Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Osteoarthritis (OA) is a chronic joint disease characterized by the degradation of articular cartilage. Polyphyllin I (PPI) has anti-inflammatory effects in many diseases. However, the mechanism of PPI in OA remains unclear.

Methods

HC-a cells treated with IL-1β were identified by immunofluorescence staining and microscopic observation. The expression of collagen II and DAPI in HC-a cells was detected by immunofluorescence. The effects of gradient concentration of PPI on IL-1β-induced cell viability, apoptosis, senescence, and inflammatory factor release were detected by MTT, flow cytometry, SA-β-Gal assay and ELISA, respectively. Expressions of apoptosis-related genes, extracellular matrix (ECM)-related genes, and TWIST1 were determined by qRT-PCR and western blot as needed. The above-mentioned experiments were conducted again after TWIST1 overexpression in IL-1β-induced chondrocytes.

Results

IL-1β reduced the number of chondrocytes and the density of collagen II. PPI (0.25, 0.5, 1 μmol/L) had no effect on cell viability, but it dose-dependently elevated the inhibition of cell viability regulated by IL-1β. The elevation of cell apoptosis, senescence and expression of IL-6 and TNF-α were suppressed by PPI in a dose-dependent manner. Additionally, PPI reduced the expression of cleaved caspase-3, bax, MMP-3, and MMP-13 and promoted the expression of collagen II. TWIST1 expression was diminished by PPI. TWIST1 overexpression reversed the above-mentioned effects of PPI on chondrocytes.

Conclusion

PPI suppressed apoptosis, senescence, inflammation, and ECM degradation of OA chondrocytes by downregulating the expression of TWIST1.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240258324231009115920
2024-05-09
2025-06-22
Loading full text...

Full text loading...

