Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Background

3-Amino-4-(2,4,5-trifluorophenyl) butyric acid has potential pharmacological effects in promoting insulin secretion. Menthol promotes drug transdermal absorption and hypoglycemic effects.

Objective

The objective of the study was to combine the 3-amino-4-(2,4,5-trifluorophenyl) butyric acid and menthol to develop a new candidate drug molecule that can be used as a hypoglycemic drug in type II diabetes.

Methods

In this study, the molecular structure of 3-amino-4-(2,4,5-trifluorophenyl) butyric acid in sitagliptin was modified by replacing pyrazine imidazole with menthol. The structure of the target compound was characterized by nuclear magnetic resonance (NMR). The anti-diabetic activity of BHF in N000180 BKS.Cg-Dock7m+/ +Leprdb/Nju mice with spontaneous diabetes was preliminarily studied.

Results

A potential multi-target drug molecule, 3-amino-4-(2,4,5-trifluorophenyl) butyrate (BHF), was synthesized by combining 3-amino-4-(2,4,5-trifluorophenyl) butyric acid and menthol. BHF is suitable for hyperglycemic mice and has a significant hypoglycemic effect; the low dose of 10 mg/kg-1 started to be effective, and the high dose of 40 mg/kg-1 was more effective than the positive drug metformin.

Conclusion

In this study, BHF has been synthesized and presented significant antidiabetic activities.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240256416231120105956
2024-12-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmm/24/12/CMM-24-12-1550.html?itemId=/content/journals/cmm/10.2174/0115665240256416231120105956&mimeType=html&fmt=ahah

