antagonist.Nature1995375653258158510.1038/375581a0 7791873
    [Google Scholar]
  48. RhoumaK.B. TébourbiO. KrichahR. SaklyM. Reproductive toxicity of DDT in adult male rats.Hum. Exp. Toxicol.200120839339710.1191/096032701682692946 11727789
    [Google Scholar]
  49. GouldJ.C. LeonardL.S. ManessS.C. Bisphenol a interacts with the estrogen receptor α in a distinct manner from estradiol.Mol. Cell. Endocrinol.19981421-220321410.1016/S0303‑7207(98)00084‑7 9783916
    [Google Scholar]
  50. TiwariD. VanageG. Mutagenic effect of bisphenol a on adult rat male germ cells and their fertility.Reprod. Toxicol.201340606810.1016/j.reprotox.2013.05.013 23770294
    [Google Scholar]
  51. MinamiyamaY. IchikawaH. TakemuraS. KusunokiH. NaitoY. YoshikawaT. Generation of reactive oxygen species in sperms of rats as an earlier marker for evaluating the toxicity of endocrine-disrupting chemicals.Free Radic. Res.201044121398140610.3109/10715762.2010.510523 20815788
    [Google Scholar]
  52. ChoudhuryB.P. Arsenic-induced sex hormone disruption: An insight into male infertility.Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility. Cham.Springer International Publishing2022Vol. II839510.1007/978‑3‑031‑12966‑7_6
    [Google Scholar]
  53. SaxenaA.K. KumarA. Effect of arsenic exposure in reproductive health.Fish Analysis for Drug and Chemicals Mediated Cellular Toxicity.SingaporeSpringer Singapore2020598010.1007/978‑981‑15‑4700‑3_5
    [Google Scholar]
  54. JanaK. JanaS. SamantaP.K. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: Possible an estrogenic mode of action.Reprod. Biol. Endocrinol.200641910.1186/1477‑7827‑4‑9 16483355
    [Google Scholar]
  55. Fernández-TorresJ. Zamudio-CuevasY. Martínez-NavaG.A. Impact of cadmium mediated by tobacco use in musculoskeletal diseases.Biol. Trace Elem. Res.202220052008201510.1007/s12011‑021‑02814‑y 34245425
    [Google Scholar]
  56. Ramos-TreviñoJ. Bassol-MayagoitiaS. Hernández-IbarraJ.A. Ruiz-FloresP. Nava-HernándezM.P. Toxic effect of cadmium, lead, and arsenic on the sertoli cell: Mechanisms of damage involved.DNA Cell Biol.201837760060810.1089/dna.2017.4081 29746152
    [Google Scholar]
  57. de AngelisC. GaldieroM. PivonelloC. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility.Reprod. Toxicol.20177310512710.1016/j.reprotox.2017.07.021 28774687
    [Google Scholar]
  58. MorrellJ.M. Heat stress and bull fertility.Theriogenology2020153626710.1016/j.theriogenology.2020.05.014 32442741
    [Google Scholar]
  59. Corte PauseF. CrociatiM. UrliS. MonaciM. DeganoL. StradaioliG. Environmental factors affecting the reproductive efficiency of italian simmental young bulls.Animals20221218247610.3390/ani12182476 36139335
    [Google Scholar]
  60. ZhangJ. CaiZ. YangB. LiH. Association between outdoor air pollution and semen quality.Medicine20199820e1573010.1097/MD.0000000000015730 31096531
    [Google Scholar]
  61. MieussetR. BujanL. Testicular heating and its possible contributions to male infertility: A review.Int. J. Androl.199518416918410.1111/j.1365‑2605.1995.tb00408.x 7591190
    [Google Scholar]
  62. Al-OtaibiS.T. Male infertility among bakers associated with exposure to high environmental temperature at the workplace.J. Taibah Univ. Med. Sci.201813210310710.1016/j.jtumed.2017.12.003 31435311
    [Google Scholar]
  63. GloriaA. CandeloroL. WegherL. RobbeD. CarluccioA. ContriA. Environmental temperature and relative humidity differently affect the sperm characteristics in brown swiss and belgian blue bulls.Int. J. Biometeorol.202165122189219910.1007/s00484‑021‑02184‑z 34424410
