Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Objective

To explore a new approach for the treatment of renal interstitial fibrosis (RIF), we detected the expression of matrix metalloproteinase-9 (MMP9) and vascular endothelial growth factor (VEGF).

Methods

Twenty-four male Sprague Dawley (SD) rats were randomly divided into 2-week normal control (2NC) group, 4-week NC (4NC) group, 2-week unilateral ureteral obstruction (2UUO) group, and 4-week UUO (4UUO) group. We performed left ureteral ligation on UUO groups. Then, we sacrificed the rats of the 2NC group and 2UUO group at 2 weeks and the other groups at 4 weeks after the surgery. Immunohistochemistry and western blot were applied to detect the expression of MMP9, VEGF, fibronectin (FN), type IV collagen (Col-IV), and transforming growth factor-β1 (TGF-β1). MMP9 levels reduced after UUO surgery. Its expression was less in the 4UUO group than in the 2UUO group (<0.05). The expression of VEGF, TGF-β1, FN, and Col-IV was higher in UUO groups than in NC groups (<0.05). The expression of these indicators was higher in the 4UUO group than in the 2UUO group (<0.05).

Results

In the correlation analysis, MMP9 levels in UUO groups had a negative correlation with the expression of TGF-β1, VEGF, Col-IV, FN, and RIF index (all <0.05). In UUO groups, VEGF levels had a positive correlation with the expression of TGF-β1, Col-IV, FN, and RIF index (all <0.05).

