Skip to content
2000
image of Advances in Molecular Biology and Immunology of Spermatozoa and Fertilization in Domestic Animals: Implications for Infertility and Assisted Reproduction

Abstract

Unlocking the secrets of reproductive success in domestic animals requires a deep understanding of the molecular biology and immunology of spermatozoa, capacitation, fertilization, and conception. This review highlights the complex processes involved in spermatogenesis and sperm capacitation, including changes in membrane properties, signaling pathways, and the crucial acrosome reaction. The interaction with the zona pellucida in species-specific gamete recognition and binding is emphasized. The implications of fertilization defects for infertility and assisted reproduction are discussed, underscoring the challenges faced in breeding programs. The future directions for research in this field involve advancements in molecular techniques, understanding the immune regulation of spermatozoa, investigating environmental factors' impact, and integrating multi-omics approaches to enhance assisted reproduction techniques in domestic animals. This review contributes to our understanding of the intricate mechanisms underlying successful reproduction and provides insights into potential strategies for improving fertility outcomes in domestic animals.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240306965240802075331
2024-11-21
2024-12-26
Loading full text...

Full text loading...

References

  1. Sutovsky P. Review: Sperm–oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin–proteasome system. Animal 2018 12 s1 s121 s132 10.1017/S1751731118000253 29477154
    [Google Scholar]
  2. Sutovsky P. Schatten G. Paternal contributions to the mammalian zygote: Fertilization after sperm-egg fusion. Int. Rev. Cytol. 2000 195 1 65 10603574
    [Google Scholar]
  3. Staub C. Johnson L. Review: Spermatogenesis in the bull. Animal 2018 12 s1 s27 s35 10.1017/S1751731118000435 29882505
    [Google Scholar]
  4. Neto F.T.L. Bach P.V. Najari B.B. Li P.S. Goldstein M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol. 2016 59 10 26 10.1016/j.semcdb.2016.04.009 27143445
    [Google Scholar]
  5. Zhou S. Feng S. Qin W. Wang X. Tang Y. Yuan S. Epigenetic regulation of spermatogonial stem cell homeostasis: From DNA methylation to histone modification. Stem Cell Rev. Rep. 2021 17 2 562 580 10.1007/s12015‑020‑10044‑3 32939648
    [Google Scholar]
  6. Vasileva A. Tiedau D. Firooznia A. Müller-Reichert T. Jessberger R. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr. Biol. 2009 19 8 630 639 10.1016/j.cub.2009.02.047 19345099
    [Google Scholar]
  7. O’Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 2014 4 2 e979623 10.4161/21565562.2014.979623 26413397
    [Google Scholar]
  8. Aitken R.J. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998 111 Pt 5 645 656 10.1242/jcs.111.5.645
    [Google Scholar]
  9. Aldana A. Carneiro J. Martínez-Mekler G. Darszon A. Discrete dynamic model of the mammalian sperm acrosome reaction: The influence of acrosomal pH and physiological heterogeneity. Front. Physiol. 2021 12 682790 10.3389/fphys.2021.682790 34349664
    [Google Scholar]
  10. Breitbart H. Cohen G. Rubinstein S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 2005 129 3 263 268 10.1530/rep.1.00269 15749953
    [Google Scholar]
  11. Rodriguez-Martinez H. Role of the oviduct in sperm capacitation. Theriogenology 2007 68 Suppl. 1 S138 S146 10.1016/j.theriogenology.2007.03.018 17452049
    [Google Scholar]
  12. Ghersevich S. Massa E. Zumoffen C. Oviductal secretion and gamete interaction. Reproduction 2015 149 1 R1 R14 10.1530/REP‑14‑0145 25190504
    [Google Scholar]
  13. Mahé C. Zlotkowska A.M. Reynaud K. Tsikis G. Mermillod P. Druart X. Schoen J. Saint-Dizier M. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct. Biol. Reprod. 2021 105 2 317 331 10.1093/biolre/ioab105 34057175
    [Google Scholar]
  14. Marín-Briggiler C.I. González-Echeverría M.F. Munuce M.J. Ghersevich S. Caille A.M. Hellman U. Corrigall V.M. Vazquez-Levin M.H. Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm–zona pellucida binding. Fertil. Steril. 2010 93 5 1574 1584 10.1016/j.fertnstert.2008.12.132 19296942
    [Google Scholar]
  15. Brenker C. Rehfeld A. Schiffer C. Kierzek M. Kaupp U.B. Skakkebæk N.E. Strünker T. Synergistic activation of CatSper Ca2+ channels in human sperm by oviductal ligands and endocrine disrupting chemicals. Hum. Reprod. 2018 33 10 1915 1923 10.1093/humrep/dey275 30189007
    [Google Scholar]
  16. Du L. Chen W. Cheng Z. Wu S. He J. Han L. He Z. Qin W. Novel gene regulation in normal and abnormal spermatogenesis. Cells 2021 10 3 666 10.3390/cells10030666 33802813
    [Google Scholar]
  17. Dordas-Perpinyà M. Sergeant N. Ruelle I. Bruyas J.F. Charreaux F. Michaud S. Carracedo S. Catalán J. Miró J. Delehedde M. Briand-Amirat L. ProAKAP4 semen concentrations as a valuable marker protein of post-thawed semen quality and bull fertility: A retrospective study. Vet. Sci. 2022 9 5 224 10.3390/vetsci9050224 35622752
    [Google Scholar]
  18. Adnane M. Chapwanya A. Kaidi R. Meade K.G. O’Farrelly C. Profiling inflammatory biomarkers in cervico-vaginal mucus (CVM) postpartum: Potential early indicators of bovine clinical endometritis? Theriogenology 2017 103 117 122 10.1016/j.theriogenology.2017.07.039 28780482
    [Google Scholar]