References

  1. XuY. WangL. HeJ. Prevalence and control of diabetes in Chinese adults.JAMA2013310994895910.1001/jama.2013.168118 24002281
    [Google Scholar]
  2. SantosL.L. LimaF.J.C. Sousa-RodriguesC.F. BarbosaF.T. Use of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus.Rev. Assoc. Med. Bras.201763763664110.1590/1806‑9282.63.07.636 28977090
    [Google Scholar]
  3. ObodoaghaA.L. Using telehealth education to improve medication adherence and lower HbA1c among african americans with type 2 diabetes.University of Massachusetts Global2022
    [Google Scholar]
  4. DeFronzoR.A. Pharmacologic therapy for type 2 diabetes mellitus.Ann. Intern. Med.1999131428130310.7326/0003‑4819‑131‑4‑199908170‑00008 10454950
    [Google Scholar]
  5. Expert Group of Metformin in Clinical Practice. Chinese expert consensus statement on metformin in clinical practice.Chin. Med. J.2020133121445144710.1097/CM9.0000000000000883 32472786
    [Google Scholar]
  6. PadhiS. NayakA.K. BeheraA. Type II diabetes mellitus: A review on recent drug based therapeutics.Biomed. Pharmacother.202013111070810.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  7. RenehanA. SmithU. KirkmanM.S. Linking diabetes and cancer: A consensus on complexity.Lancet201037597332201220210.1016/S0140‑6736(10)60706‑4 20609959
    [Google Scholar]
  8. NauckM.A. MeiningerG. ShengD. TerranellaL. SteinP.P. Efficacy and safety of the dipeptidyl peptidase‐4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: A randomized, double‐blind, non‐inferiority trial.Diabetes Obes. Metab.20079219420510.1111/j.1463‑1326.2006.00704.x 17300595
    [Google Scholar]
  9. ShiM. LiuZ. ZhuY. Effect of health education based on integrative therapy of Chinese and Western medicine for adult patients with type 2 diabetes mellitus: A randomized controlled study.Chin. J. Integr. Med.20182429410210.1007/s11655‑015‑2113‑6 26688178
    [Google Scholar]
  10. MannJ.F. NauckM.A. JacobS. Liraglutid und renale endpunkte bei typ 2 diabetes: Ergebnisse der LEADER studie.Diabetol. Stoffwech.201712S1P16810.1055/s‑0037‑1601747
    [Google Scholar]
  11. ZinmanB. LachinJ.M. InzucchiS.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes reply.N. Engl. J. Med.20163741110944 26981940
    [Google Scholar]
  12. TurtonM.D. O’SheaD. GunnI. A role for glucagon-like peptide-1 in the central regulation of feeding.Nature19963796560697210.1038/379069a0 8538742
    [Google Scholar]
  13. RodaS. Fernandez-LopezL. BenedensM. A plurizyme with transaminase and hydrolase activity catalyzes cascade reactions.Angew. Chem. Int. Ed.20226137e20220734410.1002/anie.202207344 35734849
    [Google Scholar]
  14. CaiX. JiL. ChenY. Comparisons of weight changes between sodium‐glucose cotransporter 2 inhibitors treatment and glucagon‐like peptide‐1 analogs treatment in type 2 diabetes patients: A meta‐analysis.J. Diabetes Investig.20178451051710.1111/jdi.12625 28106956
    [Google Scholar]
  15. MoherD. HopewellS. SchulzK.F. Empagliflozin and progression of kidney disease in type 2 diabetes.N. Engl. J. Med.200835825602572
    [Google Scholar]
  16. JiL MaJ LiH Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: A randomized, blinded, prospective phase III study.Clin therap20143618410010.1016/j.clinthera.2013.11.002
    [Google Scholar]
  17. LinH.B. LiF.X. ZhangJ.Y. Cerebral-cardiac syndrome and diabetes: Cardiac damage after ischemic stroke in diabetic state.Front. Immunol.20211273717010.3389/fimmu.2021.737170 34512671
    [Google Scholar]
  18. SawantS.D. NerkarA.G. PawarN.D. Design, synthesis, QSAR studies and biological evaluation of novel triazolopiperazine based β-amino amides as dipeptidyl peptidase-IV (DPP-IV) inhibitors: Part-II.Int. J. Pharm. Pharm. Sci.20146812817
    [Google Scholar]
  19. WangH. Effect of l-menthol pretreated nasal cavity on insulin pharmacological bioavailability.Zhongguo Yaolixue Tongbao1987
    [Google Scholar]
  20. MiyamotoY. BannoY. YamashitaT. Discovery of a 3-pyridylacetic acid derivative (TAK-100) as a potent, selective and orally active dipeptidyl peptidase IV (DPP-4) inhibitor.J. Med. Chem.201154383185010.1021/jm101236h 21218817
    [Google Scholar]
  21. JethavaD.J. BoradM.A. BhoiM.N. AcharyaP.T. BhavsarZ.A. PatelH.D. New dimensions in triazolo[4,3-a]pyrazine derivatives: The land of opportunity in organic and medicinal chemistry.Arab. J. Chem.202013128532859110.1016/j.arabjc.2020.09.038
    [Google Scholar]
  22. ZhaoX. ZhengX. FanT.P. A novel drug discovery strategy inspired by traditional medicine philosophies.Science20153476219S38S40
    [Google Scholar]
  23. CobanM. MorrisonJ. FreemanW. Targeting Tmprss2, S-protein: Ace2, and 3CLpro for synergetic inhibitory engagement.chemrxiv202020201261615110.26434/chemrxiv.12616151.v1
    [Google Scholar]
  24. KimG.H. JeonH. KhobragadeT.P. Enzymatic synthesis of sitagliptin intermediate using a novel ω-transaminase.Enzyme Microb. Technol.2019120526010.1016/j.enzmictec.2018.10.003 30396399
    [Google Scholar]
  25. LiuY. HuY. LiuT. Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: Medicinal chemistry and preclinical aspects.Curr. Med. Chem.201219233982399910.2174/092986712802002491 22709010
    [Google Scholar]
  26. BannoY. MiyamotoY. SasakiM. Identification of 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones: A new class of potent, selective, and orally active non-peptide dipeptidyl peptidase IV inhibitors that form a unique interaction with Lys554.Bioorg. Med. Chem.201119164953497010.1016/j.bmc.2011.06.059 21764322
    [Google Scholar]
  27. ChenJ. ZhangW. GengH. Efficient synthesis of chiral β-arylisopropylamines by using catalytic asymmetric hydrogenation.Angew. Chem. Int. Ed.200948480080210.1002/anie.200805058 19101975
    [Google Scholar]
  28. MaezakiH. BannoY. MiyamotoY. Discovery of potent, selective, and orally bioavailable quinoline-based dipeptidyl peptidase IV inhibitors targeting Lys554.Bioorg. Med. Chem.201119154482449810.1016/j.bmc.2011.06.032 21741847
    [Google Scholar]
  29. ZhaoG. TaunkP.C. MagninD.R. Diprolyl nitriles as potent dipeptidyl peptidase IV inhibitors.Bioorg. Med. Chem. Lett.200515183992399510.1016/j.bmcl.2005.06.043 16046120
    [Google Scholar]
  30. KimD. WangL. BeconiM. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes.J. Med. Chem.200548114115110.1021/jm0493156 15634008
    [Google Scholar]
  31. HansenK.B. HsiaoY. XuF. Highly efficient asymmetric synthesis of sitagliptin.J. Am. Chem. Soc.2009131258798880410.1021/ja902462q 19507853
    [Google Scholar]
  32. UchidaT. NozakiK. IwamuraM. Chiral sensing of various amino acids using induced circularly polarized luminescence from europium (III) complexes of phenanthroline dicarboxylic acid derivatives.Chem. Asian J.201611172415242210.1002/asia.201600798 27380553
    [Google Scholar]
  33. HussainH. AbbasG. GreenI.R. AliI. Dipeptidyl peptidase IV inhibitors as a potential target for diabetes: Patent review (2015-2018).Expert Opin. Ther. Pat.201929753555310.1080/13543776.2019.1632290 31203700
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240256416231120105956
Loading
/content/journals/cmm/10.2174/0115665240256416231120105956
Loading

Data & Media loading...

Supplements

Supplementary data [1H NMR and 13C NMR spectra of menthyl 3-amino-4-(2, 4, 5-trifluorophenyl) butyrate] are available free of charge at http://jbcs.sbq.org.br as PDF file.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test