Conclusion

In conclusion, with the aggravation of RIF lesions, MMP9 levels decreased, and VEGF levels increased. Whether there is a mutual inhibition relationship between them remains to be confirmed by further experiments.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240264823231101103226
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. HumphreysB.D. Mechanisms of renal fibrosis.Annu. Rev. Physiol.201880130932610.1146/annurev‑physiol‑022516‑034227 29068765
    [Google Scholar]
  2. WangY.Y. JiangH. PanJ. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury.J. Am. Soc. Nephrol.20172872053206710.1681/ASN.2016050573 28209809
    [Google Scholar]
  3. NtriniasT. PapasotiriouM. BaltaL. Biomarkers in progressive chronic kidney disease. Still a long way to go.Prilozi (Makedon. Akad. Nauk. Umet. Odd. Med. Nauki)2019403273910.2478/prilozi‑2020‑0002 32109222
    [Google Scholar]
  4. YangH. LiaoD. TongL. ZhongL. WuK. MiR-373 exacerbates renal injury and fibrosis via NF-κB/MatrixMetalloproteinase-9 signaling by targeting Sirtuin1.Genomics2019111478679210.1016/j.ygeno.2018.04.017 29723660
    [Google Scholar]
  5. Garcia-FernandezN. Jacobs-CacháC. Mora-GutiérrezJ.M. VergaraA. OrbeJ. SolerM.J. Matrix metalloproteinases in diabetic kidney disease.J. Clin. Med.20209247210.3390/jcm9020472 32046355
    [Google Scholar]
  6. WangH. GaoM. LiJ. MMP‐9‐positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice.Acta Physiol.20192272e1331710.1111/apha.13317 31132220
    [Google Scholar]
  7. HendrixA.Y. KheradmandF. The role of matrix metalloproteinases in development, repair, and destruction of the lungs.Prog. Mol. Biol. Transl. Sci.201714812910.1016/bs.pmbts.2017.04.004 28662821
    [Google Scholar]
  8. ÇelikÖ. ŞahinA.A. SarıkayaS. UygurB. Correlation between serum matrix metalloproteinase and myocardial fibrosis in heart failure patients with reduced ejection fraction: A retrospective analysis.Anatol. J. Cardiol.2020245303308[J]. 33122477
    [Google Scholar]
  9. FengM. DingJ. WangM. ZhangJ. ZhuX. GuanW. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution.Int. J. Biol. Sci.20181491033104010.7150/ijbs.25589 29989076
    [Google Scholar]
  10. XuX. AbdallaT. BratcherP.E. Doxycycline improves clinical outcomes during cystic fibrosis exacerbations.Eur. Respir. J.2017494160110210.1183/13993003.01102‑2016 28381428
    [Google Scholar]
  11. ZsengellérZ.K. LoA. TavasoliM. PerniconeE. KarumanchiS.A. RosenS. Soluble fms-Like Tyrosine Kinase 1 Localization in Renal Biopsies of CKD.Kidney Int. Rep.20194121735174110.1016/j.ekir.2019.08.004 31844810
    [Google Scholar]
  12. WangX. ZhouY. TanR. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy.Am. J. Physiol. Renal Physiol.20102995F973F98210.1152/ajprenal.00216.2010 20844022
    [Google Scholar]
  13. KimH. OdaT. López-GuisaJ. TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy.J. Am. Soc. Nephrol.200112473674810.1681/ASN.V124736 11274235
    [Google Scholar]
  14. IimuraO. TakahashiH. YashiroT. Effect of ureteral obstruction on matrix metalloproteinase-2 in rat renal cortex.Clin. Exp. Nephrol.20048322322910.1007/s10157‑004‑0287‑x 15480899
    [Google Scholar]
  15. GongR. RifaiA. TolbertE.M. CentracchioJ.N. DworkinL.D. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis.J. Am. Soc. Nephrol.200314123047306010.1097/01.ASN.0000098686.72971.DB 14638904
    [Google Scholar]
  16. PourheydarB. SamadiM. HabibiP. NikibakhshA.A. NaderiR. Renoprotective effects of tropisetron through regulation of the TGF-β1, p53 and matrix metalloproteinases in streptozotocin-induced diabetic rats.Chem. Biol. Interact.202133510933210.1016/j.cbi.2020.109332 33387473
    [Google Scholar]
  17. ZhangL. ZhaoS. ZhuY. Long noncoding RNA growth arrest‐specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2.FASEB J.20203422703271410.1096/fj.201901380RR 31916627
    [Google Scholar]
  18. MelincoviciC.S. BoşcaA.B. ŞuşmanS. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis.Rom. J. Morphol. Embryol.2018592455467 30173249
    [Google Scholar]
  19. MajumderS. AdvaniA. VEGF and the diabetic kidney: More than too much of a good thing.J. Diabetes Complications201731127327910.1016/j.jdiacomp.2016.10.020 27836681
    [Google Scholar]
  20. PandeyA.K. SinghiE.K. ArroyoJ.P. Mechanisms of VEGF (Vascular Endothelial Growth Factor) inhibitor–associated hypertension and vascular disease.Hypertension2018712e1e810.1161/HYPERTENSIONAHA.117.10271 29279311
    [Google Scholar]
  21. ZhangA. FangH. ChenJ. HeL. ChenY. Role of VEGF-A and LRG1 in abnormal angiogenesis associated with diabetic nephropathy.Front. Physiol.202011106410.3389/fphys.2020.01064 32982792