  19. Abrams E.T. Miller E.M. The roles of the immune system in Women’s reproduction: Evolutionary constraints and life history trade‐offs. Am. J. Phys. Anthropol. 2011 146 S53 Suppl. 53 134 154 10.1002/ajpa.21621 22101690
    [Google Scholar]
  20. Alonso C.A.I. Osycka-Salut C.E. Castellano L. Cesari A. Di Siervi N. Mutto A. Johannisson A. Morrell J.M. Davio C. Perez-Martinez S. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Mol. Hum. Reprod. 2017 23 8 521 534 10.1093/molehr/gax030 28521061
    [Google Scholar]
  21. Hansen P.J. Current and future assisted reproductive technologies for mammalian farm animals. Adv. Exp. Med. Biol. 2014 752 1 22 10.1007/978‑1‑4614‑8887‑3_1 24170352
    [Google Scholar]
  22. Bansal A.K. Bilaspuri G.S. Effect of ferrous sulphate and ascorbic acid on motility, viability and lipid peroxidation of crossbred cattle bull spermatozoa. Animal 2008 2 1 100 104 10.1017/S1751731107000961 22444968
    [Google Scholar]
  23. Tamburrino L. Traini G. Marcellini A. Vignozzi L. Baldi E. Marchiani S. Cryopreservation of human spermatozoa: Functional, molecular and clinical aspects. Int. J. Mol. Sci. 2023 24 5 4656 10.3390/ijms24054656 36902084
    [Google Scholar]
  24. Parrish J.J. Susko-Parrish J.L. Leibfried-Rutledge M.L. Critser E.S. Eyestone W.H. First N.L. Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 1986 25 4 591 600 10.1016/0093‑691X(86)90143‑3 16726150
    [Google Scholar]
  25. Todorovic B.P. Sperm Cryopreservation. Female and Male Fertility Preservation. Grynberg M. Patrizio P. Cham Springer International Publishing 2022 453 470 10.1007/978‑3‑030‑47767‑7_36
    [Google Scholar]
  26. Agarwal A. Panner Selvam M.K. Baskaran S. Proteomic analyses of human sperm cells: Understanding the role of proteins and molecular pathways affecting male reproductive health. Int. J. Mol. Sci. 2020 21 5 1621 10.3390/ijms21051621 32120839
    [Google Scholar]
  27. Lee E. Zhang J. Which assisted reproductive technology (ART) treatment strategy is the most clinically and cost-effective for women of advanced maternal age: A Markov model. BMC Health Serv. Res. 2022 22 1 1197 10.1186/s12913‑022‑08485‑2 36151546
    [Google Scholar]
  28. Battista La Sala G. Nicoli A. Fornaciari E. Falbo A. Rondini I. Morini D. Valli B. Villani M.T. Palomba S. Retraction Note: Intracytoplasmic morphologically selected sperm injection versus conventional intracytoplasmic sperm injection: A randomized controlled trial. Reprod. Biol. Endocrinol. 2017 15 1 62 10.1186/s12958‑017‑0279‑9 28800745
    [Google Scholar]
  29. Payan-Carreira R. Paulo B. Fernando M. Fontbonne A. Molecular markers in sperm analysis Insemination - Quality of Semen and Diagnostics Employed L. Alemayehu 2013 93 114 10.5772/52231
    [Google Scholar]
  30. Kumaresan A. Semen Proteomics and Metabolomics: Emerging Tools for Discovering Fertility Markers. Frontier Technologies in Bovine Reproduction. Kumaresan A. Srivastava A.K. Singapore Springer Nature Singapore 2022 147 175 10.1007/978‑981‑19‑3072‑0_8
    [Google Scholar]
  31. Mehta P. Singh R. Small RNAs: An ideal choice as sperm quality biomarkers. Frontiers in Reproductive Health 2024 6 1329760 10.3389/frph.2024.1329760 38406667
    [Google Scholar]
  32. Ritzen E.M. Boitani C. Parvinen M. French F.C. Feldman M. Stage-dependent secretion of ABP by rat seminiferous tubules. Mol. Cell. Endocrinol. 1982 25 1 25 33 10.1016/0303‑7207(82)90166‑6 6802692
    [Google Scholar]
  33. Güneş S. Kulaç T. The role of epigenetics in spermatogenesis. Türk Üroloji Dergisi/Turkish Journal of Urology 2014 39 3 181 187 10.5152/tud.2013.037 26328105
    [Google Scholar]
  34. Mauduit C. Hamamah S. Benahmed M. Growth Factors in Testis Development and Function. Male Sterility and Motility Disorders Serono Symposia USA. Springer, New York, NY 1999 10.1007/978‑1‑4612‑1522‑6_16
    [Google Scholar]
  35. Ni F.D. Hao S.L. Yang W.X. Multiple signaling pathways in Sertoli cells: Recent findings in spermatogenesis. Cell Death Dis. 2019 10 8 541 10.1038/s41419‑019‑1782‑z 31316051
    [Google Scholar]
  36. Takase H.M. Nusse R. Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc. Natl. Acad. Sci. USA 2016 113 11 E1489 E1497 10.1073/pnas.1601461113 26929341
    [Google Scholar]
  37. Dyce P.W. Tenn N. Kidder G.M. Retinoic acid enhances germ cell differentiation of mouse skin-derived stem cells. J. Ovarian Res. 2018 11 1 19 10.1186/s13048‑018‑0390‑3 29490681
    [Google Scholar]
  38. Huang G. Liu L. Wang H. Gou M. Gong P. Tian C. Deng W. Yang J. Zhou T.T. Xu G.L. Liu L. Tet1 deficiency leads to premature reproductive aging by reducing spermatogonia stem cells and germ cell differentiation. iScience 2020 23 3 100908 10.1016/j.isci.2020.100908 32114381
    [Google Scholar]
  39. Deng C.Y. Lv M. Luo B.H. Zhao S.Z. Mo Z.C. Xie Y.J. The role of the PI3K/AKT/mTOR signalling pathway in male reproduction. Curr. Mol. Med. 2021 21 7 539 548 10.2174/18755666MTEyfMDM0x 33272176
    [Google Scholar]
  40. Nusse R. Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017 169 6 985 999 10.1016/j.cell.2017.05.016 28575679
    [Google Scholar]
  41. Ghaffari Novin M. Mirfakhraie R. Nazarian H. Aberrant Wnt/β-catenin signaling pathway in testis of azoospermic men. Adv. Pharm. Bull. 2015 5 3 373 377 10.15171/apb.2015.051 26504759
    [Google Scholar]
  42. Xue R. Lin W. Sun J. Watanabe M. Xu A. Araki M. Nasu Y. Tang Z. Huang P. The role of Wnt signaling in male reproductive physiology and pathology. Mol. Hum. Reprod. 2021 27 1 gaaa085 10.1093/molehr/gaaa085 33543289
    [Google Scholar]