    [Google Scholar]
  64. AhmadG. MoinardN. Esquerré-LamareC. MieussetR. BujanL. Mild induced testicular and epididymal hyperthermia alters sperm chromatin integrity in men.Fertil. Steril.201297354655310.1016/j.fertnstert.2011.12.025 22265039
    [Google Scholar]
  65. RaoM. XiaW. YangJ. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression.Andrology2016461054106310.1111/andr.12228 27410176
    [Google Scholar]
  66. RockettJ.C. MappF.L. GargesJ.B. LuftJ.C. MoriC. DixD.J. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice.Biol. Reprod.200165122923910.1095/biolreprod65.1.229 11420244
    [Google Scholar]
  67. BlissS.P. NavratilA.M. XieJ. RobersonM.S. GnRH signaling, the gonadotrope and endocrine control of fertility.Front. Neuroendocrinol.201031332234010.1016/j.yfrne.2010.04.002 20451543
    [Google Scholar]
  68. XiongJ.J. KarschF.J. LehmanM.N. Evidence for seasonal plasticity in the gonadotropin-releasing hormone (GnRH) system of the ewe: Changes in synaptic inputs onto GnRH neurons.Endocrinology199713831240125010.1210/endo.138.3.5000 9048632
    [Google Scholar]
  69. LubahnD.B. MoyerJ.S. GoldingT.S. CouseJ.F. KorachK.S. SmithiesO. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene.Proc. Natl. Acad. Sci. USA19939023111621116610.1073/pnas.90.23.11162 8248223
    [Google Scholar]
  70. BanerjeeS. ChaturvediC.M. Simulated photoperiod influences testicular activity in quail via modulating local GnRHR-GnIHR, GH-R, Cnx-43 and 14-3-3.J. Photochem. Photobiol. B201817841242310.1016/j.jphotobiol.2017.11.034 29197784
    [Google Scholar]
  71. de RouxN. GeninE. CarelJ.C. MatsudaF. ChaussainJ.L. MilgromE. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54.Proc. Natl. Acad. Sci. USA200310019109721097610.1073/pnas.1834399100 12944565
    [Google Scholar]
  72. FunesS. HedrickJ.A. VassilevaG. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system.Biochem. Biophys. Res. Commun.200331241357136310.1016/j.bbrc.2003.11.066 14652023
    [Google Scholar]
  73. KriegsfeldL.J. MeiD.F. BentleyG.E. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals.Proc. Natl. Acad. Sci. USA200610372410241510.1073/pnas.0511003103 16467147
    [Google Scholar]
  74. KriegsfeldL.J. GibsonE.M. WilliamsW.P.III The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour.J. Neuroendocrinol.201022769270010.1111/j.1365‑2826.2010.02031.x 20646173
    [Google Scholar]
  75. SonY.L. UbukaT. TsutsuiK. Molecular mechanisms of gonadotropin-inhibitory hormone (GnIH) actions in target cells and regulation of GnIH expression.Front. Endocrinol.20191011010.3389/fendo.2019.00110 30858828
    [Google Scholar]
  76. HassaniH. RakadM. Kh Al-Jumaily, Fadhel M Lafta. Epigenetics in male infertility, in male reproductive anatomy.In: IntechOpenRijeka202210.5772/intechopen.99529
    [Google Scholar]
  77. GuiY. YuanS. Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond.Cell. Mol. Life Sci.202178114893490510.1007/s00018‑021‑03823‑9 33835194
    [Google Scholar]
  78. LiangS. ZhouJ. WangX. Signaling network centered on mTORC1 dominates mammalian intestinal stem cell ageing.Stem Cell Rev. Rep.202117384284910.1007/s12015‑020‑10073‑y 33201440
    [Google Scholar]
  79. LinZ. HsuP.J. XingX. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis.Cell Res.201727101216123010.1038/cr.2017.117 28914256
    [Google Scholar]
  80. SharmaR. AgarwalA. RohraV.K. AssidiM. Abu-ElmagdM. TurkiR.F. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring.Reprod. Biol. Endocrinol.20151313510.1186/s12958‑015‑0028‑x 25928123
    [Google Scholar]