    [Google Scholar]
  22. SuC.T. JaoT.M. UrbanZ. LTBP4 affects renal fibrosis by influencing angiogenesis and altering mitochondrial structure.Cell Death Dis.2021121094310.1038/s41419‑021‑04214‑5 34645813
    [Google Scholar]
  23. LavozC. Rodrigues-DiezR.R. PlazaA. VEGFR2 blockade improves renal damage in an experimental model of Type 2 Diabetic Nephropathy.J. Clin. Med.20209230210.3390/jcm9020302 31973092
    [Google Scholar]
  24. LiuF. WangL. QiH. Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease.Clin. Sci.2017131162125214310.1042/CS20170134 28646122
    [Google Scholar]
  25. LiX. YangS. YanM. Interstitial HIF1A induces an estimated glomerular filtration rate decline through potentiating renal fibrosis in diabetic nephropathy.Life Sci.202024111710910.1016/j.lfs.2019.117109 31786195
    [Google Scholar]
  26. JieK. FengW. BoxiangZ. Identification of pathways and key genes in venous remodeling after arteriovenous fistula by bioinformatics analysis.Front. Physiol.20201156524010.3389/fphys.2020.565240 33363475
    [Google Scholar]
  27. SunY. ZhangD. WangC.F. HuS.W. LanZ. The expression and significance of TGF-beta 1 and its receptors in infertile women’s fimbriae tubes with adhesions and atresias.Sichuan Da Xue Xue Bao Yi Xue Ban2009403435438 19626999
    [Google Scholar]
  28. LardoneM.C. ArgandoñaF. LorcaM. Leydig cell dysfunction is associated with post-transcriptional deregulation of CYP17A1 in men with Sertoli cell-only syndrome.Mol. Hum. Reprod.201824420321010.1093/molehr/gay006 29438521
    [Google Scholar]
  29. LiuC. LiangG. DengZ. TanJ. ZhengQ. LyuF.J. The Upregulation of COX2 in human degenerated nucleus pulposus: The association of inflammation with intervertebral disc degeneration.Mediators Inflamm.2021202111010.1155/2021/2933199 34707460
    [Google Scholar]
  30. LuW. EapenM.S. SingheraG.K. Angiotensin-Converting Enzyme 2 (ACE2), Transmembrane Peptidase Serine 2 (TMPRSS2), and Furin Expression Increases in the lungs of patients with Idiopathic Pulmonary Fibrosis (IPF) and Lymphangioleiomyomatosis (LAM): Implications for SARS-CoV-2 (COVID-19) infections.J. Clin. Med.202211377710.3390/jcm11030777 35160229
    [Google Scholar]
  31. FuY. TangC. CaiJ. ChenG. ZhangD. DongZ. Rodent models of AKI-CKD transition.Am. J. Physiol. Renal Physiol.20183154F1098F110610.1152/ajprenal.00199.2018 29949392
    [Google Scholar]
  32. GaoY. YuanD. GaiL. Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling.J. Ginseng Res.202145340841910.1016/j.jgr.2020.08.005 34025134
    [Google Scholar]
  33. WuJ.P. Aristolochic acid induces chronic kidney disease in ACE knockout mice.Int. J. Prev. Med.202112151[J]. 34912527
    [Google Scholar]
  34. WangC.D. ZhangC. LuoY.K. JiaoN. LiR.S. Effects of sequential application of immunosuppressive agents according to the cell cycle in adriamycin-induced nephropathy rats.Eur. Rev. Med. Pharmacol. Sci.2019232195359547[J]. 31773705
    [Google Scholar]
  35. GongL. JiangL. QinY. JiangX. SongK. YuX. Protective effect of retinoic acid receptor α on hypoxia‐induced epithelial to mesenchymal transition of renal tubular epithelial cells associated with TGF‐β/MMP‐9 pathway.Cell Biol. Int.20184281050105910.1002/cbin.10982 29719094
    [Google Scholar]
  36. LiH. RongP. MaX. Mouse umbilical cord mesenchymal stem cell paracrine alleviates renal fibrosis in diabetic nephropathy by reducing myofibroblast transdifferentiation and cell proliferation and upregulating MMPs in mesangial cells.J. Diabetes Res.2020202011410.1155/2020/3847171 32455132
    [Google Scholar]
  37. ChenP. YangQ. LiX. QinY. Potential association between elevated serum human epididymis protein 4 and renal fibrosis.Medicine20179636e782410.1097/MD.0000000000007824 28885334
    [Google Scholar]
  38. BengattaS. ArnouldC. LetavernierE. MMP9 and SCF protect from apoptosis in acute kidney injury.J. Am. Soc. Nephrol.200920478779710.1681/ASN.2008050515 19329763
    [Google Scholar]
  39. CaiG. ZhangX. HongQ. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation.Nephrol. Dial. Transplant.20082361861187510.1093/ndt/gfm666 18326884
    [Google Scholar]
  40. TobaH. LindseyM.L. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly.Pharmacol. Ther.20191939912010.1016/j.pharmthera.2018.08.014 30149103
    [Google Scholar]
  41. TanT.K. ZhengG. HsuT.T. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells.Am. J. Pathol.201017631256127010.2353/ajpath.2010.090188 20075196
    [Google Scholar]