  43. Zhang M. Liu C. Hu M. Zhang J. Xu P. Li F. Zhong Z. Liu L. Liu X. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats. J. Pharmacol. Sci. 2015 127 4 430 438 10.1016/j.jphs.2015.03.001 25953270
    [Google Scholar]
  44. Makishima M. Nuclear receptors as targets for drug development: Regulation of cholesterol and bile acid metabolism by nuclear receptors. J. Pharmacol. Sci. 2005 97 2 177 183 10.1254/jphs.FMJ04008X4 15725701
    [Google Scholar]
  45. Krzastek S.C. Farhi J. Gray M. Smith R.P. Impact of environmental toxin exposure on male fertility potential. Transl. Androl. Urol. 2020 9 6 2797 2813 10.21037/tau‑20‑685 33457251
    [Google Scholar]
  46. Qiu L.L. Wang X. Zhang X. Zhang Z. Gu J. Liu L. Wang Y. Wang X. Wang S.L. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol. Lett. 2013 219 2 116 124 10.1016/j.toxlet.2013.03.011 23528252
    [Google Scholar]
  47. Kelce W.R. Stone C.R. Laws S.C. Gray L.E. Kemppainen J.A. Wilson E.M. Persistent DDT metabolite p,p′–DDE is a potent androgen receptor antagonist. Nature 1995 375 6532 581 585 10.1038/375581a0 7791873
    [Google Scholar]
  48. Rhouma K.B. Tébourbi O. Krichah R. Sakly M. Reproductive toxicity of DDT in adult male rats. Hum. Exp. Toxicol. 2001 20 8 393 397 10.1191/096032701682692946 11727789
    [Google Scholar]
  49. Gould J.C. Leonard L.S. Maness S.C. Wagner B.L. Conner K. Zacharewski T. Safe S. McDonnell D.P. Gaido K.W. Bisphenol a interacts with the estrogen receptor α in a distinct manner from estradiol. Mol. Cell. Endocrinol. 1998 142 1-2 203 214 10.1016/S0303‑7207(98)00084‑7 9783916
    [Google Scholar]
  50. Tiwari D. Vanage G. Mutagenic effect of bisphenol a on adult rat male germ cells and their fertility. Reprod. Toxicol. 2013 40 60 68 10.1016/j.reprotox.2013.05.013 23770294
    [Google Scholar]
  51. Minamiyama Y. Ichikawa H. Takemura S. Kusunoki H. Naito Y. Yoshikawa T. Generation of reactive oxygen species in sperms of rats as an earlier marker for evaluating the toxicity of endocrine-disrupting chemicals. Free Radic. Res. 2010 44 12 1398 1406 10.3109/10715762.2010.510523 20815788
    [Google Scholar]
  52. Choudhury B.P. Arsenic-induced sex hormone disruption: An insight into male infertility. Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility. Roychoudhury S. Kesari K.K. Cham Springer International Publishing 2022 Vol. II 83 95 10.1007/978‑3‑031‑12966‑7_6
    [Google Scholar]
  53. Saxena A.K. Kumar A. Effect of arsenic exposure in reproductive health. Fish Analysis for Drug and Chemicals Mediated Cellular Toxicity. Saxena A.K. Kumar A. Singapore Springer Singapore 2020 59 80 10.1007/978‑981‑15‑4700‑3_5
    [Google Scholar]
  54. Jana K. Jana S. Samanta P.K. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: Possible an estrogenic mode of action. Reprod. Biol. Endocrinol. 2006 4 1 9 10.1186/1477‑7827‑4‑9 16483355
    [Google Scholar]
  55. Fernández-Torres J. Zamudio-Cuevas Y. Martínez-Nava G.A. Aztatzi-Aguilar O.G. Sierra-Vargas M.P. Lozada-Pérez C.A. Suárez-Ahedo C. Landa-Solís C. Olivos-Meza A. Del Razo L.M. Camacho-Rea M.C. Martínez-Flores K. Impact of cadmium mediated by tobacco use in musculoskeletal diseases. Biol. Trace Elem. Res. 2022 200 5 2008 2015 10.1007/s12011‑021‑02814‑y 34245425
    [Google Scholar]
  56. Ramos-Treviño J. Bassol-Mayagoitia S. Hernández-Ibarra J.A. Ruiz-Flores P. Nava-Hernández M.P. Toxic effect of cadmium, lead, and arsenic on the sertoli cell: Mechanisms of damage involved. DNA Cell Biol. 2018 37 7 600 608 10.1089/dna.2017.4081 29746152
    [Google Scholar]
  57. de Angelis C. Galdiero M. Pivonello C. Salzano C. Gianfrilli D. Piscitelli P. Lenzi A. Colao A. Pivonello R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod. Toxicol. 2017 73 105 127 10.1016/j.reprotox.2017.07.021 28774687
    [Google Scholar]
  58. Morrell J.M. Heat stress and bull fertility. Theriogenology 2020 153 62 67 10.1016/j.theriogenology.2020.05.014 32442741
    [Google Scholar]
  59. Corte Pause F. Crociati M. Urli S. Monaci M. Degano L. Stradaioli G. Environmental factors affecting the reproductive efficiency of italian simmental young bulls. Animals 2022 12 18 2476 10.3390/ani12182476 36139335
    [Google Scholar]
  60. Zhang J. Cai Z. Yang B. Li H. Association between outdoor air pollution and semen quality. Medicine 2019 98 20 e15730 10.1097/MD.0000000000015730 31096531
    [Google Scholar]
  61. Mieusset R. Bujan L. Testicular heating and its possible contributions to male infertility: A review. Int. J. Androl. 1995 18 4 169 184 10.1111/j.1365‑2605.1995.tb00408.x 7591190
    [Google Scholar]
  62. Al-Otaibi S.T. Male infertility among bakers associated with exposure to high environmental temperature at the workplace. J. Taibah Univ. Med. Sci. 2018 13 2 103 107 10.1016/j.jtumed.2017.12.003 31435311
    [Google Scholar]
  63. Gloria A. Candeloro L. Wegher L. Robbe D. Carluccio A. Contri A. Environmental temperature and relative humidity differently affect the sperm characteristics in brown swiss and belgian blue bulls. Int. J. Biometeorol. 2021 65 12 2189 2199 10.1007/s00484‑021‑02184‑z 34424410
    [Google Scholar]
  64. Ahmad G. Moinard N. Esquerré-Lamare C. Mieusset R. Bujan L. Mild induced testicular and epididymal hyperthermia alters sperm chromatin integrity in men. Fertil. Steril. 2012 97 3 546 553 10.1016/j.fertnstert.2011.12.025 22265039
    [Google Scholar]
  65. Rao M. Xia W. Yang J. Hu L.X. Hu S.F. Lei H. Wu Y.Q. Zhu C.H. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression. Andrology 2016 4 6 1054 1063 10.1111/andr.12228 27410176
    [Google Scholar]