  81. GunesS. HekimG.N.T. ArslanM.A. AsciR. Effects of aging on the male reproductive system.J. Assist. Reprod. Genet.201633444145410.1007/s10815‑016‑0663‑y 26867640
    [Google Scholar]
  82. PaoliD. PecoraG. PallottiF. Cytological and molecular aspects of the ageing sperm.Hum. Reprod.201934221822710.1093/humrep/dey357 30551142
    [Google Scholar]
  83. EskenaziB. WyrobekA.J. SloterE. The association of age and semen quality in healthy men.Hum. Reprod.200318244745410.1093/humrep/deg107 12571189
    [Google Scholar]
  84. EvensonD.P. DjiraG. KaspersonK. ChristiansonJ. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity.Fertil. Steril.2020114231132010.1016/j.fertnstert.2020.03.028 32653083
    [Google Scholar]
  85. PohlE. HöffkenV. SchlattS. KlieschS. GromollJ. WistubaJ. Ageing in men with normal spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells.Andrology20197682783910.1111/andr.12665 31250567
    [Google Scholar]
  86. J, T., Acquired Sperm DNA Modifications: Causes, Consequences, and Potential Solutions.EMJ2019438393
    [Google Scholar]
  87. CabrillanaM.E. MonclusM.A. Sáez LancellottiT.E. Characterization of flagellar cysteine‐rich sperm proteins involved in motility, by the combination of cellular fractionation, fluorescence detection, and mass spectrometry analysis.Cytoskeleton201168949150010.1002/cm.20525 21780308
    [Google Scholar]
  88. LindemannC.B. LesichK.A. Functional anatomy of the mammalian sperm flagellum.Cytoskeleton2016731165266910.1002/cm.21338 27712041
    [Google Scholar]
  89. InabaK. Molecular architecture of the sperm flagella: Molecules for motility and signaling.Zoolog. Sci.20032091043105610.2108/zsj.20.1043 14578564
    [Google Scholar]
  90. LehtiM.S. SironenA. Formation and function of sperm tail structures in association with sperm motility defects.Biol. Reprod.201797452253610.1093/biolre/iox096 29024992
    [Google Scholar]
  91. KingS.M. The dynein microtubule motor.Biochim. Biophys. Acta Mol. Cell Res.200014961607510.1016/S0167‑4889(00)00009‑4 10722877
    [Google Scholar]
  92. KottE. DuquesnoyP. CopinB. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia.Am. J. Hum. Genet.201291595896410.1016/j.ajhg.2012.10.003 23122589
    [Google Scholar]
  93. DongF. ShinoharaK. BotildeY. Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm.J. Cell Biol.2014204220321310.1083/jcb.201304076 24421334
    [Google Scholar]
  94. OmranH. KobayashiD. OlbrichH. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins.Nature2008456722261161610.1038/nature07471 19052621
    [Google Scholar]
  95. QiH. MoranM.M. NavarroB. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility.Proc. Natl. Acad. Sci. USA200710441219122310.1073/pnas.0610286104 17227845
    [Google Scholar]
  96. HoH.C. SuarezS.S. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility.Biol. Reprod.20036851590159610.1095/biolreprod.102.011320 12606347
    [Google Scholar]
  97. AntonouliS. Di NisioV. MessiniC. Sperm plasma membrane ion transporters and male fertility potential: A perspective under the prism of cryopreservation.Cryobiology202411410484510.1016/j.cryobiol.2023.104845 38184269
    [Google Scholar]
  98. LishkoP.V. MannowetzN. CatSper: A unique calcium channel of the sperm flagellum.Curr. Opin. Physiol.2018210911310.1016/j.cophys.2018.02.004 29707693
    [Google Scholar]
  99. LiY.F. HeW. JhaK.N. FSCB, a novel protein kinase A-phosphorylated calcium-binding protein, is a CABYR-binding partner involved in late steps of fibrous sheath biogenesis.J. Biol. Chem.200728247341043411910.1074/jbc.M702238200 17855365
    [Google Scholar]