References

  1. AbramoffB. CalderaF.E. Osteoarthritis.Med. Clin. North Am.2020104229331110.1016/j.mcna.2019.10.007 32035570
    [Google Scholar]
  2. WoolfA.D. PflegerB. Burden of major musculoskeletal conditions.Bull. World Health Organ.2003819646656 14710506
    [Google Scholar]
  3. Martel-PelletierJ. BarrA.J. CicuttiniF.M. Osteoarthritis.Nat. Rev. Dis. Primers2016211607210.1038/nrdp.2016.72 27734845
    [Google Scholar]
  4. HwangH. KimH. Chondrocyte apoptosis in the pathogenesis of osteoarthritis.Int. J. Mol. Sci.20151611260352605410.3390/ijms161125943 26528972
    [Google Scholar]
  5. RahmatiM. NalessoG. MobasheriA. MozafariM. Aging and osteoarthritis: Central role of the extracellular matrix.Ageing Res. Rev.201740203010.1016/j.arr.2017.07.004 28774716
    [Google Scholar]
  6. KrishnanY. GrodzinskyA.J. Cartilage diseases.Matrix Biol.201871-72516910.1016/j.matbio.2018.05.005 29803938
    [Google Scholar]
  7. Rojas-OrtegaM. CruzR. Vega-LópezM.A. Exercise modulates the expression of IL-1β and IL-10 in the articular cartilage of normal and osteoarthritis-induced rats.Pathol. Res. Pract.2015211643544310.1016/j.prp.2015.01.008 25702530
    [Google Scholar]
  8. HosseinzadehA. KamravaS.K. JoghataeiM.T. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin.J. Pineal Res.201661441142510.1111/jpi.12362 27555371
    [Google Scholar]
  9. KapoorM. Martel-PelletierJ. LajeunesseD. PelletierJ.P. FahmiH. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis.Nat. Rev. Rheumatol.201171334210.1038/nrrheum.2010.196 21119608
    [Google Scholar]
  10. LuC. LiY. HuS. CaiY. YangZ. PengK. Scoparone prevents IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through the PI3K/Akt/NF-κB pathway.Biomed. Pharmacother.20181061169117410.1016/j.biopha.2018.07.062 30119184
    [Google Scholar]
  11. FeiJ. LiangB. JiangC. NiH. WangL. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model.Biomed. Pharmacother.20191091586159210.1016/j.biopha.2018.09.161 30551412
    [Google Scholar]
  12. WangX. FanJ. DingX. SunY. CuiZ. LiuW. Tanshinone I inhibits IL-1β-induced apoptosis, inflammation and extracellular matrix degradation in chondrocytes chon-001 cells and attenuates murine osteoarthritis.Drug Des. Devel. Ther.2019133559356810.2147/DDDT.S216596 31686786
    [Google Scholar]
  13. TianY. GongG.Y. MaL.L. WangZ.Q. SongD. FangM.Y. Anti-cancer effects of polyphyllin I: An update in 5 years.Chem. Biol. Interact.202031610893610.1016/j.cbi.2019.108936 31870841
    [Google Scholar]
  14. WangQ. ZhouX. ZhaoY. Polyphyllin I ameliorates collagen-induced arthritis by suppressing the inflammation response in macrophages through the NF-κB pathway.Front. Immunol.20189209110.3389/fimmu.2018.02091 30319603
    [Google Scholar]
  15. CaiY. XieF. WangH. ZhaiQ. LinF. PanS. Polyphyllin I alleviates inflammatory injury in mice with gestational diabetes through AMPK pathway.Gen. Physiol. Biophys.202341215916410.4149/gpb_2022006 35416179
    [Google Scholar]
  16. CattonC. O’SullivanB. BellR. Chordoma: Long-term follow-up after radical photon irradiation.Radiother. Oncol.1996411677210.1016/S0167‑8140(96)91805‑8 8961370
    [Google Scholar]
  17. Alegria-SchafferA. LodgeA. VattemK. Performing and optimizing western blots with an emphasis on chemiluminescent detection.In: Methods in Enzymology.2nd edElsevier2009573599
    [Google Scholar]
  18. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  19. IsikA. PekerK. GursulC. The effect of ozone and naringin on intestinal ischemia/reperfusion injury in an experimental model.Int. J. Surg.201521384410.1016/j.ijsu.2015.07.012 26192972
    [Google Scholar]
  20. XiaoT. ZhongW. ZhaoJ. Polyphyllin I suppresses the formation of vasculogenic mimicry via Twist1/VE-cadherin pathway.Cell Death Dis.20189990610.1038/s41419‑018‑0902‑5 30185783
    [Google Scholar]
  21. RosetiL. DesandoG. CavalloC. PetrettaM. GrigoloB. Articular cartilage regeneration in osteoarthritis.Cells2019811130510.3390/cells8111305 31652798
    [Google Scholar]
  22. WangM. LiuL. ZhangC.S. Mechanism of traditional chinese medicine in treating knee osteoarthritis.J. Pain Res.2020131421142910.2147/JPR.S247827 32606908
    [Google Scholar]
  23. MusumeciG. CastrogiovanniP. TrovatoF. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis.Int. J. Mol. Sci.2015169205602057510.3390/ijms160920560 26334269
    [Google Scholar]
  24. MiaoG. ZangX. HouH. Bax targeted by miR-29a regulates chondrocyte apoptosis in osteoarthritis.BioMed Res. Int.201920191910.1155/2019/1434538 30993110
    [Google Scholar]
  25. ShaliniS. DorstynL. DawarS. KumarS. Old, new and emerging functions of caspases.Cell Death Differ.201522452653910.1038/cdd.2014.216 25526085
    [Google Scholar]
  26. JiaZ. ZhangY. SuY. CDMP1 overexpression mediates inflammatory cytokine induced apoptosis via inhibiting the Wnt/β Catenin pathway in rat dorsal root ganglia neurons.Int. J. Mol. Med.20184231247125610.3892/ijmm.2018.3716 29901085
    [Google Scholar]
  27. HouA. ChenP. TangH. Cellular senescence in osteoarthritis and anti-aging strategies.Mech. Ageing Dev.2018175838710.1016/j.mad.2018.08.002 30107185
    [Google Scholar]
  28. DrevetS. GavazziG. GrangeL. DupuyC. LardyB. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis.Exp. Gerontol.201811110711710.1016/j.exger.2018.07.007 30012342
    [Google Scholar]
  29. StannusO.P. JonesG. BlizzardL. CicuttiniF.M. DingC. Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: A prospective cohort study.Ann. Rheum. Dis.201372453554010.1136/annrheumdis‑2011‑201047 22580582
    [Google Scholar]
  30. WojdasiewiczP. PoniatowskiŁ.A. SzukiewiczD. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis.Mediators Inflamm.2014201411910.1155/2014/561459 24876674
    [Google Scholar]
  31. WebbG.R. WestacottC.I. ElsonC.J. Chondrocyte tumor necrosis factor receptors and focal loss of cartilage in osteoarthritis.Osteoarthritis Cartilage19975642743710.1016/S1063‑4584(97)80047‑7 9536291
    [Google Scholar]
  32. MehanaE.S.E. KhafagaA.F. El-BlehiS.S. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review.Life Sci.201923411678610.1016/j.lfs.2019.116786 31445934
    [Google Scholar]
  33. WaszczykowskiM. Fabiś-StrobinA. BednarskiI. NarbuttJ. FabiśJ. Serum and synovial fluid concentrations of interleukin-18 and interleukin-20 in patients with osteoarthritis of the knee and their correlation with other markers of inflammation and turnover of joint cartilage.Arch. Med. Sci.202018244845810.5114/aoms.2020.96717 35316898
    [Google Scholar]
  34. GuilakF. NimsR.J. DicksA. WuC.L. MeulenbeltI. Osteoarthritis as a disease of the cartilage pericellular matrix.Matrix Biol.201871-72405010.1016/j.matbio.2018.05.008 29800616
    [Google Scholar]
  35. HaseiJ. TeramuraT. TakeharaT. TWIST1 induces MMP3 expression through up-regulating DNA hydroxymethylation and promotes catabolic responses in human chondrocytes.Sci. Rep.2017714299010.1038/srep42990 28220902
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240258324231009115920
Loading
/content/journals/cmm/10.2174/0115665240258324231009115920
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chondrocytes; MMP-3; Osteoarthritis; polyphyllin I; PPI; TWIST1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test