  66. Rockett J.C. Mapp F.L. Garges J.B. Luft J.C. Mori C. Dix D.J. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol. Reprod. 2001 65 1 229 239 10.1095/biolreprod65.1.229 11420244
    [Google Scholar]
  67. Bliss S.P. Navratil A.M. Xie J. Roberson M.S. GnRH signaling, the gonadotrope and endocrine control of fertility. Front. Neuroendocrinol. 2010 31 3 322 340 10.1016/j.yfrne.2010.04.002 20451543
    [Google Scholar]
  68. Xiong J.J. Karsch F.J. Lehman M.N. Evidence for seasonal plasticity in the gonadotropin-releasing hormone (GnRH) system of the ewe: Changes in synaptic inputs onto GnRH neurons. Endocrinology 1997 138 3 1240 1250 10.1210/endo.138.3.5000 9048632
    [Google Scholar]
  69. Lubahn D.B. Moyer J.S. Golding T.S. Couse J.F. Korach K.S. Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 1993 90 23 11162 11166 10.1073/pnas.90.23.11162 8248223
    [Google Scholar]
  70. Banerjee S. Chaturvedi C.M. Simulated photoperiod influences testicular activity in quail via modulating local GnRHR-GnIHR, GH-R, Cnx-43 and 14-3-3. J. Photochem. Photobiol. B 2018 178 412 423 10.1016/j.jphotobiol.2017.11.034 29197784
    [Google Scholar]
  71. de Roux N. Genin E. Carel J.C. Matsuda F. Chaussain J.L. Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 2003 100 19 10972 10976 10.1073/pnas.1834399100 12944565
    [Google Scholar]
  72. Funes S. Hedrick J.A. Vassileva G. Markowitz L. Abbondanzo S. Golovko A. Yang S. Monsma F.J. Gustafson E.L. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem. Biophys. Res. Commun. 2003 312 4 1357 1363 10.1016/j.bbrc.2003.11.066 14652023
    [Google Scholar]
  73. Kriegsfeld L.J. Mei D.F. Bentley G.E. Ubuka T. Mason A.O. Inoue K. Ukena K. Tsutsui K. Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc. Natl. Acad. Sci. USA 2006 103 7 2410 2415 10.1073/pnas.0511003103 16467147
    [Google Scholar]
  74. Kriegsfeld L.J. Gibson E.M. Williams W.P. III Zhao S. Mason A.O. Bentley G.E. Tsutsui K. The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour. J. Neuroendocrinol. 2010 22 7 692 700 10.1111/j.1365‑2826.2010.02031.x 20646173
    [Google Scholar]
  75. Son Y.L. Ubuka T. Tsutsui K. Molecular mechanisms of gonadotropin-inhibitory hormone (GnIH) actions in target cells and regulation of GnIH expression. Front. Endocrinol. 2019 10 110 10.3389/fendo.2019.00110 30858828
    [Google Scholar]
  76. Hassani H. Rakad M Kh Al-Jumaily. Fadhel M Lafta. Epigenetics in male infertility, in male reproductive anatomy. IntechOpen: Rijeka 2022 10.5772/intechopen.99529
    [Google Scholar]
  77. Gui Y. Yuan S. Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cell. Mol. Life Sci. 2021 78 11 4893 4905 10.1007/s00018‑021‑03823‑9 33835194
    [Google Scholar]
  78. Liang S. Zhou J. Wang X. Signaling network centered on mTORC1 dominates mammalian intestinal stem cell ageing. Stem Cell Rev. Rep. 2021 17 3 842 849 10.1007/s12015‑020‑10073‑y 33201440
    [Google Scholar]
  79. Lin Z. Hsu P.J. Xing X. Fang J. Lu Z. Zou Q. Zhang K.J. Zhang X. Zhou Y. Zhang T. Zhang Y. Song W. Jia G. Yang X. He C. Tong M.H. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res. 2017 27 10 1216 1230 10.1038/cr.2017.117 28914256
    [Google Scholar]
  80. Sharma R. Agarwal A. Rohra V.K. Assidi M. Abu-Elmagd M. Turki R.F. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod. Biol. Endocrinol. 2015 13 1 35 10.1186/s12958‑015‑0028‑x 25928123
    [Google Scholar]
  81. Gunes S. Hekim G.N.T. Arslan M.A. Asci R. Effects of aging on the male reproductive system. J. Assist. Reprod. Genet. 2016 33 4 441 454 10.1007/s10815‑016‑0663‑y 26867640
    [Google Scholar]
  82. Paoli D. Pecora G. Pallotti F. Faja F. Pelloni M. Lenzi A. Lombardo F. Cytological and molecular aspects of the ageing sperm. Hum. Reprod. 2019 34 2 218 227 10.1093/humrep/dey357 30551142
    [Google Scholar]
  83. Eskenazi B. Wyrobek A.J. Sloter E. Kidd S.A. Moore L. Young S. Moore D. The association of age and semen quality in healthy men. Hum. Reprod. 2003 18 2 447 454 10.1093/humrep/deg107 12571189
    [Google Scholar]
  84. Evenson D.P. Djira G. Kasperson K. Christianson J. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity. Fertil. Steril. 2020 114 2 311 320 10.1016/j.fertnstert.2020.03.028 32653083
    [Google Scholar]
  85. Pohl E. Höffken V. Schlatt S. Kliesch S. Gromoll J. Wistuba J. Ageing in men with normal spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells. Andrology 2019 7 6 827 839 10.1111/andr.12665 31250567
    [Google Scholar]
  86. J, T., Acquired Sperm DNA Modifications: Causes, Consequences, and Potential Solutions. EMJ 2019 4 3 83 93
    [Google Scholar]
  87. Cabrillana M.E. Monclus M.A. Sáez Lancellotti T.E. Boarelli P.V. Clementi M.A. Vincenti A.E. Yunes R.F.M. Fornés M.W. Characterization of flagellar cysteine‐rich sperm proteins involved in motility, by the combination of cellular fractionation, fluorescence detection, and mass spectrometry analysis. Cytoskeleton 2011 68 9 491 500 10.1002/cm.20525 21780308
    [Google Scholar]
  88. Lindemann C.B. Lesich K.A. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton 2016 73 11 652 669 10.1002/cm.21338 27712041
    [Google Scholar]
  89. Inaba K. Molecular architecture of the sperm flagella: Molecules for motility and signaling. Zoolog Sci 2003 20 9 1043 1056 10.2108/zsj.20.1043 14578564
    [Google Scholar]
  90. Lehti M.S. Sironen A. Formation and function of sperm tail structures in association with sperm motility defects. Biol. Reprod. 2017 97 4 522 536 10.1093/biolre/iox096 29024992