  42. ZhaoY. QiaoX. TanT.K. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial-mesenchymal transition.Nephrol. Dial. Transplant.2017325781791[J]. 27566305
    [Google Scholar]
  43. YuX. HuY. ZhangY. Integrating the polydopamine nanosphere/aptamers nanoplatform with a DNase-I-assisted recycling amplification strategy for simultaneous detection of MMP-9 and MMP-2 during renal interstitial fibrosis.ACS Sens.2020541119112510.1021/acssensors.0c00058 32192327
    [Google Scholar]
  44. Kui TanT. ZhengG. HsuT.T. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage.Lab. Invest.201393443444910.1038/labinvest.2013.3 23358111
    [Google Scholar]
  45. YimH.E. YooK.H. BaeI.S. HongY.S. Early treatment with enalapril and later renal injury in programmed obese adult rats.J. Cell. Physiol.2017232244745510.1002/jcp.25444 27238873
    [Google Scholar]
  46. MatsuiF. BabitzS.A. RheeA. HileK.L. ZhangH. MeldrumK.K. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production.Am. J. Physiol. Renal Physiol.20173121F25F3210.1152/ajprenal.00311.2016 27760767
    [Google Scholar]
  47. LindseyM.L. ZoueinF.A. TianY. Padmanabhan IyerR. de Castro BrásL.E. Osteopontin is proteolytically processed by matrix metalloproteinase 9.Can. J. Physiol. Pharmacol.2015931087988610.1139/cjpp‑2015‑0019 26176332
    [Google Scholar]
  48. CaoG. LuY. GaoR. Expression of fractalkine, CX3CR1, and vascular endothelial growth factor in human chronic renal allograft rejection.Transplant. Proc.20063871998200010.1016/j.transproceed.2006.06.081 16979977
    [Google Scholar]
  49. RicciardiC.A. GnudiL. Vascular growth factors as potential new treatment in cardiorenal syndrome in diabetes.Eur. J. Clin. Invest.2021519e1357910.1111/eci.13579 33942293
    [Google Scholar]
  50. ZhangJ. ChuM. Differential roles of VEGF: Relevance to tissue fibrosis.J. Cell. Biochem.20191207109451095110.1002/jcb.28489 30793361
    [Google Scholar]
  51. HakroushS. MoellerM.J. TheiligF. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease.Am. J. Pathol.200917551883189510.2353/ajpath.2009.080792 19834063
    [Google Scholar]
  52. Sánchez-NavarroA. Pérez-VillalvaR. Murillo-de-OzoresA.R. Vegfa promoter gene hypermethylation at HIF1α binding site is an early contributor to CKD progression after renal ischemia.Sci. Rep.2021111876910.1038/s41598‑021‑88000‑5 33888767
    [Google Scholar]
  53. LianY. ZhouQ. ZhangY. ZhengF. VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition.Acta Pharmacol. Sin.201132121513152110.1038/aps.2011.111 21986574
    [Google Scholar]
  54. VeronD. BertuccioC.A. MarlierA. Podocyte vascular endothelial growth factor (Vegf(1)(6)(4)) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes.Diabetologia20115451227124110.1007/s00125‑010‑2034‑z 21318407
    [Google Scholar]
  55. LourençoB.N. ColemanA.E. TarigoJ.L. Evaluation of profibrotic gene transcription in renal tissues from cats with naturally occurring chronic kidney disease.J. Vet. Intern. Med.20203441476148710.1111/jvim.15801 32468592
    [Google Scholar]
  56. LeeS.Y. HörbeltM. MangH.E. MMP-9 gene deletion mitigates microvascular loss in a model of ischemic acute kidney injury.Am. J. Physiol. Renal Physiol.20113011F101F10910.1152/ajprenal.00445.2010 21454251
    [Google Scholar]
  57. MaY. ChiaoY.A. ClarkR. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence.Cardiovasc. Res.2015106342143110.1093/cvr/cvv128 25883218
    [Google Scholar]
  58. LiuH. LiuH. LvL. CCN3 suppresses TGF-β1-induced extracellular matrix accumulation in human mesangial cells in vitro.Acta Pharmacol. Sin.201839222222910.1038/aps.2017.87 28858296
    [Google Scholar]
  59. LiA. YuanJ.F. GongQ. Effects of Eucommia ulmoides extract against renal injury caused by long-term high purine diets in rats.Food Funct.202112125607562010.1039/D0FO02802A 34018492
    [Google Scholar]
  60. XuY. GaoA.M. JiL.J. All-trans retinoic acid attenuates hypoxia-induced injury in NRK52E cells via inhibiting NF-κB/VEGF and TGF-β2/VEGF pathway.Cell. Physiol. Biochem.201638122923610.1159/000438624 26783748
    [Google Scholar]
  61. LinS. TengJ. LiJ. SunF. YuanD. ChangJ. Association of chemerin and vascular endothelial growth factor (VEGF) with diabetic nephropathy.Med. Sci. Monit.2016223209321410.12659/MSM.896781 27612613
    [Google Scholar]
  62. HongJ.P. LiX.M. LiM.X. ZhengF.L. VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR-192, a Smad3-dependent microRNA.Int. J. Mol. Med.20133161436144210.3892/ijmm.2013.1337 23588932
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240264823231101103226
Loading
/content/journals/cmm/10.2174/0115665240264823231101103226
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test