  100. LachanceC. LeclercP. Mediators of the Jak/STAT signaling pathway in human spermatozoa.Biol. Reprod.20118561222123110.1095/biolreprod.111.092379 21880948
    [Google Scholar]
  101. LehtiM.S. KotajaN. SironenA. KIF3A is essential for sperm tail formation and manchette function.Mol. Cell. Endocrinol.20133771-2445510.1016/j.mce.2013.06.030 23831641
    [Google Scholar]
  102. KierszenbaumA.L. RivkinE. TresL.L. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome–acroplaxome complex, head–tail coupling apparatus and tail.Dev. Dyn.2011240372373610.1002/dvdy.22563 21337470
    [Google Scholar]
  103. MariappaD. AladakattiR.H. DasariS.K. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein‐2 and tektin‐2, is associated with impaired motility during capacitation of hamster spermatozoa.Mol. Reprod. Dev.201077218219310.1002/mrd.21131 19953638
    [Google Scholar]
  104. MikiK. QuW. GouldingE.H. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility.Proc. Natl. Acad. Sci. USA200410147165011650610.1073/pnas.0407708101 15546993
    [Google Scholar]
  105. GervasiM.G. ViscontiP.E. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation.Andrology20175220421810.1111/andr.12320 28297559
    [Google Scholar]
  106. VijayaraghavanS. StephensD.T. TrautmanK. Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity.Biol. Reprod.199654370971810.1095/biolreprod54.3.709 8835395
    [Google Scholar]
  107. SmithG.D. WolfD.P. TrautmanK.C. da Cruz e Silva EF, Greengard P, Vijayaraghavan S. Primate sperm contain protein phosphatase 1, a biochemical mediator of motility.Biol. Reprod.199654371972710.1095/biolreprod54.3.719 8835396
    [Google Scholar]
  108. du PlessisS. AgarwalA. MohantyG. van der LindeM. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use?Asian J. Androl.201517223023510.4103/1008‑682X.135123 25475660
    [Google Scholar]
  109. SetiawanR. PriyadarshanaC. MiyazakiH. TajimaA. AsanoA. Functional difference of ATP-generating pathways in rooster sperm (Gallus gallus domesticus).Anim. Reprod. Sci.202123310684310.1016/j.anireprosci.2021.106843 34520995
    [Google Scholar]
  110. CooperL.N. Metabolism: Evolution of dolphin sperm endurance.Curr. Biol.20213116R1006R100810.1016/j.cub.2021.06.075 34428409
    [Google Scholar]
  111. MikiK. Energy metabolism and sperm function.Soc. Reprod. Fertil. Suppl.200765309325 17644971
    [Google Scholar]
  112. NazR.K. RajeshP.B. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction.Reprod. Biol. Endocrinol.2004217510.1186/1477‑7827‑2‑75 15535886
    [Google Scholar]
  113. AmaralA. CastilloJ. EstanyolJ.M. BallescàJ.L. Ramalho-SantosJ. OlivaR. Human sperm tail proteome suggests new endogenous metabolic pathways.Mol. Cell. Proteomics201312233034210.1074/mcp.M112.020552 23161514
    [Google Scholar]
  114. CaoX. CuiY. ZhangX. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals.Reprod. Biol. Endocrinol.20181611610.1186/s12958‑018‑0334‑1 29482568
    [Google Scholar]
  115. GuptaS.K. BhandariB. ShresthaA. Mammalian zona pellucida glycoproteins: Structure and function during fertilization.Cell Tissue Res.2012349366567810.1007/s00441‑011‑1319‑y 22298023
    [Google Scholar]
  116. TulsianiD.R.P. Functional significance of sperm surface mannosidase in mammalian fertilization.Reproductive Immunology.DordrechtSpringer Netherlands199911010.1007/978‑94‑011‑4197‑0_1
    [Google Scholar]
  117. AlbertsB. Molecular biology of the cell.5th edNew YorkGarland Science2008
    [Google Scholar]
  118. WassarmanP.M. LitscherE.S. Zona pellucida genes and proteins: Essential players in mammalian oogenesis and fertility.Genes2021128126610.3390/genes12081266 34440440