    [Google Scholar]
  91. King S.M. The dynein microtubule motor. Biochim. Biophys. Acta Mol. Cell Res. 2000 1496 1 60 75 10.1016/S0167‑4889(00)00009‑4 10722877
    [Google Scholar]
  92. Kott E. Duquesnoy P. Copin B. Legendre M. Dastot-Le Moal F. Montantin G. Jeanson L. Tamalet A. Papon J.F. Siffroi J.P. Rives N. Mitchell V. de Blic J. Coste A. Clement A. Escalier D. Touré A. Escudier E. Amselem S. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2012 91 5 958 964 10.1016/j.ajhg.2012.10.003 23122589
    [Google Scholar]
  93. Dong F. Shinohara K. Botilde Y. Nabeshima R. Asai Y. Fukumoto A. Hasegawa T. Matsuo M. Takeda H. Shiratori H. Nakamura T. Hamada H. Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J. Cell Biol. 2014 204 2 203 213 10.1083/jcb.201304076 24421334
    [Google Scholar]
  94. Omran H. Kobayashi D. Olbrich H. Tsukahara T. Loges N.T. Hagiwara H. Zhang Q. Leblond G. O’Toole E. Hara C. Mizuno H. Kawano H. Fliegauf M. Yagi T. Koshida S. Miyawaki A. Zentgraf H. Seithe H. Reinhardt R. Watanabe Y. Kamiya R. Mitchell D.R. Takeda H. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008 456 7222 611 616 10.1038/nature07471 19052621
    [Google Scholar]
  95. Qi H. Moran M.M. Navarro B. Chong J.A. Krapivinsky G. Krapivinsky L. Kirichok Y. Ramsey I.S. Quill T.A. Clapham D.E. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl. Acad. Sci. USA 2007 104 4 1219 1223 10.1073/pnas.0610286104 17227845
    [Google Scholar]
  96. Ho H.C. Suarez S.S. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol. Reprod. 2003 68 5 1590 1596 10.1095/biolreprod.102.011320 12606347
    [Google Scholar]
  97. Antonouli S. Di Nisio V. Messini C. Samara M. Salumets A. Daponte A. Anifandis G. Sperm plasma membrane ion transporters and male fertility potential: A perspective under the prism of cryopreservation. Cryobiology 2024 114 104845 10.1016/j.cryobiol.2023.104845 38184269
    [Google Scholar]
  98. Lishko P.V. Mannowetz N. CatSper: A unique calcium channel of the sperm flagellum. Curr. Opin. Physiol. 2018 2 109 113 10.1016/j.cophys.2018.02.004 29707693
    [Google Scholar]
  99. Li Y.F. He W. Jha K.N. Klotz K. Kim Y.H. Mandal A. Pulido S. Digilio L. Flickinger C.J. Herr J.C. FSCB, a novel protein kinase A-phosphorylated calcium-binding protein, is a CABYR-binding partner involved in late steps of fibrous sheath biogenesis. J. Biol. Chem. 2007 282 47 34104 34119 10.1074/jbc.M702238200 17855365
    [Google Scholar]
  100. Lachance C. Leclerc P. Mediators of the Jak/STAT signaling pathway in human spermatozoa. Biol. Reprod. 2011 85 6 1222 1231 10.1095/biolreprod.111.092379 21880948
    [Google Scholar]
  101. Lehti M.S. Kotaja N. Sironen A. KIF3A is essential for sperm tail formation and manchette function. Mol. Cell. Endocrinol. 2013 377 1-2 44 55 10.1016/j.mce.2013.06.030 23831641
    [Google Scholar]
  102. Kierszenbaum A.L. Rivkin E. Tres L.L. Yoder B.K. Haycraft C.J. Bornens M. Rios R.M. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome–acroplaxome complex, head–tail coupling apparatus and tail. Dev. Dyn. 2011 240 3 723 736 10.1002/dvdy.22563 21337470
    [Google Scholar]
  103. Mariappa D. Aladakatti R.H. Dasari S.K. Sreekumar A. Wolkowicz M. van der Hoorn F. Seshagiri P.B. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein‐2 and tektin‐2, is associated with impaired motility during capacitation of hamster spermatozoa. Mol. Reprod. Dev. 2010 77 2 182 193 10.1002/mrd.21131 19953638
    [Google Scholar]
  104. Miki K. Qu W. Goulding E.H. Willis W.D. Bunch D.O. Strader L.F. Perreault S.D. Eddy E.M. O’Brien D.A. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA 2004 101 47 16501 16506 10.1073/pnas.0407708101 15546993
    [Google Scholar]
  105. Gervasi M.G. Visconti P.E. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017 5 2 204 218 10.1111/andr.12320 28297559
    [Google Scholar]
  106. Vijayaraghavan S. Stephens D.T. Trautman K. Smith G.D. Khatra B. da Cruz e Silva E.F. Greengard P. Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol. Reprod. 1996 54 3 709 718 10.1095/biolreprod54.3.709 8835395
    [Google Scholar]
  107. Smith G.D. Wolf D.P. Trautman K.C. da Cruz e Silva E.F. Greengard P. Vijayaraghavan S. Primate sperm contain protein phosphatase 1, a biochemical mediator of motility. Biol. Reprod. 1996 54 3 719 727 10.1095/biolreprod54.3.719 8835396
    [Google Scholar]
  108. du Plessis S. Agarwal A. Mohanty G. van der Linde M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian J. Androl. 2015 17 2 230 235 10.4103/1008‑682X.135123 25475660
    [Google Scholar]
  109. Setiawan R. Priyadarshana C. Miyazaki H. Tajima A. Asano A. Functional difference of ATP-generating pathways in rooster sperm (Gallus gallus domesticus). Anim. Reprod. Sci. 2021 233 106843 10.1016/j.anireprosci.2021.106843 34520995
    [Google Scholar]
  110. Cooper L.N. Metabolism: Evolution of dolphin sperm endurance. Curr. Biol. 2021 31 16 R1006 R1008 10.1016/j.cub.2021.06.075 34428409
    [Google Scholar]
  111. Miki K. Energy metabolism and sperm function. Soc. Reprod. Fertil. Suppl. 2007 65 309 325 17644971
    [Google Scholar]
  112. Naz R.K. Rajesh P.B. Role of tyrosine phosphorylation in sperm capacitation / acrosome reaction. Reprod. Biol. Endocrinol. 2004 2 1 75 10.1186/1477‑7827‑2‑75 15535886
    [Google Scholar]
  113. Amaral A. Castillo J. Estanyol J.M. Ballescà J.L. Ramalho-Santos J. Oliva R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell. Proteomics 2013 12 2 330 342 10.1074/mcp.M112.020552 23161514
    [Google Scholar]
  114. Cao X. Cui Y. Zhang X. Lou J. Zhou J. Bei H. Wei R. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals. Reprod. Biol. Endocrinol. 2018 16 1 16 10.1186/s12958‑018‑0334‑1 29482568
    [Google Scholar]
  115. Gupta S.K. Bhandari B. Shrestha A. Biswal B.K. Palaniappan C. Malhotra S.S. Gupta N. Mammalian zona pellucida glycoproteins: Structure and function during fertilization. Cell Tissue Res. 2012 349 3 665 678 10.1007/s00441‑011‑1319‑y 22298023
    [Google Scholar]
  116. Tulsiani D.R.P. Functional significance of sperm surface mannosidase in mammalian fertilization. Reproductive Immunology. Gupta S.K. Dordrecht Springer Netherlands 1999 1 10 10.1007/978‑94‑011‑4197‑0_1
    [Google Scholar]
  117. Alberts B. Molecular biology of the cell. 5th ed New York Garland Science 2008
    [Google Scholar]
  118. Wassarman P.M. Litscher E.S. Zona pellucida genes and proteins: Essential players in mammalian oogenesis and fertility. Genes 2021 12 8 1266 10.3390/genes12081266 34440440
    [Google Scholar]
  119. Litscher E.S. Wassarman P.M. Zona pellucida proteins, fibrils, and matrix. Annu. Rev. Biochem. 2020 89 1 695 715 10.1146/annurev‑biochem‑011520‑105310 32569527
    [Google Scholar]
  120. Bleil J.D. Wassarman P.M. Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro. Proc. Natl. Acad. Sci. USA 1980 77 2 1029 1033 10.1073/pnas.77.2.1029 6928658
    [Google Scholar]
  121. Tulsiani D.R.P. Abou-Haila A. Loeser C.R. Pereira B.M.J. The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp. Cell Res. 1998 240 2 151 164 10.1006/excr.1998.3943 9596988
    [Google Scholar]
  122. Yanagimachi R. Mammalian fertilization. The. phy. of. rep. 1994 1 213 2749 10.1016/S0092‑8674(00)80558‑9
    [Google Scholar]
  123. Tulsiani D.R.P. Yoshida-Komiya H. Araki Y. Mammalian fertilization: A carbohydrate-mediated event. Biol. Reprod. 1997 57 3 487 494 10.1095/biolreprod57.3.487 9282981
    [Google Scholar]
  124. Austin C.R. Bishop M.W. Some features of the acrosome and perforatorium in mammalian spermatozoa. Proc. R. Soc. Lond. B Biol. Sci. 1958 149 935 234 240 10.1098/rspb.1958.0065 13614386
    [Google Scholar]
  125. Hernández-Avilés C. Ramírez-Agámez L. Varner D.D. Love C.C. The stallion sperm acrosome: Considerations from a research and clinical perspective. Theriogenology 2023 196 121 149 10.1016/j.theriogenology.2022.11.012 36413868
    [Google Scholar]
  126. Leahy T. Gadella B.M. Capacitation and capacitation-like sperm surface changes induced by handling boar semen. Reprod Domest Anim 2011 Suppl 2 7 13 10.1111/j.1439‑0531.2011.01799.x
    [Google Scholar]
  127. Gangwar D.K. Atreja S.K. Signalling events and associated pathways related to the mammalian sperm capacitation. Reprod. Domest. Anim. 2015 50 5 705 711 10.1111/rda.12541 26294224
    [Google Scholar]
  128. Breitbart H. Role of protein kinase C in the acrosome reaction of mammalian spermatozoa. Biochem J 1992 281 Pt 2 473 476 10.1042/bj2810473 1736894
    [Google Scholar]
  129. Spungin B. Margalit I. Breitbart H. Sperm exocytosis reconstructed in a cell-free system: Evidence for the involvement of phospholipase C and actin filaments in membrane fusion. J Cell Sci 1995 108 Pt 6 2525 2535 10.1242/jcs.108.6.2525 7673366
    [Google Scholar]
  130. Garbi M. Rubinstein S. Lax Y. Breitbart H. Activation of protein kinase calpha in the lysophosphatidic acid-induced bovine sperm acrosome reaction and phospholipase D1 regulation. Biol. Reprod. 2000 63 5 1271 1277 10.1095/biolreprod63.5.1271 11058529
    [Google Scholar]
  131. Gadella B.M. van Gestel R.A. Bicarbonate and its role in mammalian sperm function. Anim. Reprod. Sci. 2004 82-83 307 319 10.1016/j.anireprosci.2004.04.030 15271462
    [Google Scholar]
  132. Xia J. Ren D. Egg coat proteins activate calcium entry into mouse sperm via CATSPER channels. Biol. Reprod. 2009 80 6 1092 1098 10.1095/biolreprod.108.074039 19211808
    [Google Scholar]
  133. Branham M.T. Mayorga L.S. Tomes C.N. Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway. J. Biol. Chem. 2006 281 13 8656 8666 10.1074/jbc.M508854200 16407249
    [Google Scholar]
  134. Breitbart H. Itzhakov D. Nitzan Y. Protein kinase a inhibition induces EPAC-dependent acrosomal exocytosis in human sperm. Asian J. Androl. 2019 21 4 337 344 10.4103/aja.aja_99_18 30632486
    [Google Scholar]
  135. Korobkin J. Balabin F.A. Yakovenko S.A. Simonenko E.Y. Sveshnikova A.N. Occurrence of calcium oscillations in human spermatozoa is based on spatial signaling enzymes distribution. Int. J. Mol. Sci. 2021 22 15 8018 10.3390/ijms22158018 34360784
    [Google Scholar]
  136. Strünker T. Goodwin N. Brenker C. Kashikar N.D. Weyand I. Seifert R. Kaupp U.B. The catsper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 2011 471 7338 382 386 10.1038/nature09769 21412338
    [Google Scholar]
  137. Tomes C.N. The proteins of exocytosis: Lessons from the sperm model. Biochem. J. 2015 465 3 359 370 10.1042/BJ20141169 25609177
    [Google Scholar]
  138. Chen Y. Cann M.J. Litvin T.N. Iourgenko V. Sinclair M.L. Levin L.R. Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 2000 289 5479 625 628 10.1126/science.289.5479.625 10915626
    [Google Scholar]
  139. Visconti P.E. Moore G.D. Bailey J.L. Leclerc P. Connors S.A. Pan D. Olds-Clarke P. Kopf G.S. Capacitation of mouse spermatozoa: II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 1995 121 4 1139 1150 10.1242/dev.121.4.1139 7538069
    [Google Scholar]