    [Google Scholar]
  119. LitscherE.S. WassarmanP.M. Zona pellucida proteins, fibrils, and matrix.Annu. Rev. Biochem.202089169571510.1146/annurev‑biochem‑011520‑105310 32569527
    [Google Scholar]
  120. BleilJ.D. WassarmanP.M. Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro.Proc. Natl. Acad. Sci. USA19807721029103310.1073/pnas.77.2.1029 6928658
    [Google Scholar]
  121. TulsianiD.R.P. Abou-HailaA. LoeserC.R. PereiraB.M.J. The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization.Exp. Cell Res.1998240215116410.1006/excr.1998.3943 9596988
    [Google Scholar]
  122. YanagimachiR. Mammalian fertilization.Phys. Rep.19941213274910.1016/S0092‑8674(00)80558‑9
    [Google Scholar]
  123. TulsianiD.R.P. Yoshida-KomiyaH. ArakiY. Mammalian fertilization: A carbohydrate-mediated event.Biol. Reprod.199757348749410.1095/biolreprod57.3.487 9282981
    [Google Scholar]
  124. AustinC.R. BishopM.W. Some features of the acrosome and perforatorium in mammalian spermatozoa.Proc. R. Soc. Lond. B Biol. Sci.195814993523424010.1098/rspb.1958.0065 13614386
    [Google Scholar]
  125. Hernández-AvilésC. Ramírez-AgámezL. VarnerD.D. LoveC.C. The stallion sperm acrosome: Considerations from a research and clinical perspective.Theriogenology202319612114910.1016/j.theriogenology.2022.11.012 36413868
    [Google Scholar]
  126. LeahyT. GadellaB.M. Capacitation and capacitation-like sperm surface changes induced by handling boar semen.Reprod. Domest. Anim.2011Suppl. 271310.1111/j.1439‑0531.2011.01799.x
    [Google Scholar]
  127. GangwarD.K. AtrejaS.K. Signalling events and associated pathways related to the mammalian sperm capacitation.Reprod. Domest. Anim.201550570571110.1111/rda.12541 26294224
    [Google Scholar]
  128. BreitbartH. Role of protein kinase C in the acrosome reaction of mammalian spermatozoa.Biochem. J.1992281Pt 247347610.1042/bj2810473 1736894
    [Google Scholar]
  129. SpunginB. MargalitI. BreitbartH. Sperm exocytosis reconstructed in a cell-free system: Evidence for the involvement of phospholipase C and actin filaments in membrane fusion.J. Cell Sci.1995108Pt 62525253510.1242/jcs.108.6.2525 7673366
    [Google Scholar]
  130. GarbiM. RubinsteinS. LaxY. BreitbartH. Activation of protein kinase calpha in the lysophosphatidic acid-induced bovine sperm acrosome reaction and phospholipase D1 regulation.Biol. Reprod.20006351271127710.1095/biolreprod63.5.1271 11058529
    [Google Scholar]
  131. GadellaB.M. van GestelR.A. Bicarbonate and its role in mammalian sperm function.Anim. Reprod. Sci.200482-8330731910.1016/j.anireprosci.2004.04.030 15271462
    [Google Scholar]
  132. XiaJ. RenD. Egg coat proteins activate calcium entry into mouse sperm via CATSPER channels.Biol. Reprod.20098061092109810.1095/biolreprod.108.074039 19211808
    [Google Scholar]
  133. BranhamM.T. MayorgaL.S. TomesC.N. Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway.J. Biol. Chem.2006281138656866610.1074/jbc.M508854200 16407249
    [Google Scholar]
  134. BreitbartH. ItzhakovD. NitzanY. Protein kinase a inhibition induces EPAC-dependent acrosomal exocytosis in human sperm.Asian J. Androl.201921433734410.4103/aja.aja_99_18 30632486
    [Google Scholar]
  135. KorobkinJ. BalabinF.A. YakovenkoS.A. SimonenkoE.Y. SveshnikovaA.N. Occurrence of calcium oscillations in human spermatozoa is based on spatial signaling enzymes distribution.Int. J. Mol. Sci.20212215801810.3390/ijms22158018 34360784
    [Google Scholar]
  136. StrünkerT. GoodwinN. BrenkerC. The catsper channel mediates progesterone-induced Ca2+ influx in human sperm.Nature2011471733838238610.1038/nature09769 21412338
    [Google Scholar]
  137. TomesC.N. The proteins of exocytosis: Lessons from the sperm model.Biochem. J.2015465335937010.1042/BJ20141169 25609177
    [Google Scholar]
  138. ChenY. CannM.J. LitvinT.N. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor.Science2000289547962562810.1126/science.289.5479.625 10915626
    [Google Scholar]
  139. ViscontiP.E. MooreG.D. BaileyJ.L. Capacitation of mouse spermatozoa: II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway.Development199512141139115010.1242/dev.121.4.1139 7538069
    [Google Scholar]
  140. RotfeldH. HillmanP. IckowiczD. BreitbartH. PKA and CaMKII mediate PI3K activation in bovine sperm by inhibition of the PKC/PP1 cascade.Reproduction2014147334735610.1530/REP‑13‑0560 24398875
    [Google Scholar]
  141. AlvauA BattistoneMA GervasiMG The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm.Development 201614313dev.13649910.1242/dev.136499 27226326
    [Google Scholar]
  142. NavarreteF.A. García-VázquezF.A. AlvauA. Biphasic role of calcium in mouse sperm capacitation signaling pathways.J. Cell. Physiol.201523081758176910.1002/jcp.24873 25597298
    [Google Scholar]
  143. AleissaM. AlhimaidiA. AmranR. The impact of adding calcium ionomycin on the sperm capacitation medium of frozen thawed bovine spermatozoa.J. King Saud Univ. Sci.202436410313510.1016/j.jksus.2024.103135
    [Google Scholar]
  144. González-FernándezL. Macías-GarcíaB. LouxS.C. VarnerD.D. HinrichsK. Focal adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein tyrosine phosphorylation in stallion sperm.Biol. Reprod.201388613810.1095/biolreprod.112.107078 23595906
    [Google Scholar]
  145. BattistoneM.A. AlvauA. SalicioniA.M. ViscontiP.E. Da RosV.G. CuasnicúP.S. Evidence for the involvement of proline-rich tyrosine kinase 2 in tyrosine phosphorylation downstream of protein kinase a activation during human sperm capacitation.Mol. Hum. Reprod.201420111054106610.1093/molehr/gau073 25180269
    [Google Scholar]
  146. OkabeM. The acrosome reaction: A historical perspective.Adv. Anat. Embryol. Cell Biol.201622011310.1007/978‑3‑319‑30567‑7_1 27194347
    [Google Scholar]
  147. DilimulatiK. OritaM. UndramG. YonezawaN. Sperm-binding regions on bovine egg zona pellucida glycoprotein ZP4 studied in a solid supported form on plastic plate.PLoS One2021167e025423410.1371/journal.pone.0254234 34242308
    [Google Scholar]
  148. GuptaS.K. Human zona pellucida glycoproteins: Binding characteristics with human spermatozoa and induction of acrosome reaction.Front. Cell Dev. Biol.2021961986810.3389/fcell.2021.619868 33681199
    [Google Scholar]
  149. LinY. MahanK. LathropW.F. MylesD.G. PrimakoffP. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg.J. Cell Biol.199412551157116310.1083/jcb.125.5.1157 8195297
    [Google Scholar]
  150. NordhoffV. WistubaJ. Physiology of sperm maturation and fertilization.Andrology.ChamSpringer International Publishing2023557510.1007/978‑3‑031‑31574‑9_3
    [Google Scholar]
  151. FraserL.R. p-Aminobenzamidine, an acrosin inhibitor, inhibits mouse sperm penetration of the zona pellucida but not the acrosome reaction.Reproduction198265118519410.1530/jrf.0.0650185 7200521
    [Google Scholar]
  152. KimuraF. The role of phospholipase in sperm physiology and its therapeutic potential in male infertility.JMOR2018352435210.1274/jmor.35.43
    [Google Scholar]
  153. KimuraM. KimE. KangW. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization.Biol. Reprod.200981593994710.1095/biolreprod.109.078816 19605784