  140. Rotfeld H. Hillman P. Ickowicz D. Breitbart H. PKA and CaMKII mediate PI3K activation in bovine sperm by inhibition of the PKC/PP1 cascade. Reproduction 2014 147 3 347 356 10.1530/REP‑13‑0560 24398875
    [Google Scholar]
  141. Alvau A. Battistone M.A. Gervasi M.G. Navarrete F.A. Xu X. Sánchez-Cárdenas C. De la Vega-Beltran J.L. Da Ros V.G. Greer P. Darszon A. Krapf D. Salicioni A.M. Cuasnicu P. Visconti P.E. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development 2016 143 13 dev.136499 10.1242/dev.136499 27226326
    [Google Scholar]
  142. Navarrete F.A. García-Vázquez F.A. Alvau A. Escoffier J. Krapf D. Sánchez-Cárdenas C. Salicioni A.M. Darszon A. Visconti P.E. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J. Cell. Physiol. 2015 230 8 1758 1769 10.1002/jcp.24873 25597298
    [Google Scholar]
  143. Aleissa M. Alhimaidi A. Amran R. Ammari A. Al-Ghadi M. Mubarak M. Ibrahim N. Al-Zharani M. The impact of adding calcium ionomycin on the sperm capacitation medium of frozen thawed bovine spermatozoa. J. King Saud Univ. Sci. 2024 36 4 103135 10.1016/j.jksus.2024.103135
    [Google Scholar]
  144. González-Fernández L. Macías-García B. Loux S.C. Varner D.D. Hinrichs K. Focal adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein tyrosine phosphorylation in stallion sperm. Biol. Reprod. 2013 88 6 138 10.1095/biolreprod.112.107078 23595906
    [Google Scholar]
  145. Battistone M.A. Alvau A. Salicioni A.M. Visconti P.E. Da Ros V.G. Cuasnicú P.S. Evidence for the involvement of proline-rich tyrosine kinase 2 in tyrosine phosphorylation downstream of protein kinase a activation during human sperm capacitation. Mol. Hum. Reprod. 2014 20 11 1054 1066 10.1093/molehr/gau073 25180269
    [Google Scholar]
  146. Okabe M. The acrosome reaction: A historical perspective. Adv. Anat. Embryol. Cell Biol. 2016 220 1 13 10.1007/978‑3‑319‑30567‑7_1 27194347
    [Google Scholar]
  147. Dilimulati K. Orita M. Undram G. Yonezawa N. Sperm-binding regions on bovine egg zona pellucida glycoprotein ZP4 studied in a solid supported form on plastic plate. PLoS One 2021 16 7 e0254234 10.1371/journal.pone.0254234 34242308
    [Google Scholar]
  148. Gupta S.K. Human zona pellucida glycoproteins: Binding characteristics with human spermatozoa and induction of acrosome reaction. Front. Cell Dev. Biol. 2021 9 619868 10.3389/fcell.2021.619868 33681199
    [Google Scholar]
  149. Lin Y. Mahan K. Lathrop W.F. Myles D.G. Primakoff P. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J. Cell Biol. 1994 125 5 1157 1163 10.1083/jcb.125.5.1157 8195297
    [Google Scholar]
  150. Nordhoff V. Wistuba J. Physiology of sperm maturation and fertilization. Andrology. Nieschlag E. Cham Springer International Publishing 2023 55 75 10.1007/978‑3‑031‑31574‑9_3
    [Google Scholar]
  151. Fraser L.R. p-Aminobenzamidine, an acrosin inhibitor, inhibits mouse sperm penetration of the zona pellucida but not the acrosome reaction. Reproduction 1982 65 1 185 194 10.1530/jrf.0.0650185 7200521
    [Google Scholar]
  152. Kimura F. The Role of Phospholipase in Sperm Physiology and its Therapeutic Potential in Male Infertility. JMOR 2018 35 2 43 52 10.1274/jmor.35.43
    [Google Scholar]
  153. Kimura M. Kim E. Kang W. Yamashita M. Saigo M. Yamazaki T. Nakanishi T. Kashiwabara S. Baba T. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol. Reprod. 2009 81 5 939 947 10.1095/biolreprod.109.078816 19605784
    [Google Scholar]
  154. Shur B.D. Neely C.A. Plasma membrane association, purification, and partial characterization of mouse sperm beta 1,4-galactosyltransferase. J. Biol. Chem. 1988 263 33 17706 17714 10.1016/S0021‑9258(19)77894‑6 3141425
    [Google Scholar]
  155. Shur B.D. Hall N.G. Sperm surface galactosyltransferase activities during in vitro capacitation. J. Cell Biol. 1982 95 2 567 573 10.1083/jcb.95.2.567 6815211
    [Google Scholar]
  156. Lopez L.C. Bayna E.M. Litoff D. Shaper N.L. Shaper J.H. Shur B.D. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J. Cell Biol. 1985 101 4 1501 1510 10.1083/jcb.101.4.1501 2995408
    [Google Scholar]
  157. Miller D.J. Macek M.B. Shur B.D. Complementarity between sperm surface β-l,4-galactosyl-transferase and egg-coat ZP3 mediates sperm–egg binding. Nature 1992 357 6379 589 593 10.1038/357589a0 1608469
    [Google Scholar]
  158. Bleil J.D. Wassarman P.M. Sperm-egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev. Biol. 1983 95 2 317 324 10.1016/0012‑1606(83)90032‑5 6402397
    [Google Scholar]
  159. Darszon A. Nishigaki T. Beltran C. Treviño C.L. Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 2011 91 4 1305 1355 10.1152/physrev.00028.2010 22013213
    [Google Scholar]
  160. Sosa C.M. Acrosomal swelling is triggered by cAMP downstream of the opening of store-operated calcium channels during acrosomal exocytosis in human sperm. Biology of Reproduction 2016 94 3 1 9 10.1095/biolreprod.115.133231 26792943
    [Google Scholar]
  161. Bezprozvanny Watras J. Ehrlich B.E. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991 351 6329 751 754 10.1038/351751a0 1648178
    [Google Scholar]
  162. Correia J. Michelangeli F. Publicover S. Regulation and roles of Ca2+ stores in human sperm. Reproduction 2015 150 2 R65 R76 10.1530/REP‑15‑0102 25964382
    [Google Scholar]
  163. Schuh K. Cartwright E.J. Jankevics E. Bundschu K. Liebermann J. Williams J.C. Armesilla A.L. Emerson M. Oceandy D. Knobeloch K.P. Neyses L. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J. Biol. Chem. 2004 279 27 28220 28226 10.1074/jbc.M312599200 15078889
    [Google Scholar]