    [Google Scholar]
  154. ShurB.D. NeelyC.A. Plasma membrane association, purification, and partial characterization of mouse sperm beta 1,4-galactosyltransferase.J. Biol. Chem.198826333177061771410.1016/S0021‑9258(19)77894‑6 3141425
    [Google Scholar]
  155. ShurB.D. HallN.G. Sperm surface galactosyltransferase activities during in vitro capacitation.J. Cell Biol.198295256757310.1083/jcb.95.2.567 6815211
    [Google Scholar]
  156. LopezL.C. BaynaE.M. LitoffD. ShaperN.L. ShaperJ.H. ShurB.D. Receptor function of mouse sperm surface galactosyltransferase during fertilization.J. Cell Biol.198510141501151010.1083/jcb.101.4.1501 2995408
    [Google Scholar]
  157. MillerD.J. MacekM.B. ShurB.D. Complementarity between sperm surface β-l,4-galactosyl-transferase and egg-coat ZP3 mediates sperm–egg binding.Nature1992357637958959310.1038/357589a0 1608469
    [Google Scholar]
  158. BleilJ.D. WassarmanP.M. Sperm-egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein.Dev. Biol.198395231732410.1016/0012‑1606(83)90032‑5 6402397
    [Google Scholar]
  159. DarszonA. NishigakiT. BeltranC. TreviñoC.L. Calcium channels in the development, maturation, and function of spermatozoa.Physiol. Rev.20119141305135510.1152/physrev.00028.2010 22013213
    [Google Scholar]
  160. SosaC.M. Acrosomal swelling is triggered by cAMP downstream of the opening of store-operated calcium channels during acrosomal exocytosis in human sperm.Biol. Reprod.20169431910.1095/biolreprod.115.133231 26792943
    [Google Scholar]
  161. BezprozvannyWatras J. EhrlichB.E. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum.Nature1991351632975175410.1038/351751a0 1648178
    [Google Scholar]
  162. CorreiaJ. MichelangeliF. PublicoverS. Regulation and roles of Ca2+ stores in human sperm.Reproduction20151502R65R7610.1530/REP‑15‑0102 25964382
    [Google Scholar]
  163. SchuhK. CartwrightE.J. JankevicsE. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility.J. Biol. Chem.200427927282202822610.1074/jbc.M312599200 15078889
    [Google Scholar]
  164. LishkoP.V. BotchkinaI.L. KirichokY. Progesterone activates the principal Ca2+ channel of human sperm.Nature2011471733838739110.1038/nature09767 21412339
    [Google Scholar]
  165. HuttD.M. BaltzJ.M. NgseeJ.K. Synaptotagmin VI and VIII and syntaxin 2 are essential for the mouse sperm acrosome reaction.J. Biol. Chem.200528021201972020310.1074/jbc.M412920200 15774481
    [Google Scholar]
  166. MayorgaL.S. TomesC.N. BelmonteS.A. Acrosomal exocytosis, a special type of regulated secretion.IUBMB Life2007594-528629210.1080/15216540701222872 17505967
    [Google Scholar]
  167. MortilloS. WassarmanP.M. Differential binding of gold-labeled zona pellucida glycoproteins mZP2 and mZP3 to mouse sperm membrane compartments.Development1991113114114910.1242/dev.113.1.141 1764991
    [Google Scholar]
  168. TalbotP. ShurB.D. MylesD.G. Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion.Biol. Reprod.20036811910.1095/biolreprod.102.007856 12493688
    [Google Scholar]
  169. MillerD.J. GongX. DeckerG. ShurB.D. Egg cortical granule N-acetylglucosaminidase is required for the mouse zona block to polyspermy.J. Cell Biol.199312361431144010.1083/jcb.123.6.1431 8253842
    [Google Scholar]
  170. ArchanaS.S. SelvarajuS. BinsilaB.K. ArangasamyA. KrawetzS.A. Immune regulatory molecules as modifiers of semen and fertility: A review.Mol. Reprod. Dev.201986111485150410.1002/mrd.23263 31518041
    [Google Scholar]
  171. HedgerM.P. Immune privilege of the testis: Meaning, mechanisms, and manifestations.Infection, Immune Homeostasis and Immune Privilege.BaselSpringer Basel2012315210.1007/978‑3‑0348‑0445‑5_2
    [Google Scholar]
  172. MengJ. GreenleeA.R. TaubC.J. BraunR.E. Sertoli cell-specific deletion of the androgen receptor compromises testicular immune privilege in mice.Biol. Reprod.201185225426010.1095/biolreprod.110.090621 21543771
    [Google Scholar]
  173. FijakM. BhushanS. MeinhardtA. The immune privilege of the testis.Immune Infertility.ChamSpringer International Publishing20179710710.1007/978‑3‑319‑40788‑3_5
    [Google Scholar]
  174. WanjariU.R. GopalakrishnanA.V. Blood-testis barrier: A review on regulators in maintaining cell junction integrity between Sertoli cells.Cell Tissue Res.2024396215717510.1007/s00441‑024‑03894‑7 38564020
    [Google Scholar]
  175. BarrettK.E. Ganong’s Review of Medical Physiology.24th edMcgraw-hill2012
    [Google Scholar]
  176. FijakM. SchneiderE. KlugJ. Testosterone replacement effectively inhibits the development of experimental autoimmune orchitis in rats: Evidence for a direct role of testosterone on regulatory T cell expansion.J. Immunol.201118695162517210.4049/jimmunol.1001958 21441459
    [Google Scholar]
  177. WangY. WanJ. LingX. LiuM. ZhouT. The human sperm proteome 2.0: An integrated resource for studying sperm functions at the level of posttranslational modification.Proteomics201616192597260110.1002/pmic.201600233 27546384
    [Google Scholar]
  178. HedgerM.P. Macrophages and the immune responsiveness of the testis.J. Reprod. Immunol.2002571-2193410.1016/S0165‑0378(02)00016‑5 12385831
    [Google Scholar]
  179. WashburnR.L. Complements from the male reproductive tract: A scoping review.BioMed202441193810.3390/biomed4010002
    [Google Scholar]
  180. WangF. ChenR. HanD. Innate immune defense in the male reproductive system and male fertilityIn Innate Immunity in Health and Disease.IntechOpenRijeka202110.5772/intechopen.89346
    [Google Scholar]
  181. HedgerM.P. The Immunophysiology of Male Reproduction.Knobil and Neill's Physiology of Reproduction201580589210.1016/B978‑0‑12‑397175‑3.00019‑3
    [Google Scholar]
  182. GuitonR. Henry-BergerJ. DrevetJ.R. The immunobiology of the mammalian epididymis: The black box is now open!Basic Clin. Androl.2013231810.1186/2051‑4190‑23‑8 25780570
    [Google Scholar]
  183. SchjenkenJ.E. SharkeyD.J. GreenE.S. Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice.Commun. Biol.20214157210.1038/s42003‑021‑02038‑9 33990675
    [Google Scholar]
  184. SchjenkenJ.E. RobertsonS.A. Seminal fluid and immune adaptation for pregnancy-comparative biology in mammalian species.Reprod. Domest. Anim.201449s3Suppl. 3273610.1111/rda.12383 25220746
    [Google Scholar]
  185. SchjenkenJ.E. TLR4 signaling is a major mediator of the female tract response to seminal fluid in mice.Biol. Reprod.201593311310.1095/biolreprod.114.125740 26157066
    [Google Scholar]
  186. ZouH. XuN. XuH. XingX. ChenY. WuS. Inflammatory cytokines may mediate the causal relationship between gut microbiota and male infertility: A bidirectional, mediating, multivariate Mendelian randomization study.Front. Endocrinol.202415136833410.3389/fendo.2024.1368334 38711980
    [Google Scholar]
  187. HaoY. FengY. YanX. Gut microbiota-testis axis: FMT improves systemic and testicular micro-environment to increase semen quality in type 1 diabetes.Mol. Med.20222814510.1186/s10020‑022‑00473‑w 35468731
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240306965240802075331
Loading
/content/journals/cmm/10.2174/0115665240306965240802075331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test