  164. Lishko P.V. Botchkina I.L. Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 2011 471 7338 387 391 10.1038/nature09767 21412339
    [Google Scholar]
  165. Hutt D.M. Baltz J.M. Ngsee J.K. Synaptotagmin VI and VIII and syntaxin 2 are essential for the mouse sperm acrosome reaction. J. Biol. Chem. 2005 280 21 20197 20203 10.1074/jbc.M412920200 15774481
    [Google Scholar]
  166. Mayorga L.S. Tomes C.N. Belmonte S.A. Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 2007 59 4-5 286 292 10.1080/15216540701222872 17505967
    [Google Scholar]
  167. Mortillo S. Wassarman P.M. Differential binding of gold-labeled zona pellucida glycoproteins mZP2 and mZP3 to mouse sperm membrane compartments. Development 1991 113 1 141 149 10.1242/dev.113.1.141 1764991
    [Google Scholar]
  168. Talbot P. Shur B.D. Myles D.G. Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol. Reprod. 2003 68 1 1 9 10.1095/biolreprod.102.007856 12493688
    [Google Scholar]
  169. Miller D.J. Gong X. Decker G. Shur B.D. Egg cortical granule N-acetylglucosaminidase is required for the mouse zona block to polyspermy. J. Cell Biol. 1993 123 6 1431 1440 10.1083/jcb.123.6.1431 8253842
    [Google Scholar]
  170. Archana S.S. Selvaraju S. Binsila B.K. Arangasamy A. Krawetz S.A. Immune regulatory molecules as modifiers of semen and fertility: A review. Mol. Reprod. Dev. 2019 86 11 1485 1504 10.1002/mrd.23263 31518041
    [Google Scholar]
  171. Hedger M.P. Immune privilege of the testis: Meaning, mechanisms, and manifestations. Infection, Immune Homeostasis and Immune Privilege. Stein-Streilein J. Basel Springer Basel 2012 31 52 10.1007/978‑3‑0348‑0445‑5_2
    [Google Scholar]
  172. Meng J. Greenlee A.R. Taub C.J. Braun R.E. Sertoli cell-specific deletion of the androgen receptor compromises testicular immune privilege in mice. Biol. Reprod. 2011 85 2 254 260 10.1095/biolreprod.110.090621 21543771
    [Google Scholar]
  173. Fijak M. Bhushan S. Meinhardt A. The immune privilege of the testis. Immune Infertility. Krause W.K.H. Naz R.K. Cham Springer International Publishing 2017 97 107 10.1007/978‑3‑319‑40788‑3_5
    [Google Scholar]
  174. Wanjari U.R. Gopalakrishnan A.V. Blood-testis barrier: A review on regulators in maintaining cell junction integrity between Sertoli cells. Cell Tissue Res. 2024 396 2 157 175 10.1007/s00441‑024‑03894‑7 38564020
    [Google Scholar]
  175. Barrett K.E. Ganong’s Review of Medical Physiology. 24th ed Mcgraw-hill 2012
    [Google Scholar]
  176. Fijak M. Schneider E. Klug J. Bhushan S. Hackstein H. Schuler G. Wygrecka M. Gromoll J. Meinhardt A. Testosterone replacement effectively inhibits the development of experimental autoimmune orchitis in rats: Evidence for a direct role of testosterone on regulatory T cell expansion. J. Immunol. 2011 186 9 5162 5172 10.4049/jimmunol.1001958 21441459
    [Google Scholar]
  177. Wang Y. Wan J. Ling X. Liu M. Zhou T. The human sperm proteome 2.0: An integrated resource for studying sperm functions at the level of posttranslational modification. Proteomics 2016 16 19 2597 2601 10.1002/pmic.201600233 27546384
    [Google Scholar]
  178. Hedger M.P. Macrophages and the immune responsiveness of the testis. J. Reprod. Immunol. 2002 57 1-2 19 34 10.1016/S0165‑0378(02)00016‑5 12385831
    [Google Scholar]
  179. Washburn R.L. Complements from the male reproductive tract: A scoping review. BioMed 2024 4 1 19 38 10.3390/biomed4010002
    [Google Scholar]
  180. Wang F. Chen R. Han D. Innate immune defense in the male reproductive system and male fertility In Innate Immunity in Health and Disease IntechOpen: Rijeka 2021 10.5772/intechopen.89346
    [Google Scholar]
  181. Hedger M.P. The Immunophysiology of Male Reproduction. Knobil and Neill's Physiology of Reproduction 2015 805 892 10.1016/B978‑0‑12‑397175‑3.00019‑3
    [Google Scholar]
  182. Guiton R. Henry-Berger J. Drevet J.R. The immunobiology of the mammalian epididymis: The black box is now open! Basic Clin. Androl. 2013 23 1 8 10.1186/2051‑4190‑23‑8 25780570
    [Google Scholar]
  183. Schjenken J.E. Sharkey D.J. Green E.S. Chan H.Y. Matias R.A. Moldenhauer L.M. Robertson S.A. Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice. Commun. Biol. 2021 4 1 572 10.1038/s42003‑021‑02038‑9 33990675
    [Google Scholar]
  184. Schjenken J.E. Robertson S.A. Seminal fluid and immune adaptation for pregnancy--comparative biology in mammalian species. Reprod. Domest. Anim. 2014 49 s3 Suppl. 3 27 36 10.1111/rda.12383 25220746
    [Google Scholar]
  185. Schjenken J.E. TLR4 signaling is a major mediator of the female tract response to seminal fluid in mice. Biology of reproduction 2015 93 3 1 13 10.1095/biolreprod.114.125740 26157066
    [Google Scholar]
  186. Zou H. Xu N. Xu H. Xing X. Chen Y. Wu S. Inflammatory cytokines may mediate the causal relationship between gut microbiota and male infertility: A bidirectional, mediating, multivariate Mendelian randomization study. Front. Endocrinol 2024 15 1368334 10.3389/fendo.2024.1368334 38711980
    [Google Scholar]
  187. Hao Y. Feng Y. Yan X. Chen L. Zhong R. Tang X. Shen W. Sun Q. Sun Z. Ren Y. Zhang H. Zhao Y. Gut microbiota-testis axis: FMT improves systemic and testicular micro-environment to increase semen quality in type 1 diabetes. Mol. Med. 2022 28 1 45 10.1186/s10020‑022‑00473‑w 35468731
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240306965240802075331
Loading
/content/journals/cmm/10.2174/0115665240306965240802075331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test