Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Background

As a complex of natural plant compounds, tanshinone is renowned for its remarkable antioxidant properties. However, the potential impact of tanshinone on melanocyte pigmentation regulation has yet to be elucidated. This study aimed to explore the protective effects of tanshinone I (T-I) and dihydrotanshinone (DHT) on melanogenesis by modulating nuclear factor E2-related factor 2 (Nrf2) signaling and antioxidant defenses in human epidermal melanocyte (HEM) cells.

Methods

HEM cells and Nrf2 knockdown HEM cells were subjected to ultraviolet A (UVA) and treated with T-I and/or DHT. Then, the anti-melanogenic properties of T-I and DHT were examined by assessing tyrosinase activity, melanogenesis-related proteins, and melanin content in UVA-irradiated HEM cells. Furthermore, the antioxidant activities of T-I and DHT were evaluated by assessing oxidant formation and modulation of Nrf2-related antioxidant defenses, including reactive oxygen species (ROS), glutathione (GSH) content, and the activity and expression of antioxidant enzymes, such as catalase (CAT), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD).

Results

Our findings revealed that T-I and DHT diminished melanogenesis in UVA-irradiated HEM cells, activated Nrf2-antioxidant response element signaling, and enhanced antioxidant defenses in the irradiated cells. Furthermore, Nrf2 knockdown by shRNA abolished the anti-melanogenesis effects of T-I and DHT on HEM cells against oxidative damage.

Conclusion

These results suggest that T-I and DHT inhibit UVA-induced melanogenesis in HEM cells, possibly through redox mechanisms involving Nrf2 signaling activation and increased antioxidant defenses. This indicates that T-I and DHT have potential as whitening agents in cosmetics and medical treatments for hyperpigmentation disorders.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240263196230920161019
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. D’MelloS. FinlayG. BaguleyB. Askarian-AmiriM. Signaling pathways in melanogenesis.Int. J. Mol. Sci.2016177114410.3390/ijms17071144 27428965
    [Google Scholar]
  2. RachminI. OstrowskiS.M. WengQ.Y. FisherD.E. Topical treatment strategies to manipulate human skin pigmentation.Adv. Drug Deliv. Rev.2020153657110.1016/j.addr.2020.02.002 32092380
    [Google Scholar]
  3. NguyenN.T. FisherD.E. MITF and UV responses in skin: From pigmentation to addiction.Pigment Cell Melanoma Res.201932222423610.1111/pcmr.12726 30019545
    [Google Scholar]
  4. PillaiyarT. ManickamM. JungS.H. Recent development of signaling pathways inhibitors of melanogenesis.Cell. Signal.2017409911510.1016/j.cellsig.2017.09.004 28911859
    [Google Scholar]
  5. ShainA.H. BastianB.C. From melanocytes to melanomas.Nat. Rev. Cancer201616634535810.1038/nrc.2016.37 27125352
    [Google Scholar]
  6. PanichU. KongtaphanK. OnkoksoongT. Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis.Cell Biol. Toxicol.201026210311610.1007/s10565‑009‑9121‑2 19288216
    [Google Scholar]
  7. PanichU. PluemsamranT. Protective effect of AVS073, a polyherbal formula, against UVA-induced melanogenesis through a redox mechanism involving glutathione-related antioxidant defense.BMC Complement. Altern. Med.201313159
    [Google Scholar]
  8. KowalskaJ. BanachK. BeberokA. RokJ. RzepkaZ. WrześniokD. The biochemical and molecular analysis of changes in melanogenesis induced by uva-activated fluoroquinolones—in vitro study on human normal melanocytes.Cells20211011290010.3390/cells10112900 34831123
    [Google Scholar]
  9. HseuY.C. ChenX.Z. Vudhya GowrisankarY. YenH.R. ChuangJ.Y. YangH.L. The skin-whitening effects of ectoine via the suppression of α-msh-stimulated melanogenesis and the activation of antioxidant Nrf2 pathways in UVA-irradiated keratinocytes.Antioxidants2020916310.3390/antiox9010063 31936771
    [Google Scholar]
  10. ForresterS.J. KikuchiD.S. HernandesM.S. XuQ. GriendlingK.K. Reactive oxygen species in metabolic and inflammatory signaling.Circ. Res.2018122687790210.1161/CIRCRESAHA.117.311401 29700084
    [Google Scholar]
  11. WangM. ChararehP. LeiX. ZhongJ.L. Autophagy: Multiple mechanisms to protect skin from ultraviolet radiation-driven photoaging.Oxid. Med. Cell. Longev.2019201911410.1155/2019/8135985 31915514
    [Google Scholar]
  12. de JagerT.L. CockrellA.E. Du PlessisS.S. Ultraviolet light induced generation of reactive oxygen species.Adv. Exp. Med. Biol.2017996152310.1007/978‑3‑319‑56017‑5_2 29124687
    [Google Scholar]
  13. PourzandC. Albieri-BorgesA. RaczekN.N. Shedding a new light on skin aging, iron- and redox-homeostasis and emerging natural antioxidants.Antioxidants202211347110.3390/antiox11030471 35326121
    [Google Scholar]
  14. PuglieseP.T. The skin’s antioxidant systems.Dermatol. Nurs.1998106401416 10670316
    [Google Scholar]
  15. HeLi LiTang LiXiong Natural components in sunscreens: Topical formulations with sun protection factor (SPF).Biomed. Pharmacother.202113411116110.1016/j.biopha.2020.111161 33360043
    [Google Scholar]
  16. OresajoC. PillaiS. MancoM. YatskayerM. McDanielD. Antioxidants and the skin: Understanding formulation and efficacy.Dermatol. Ther.201225325225910.1111/j.1529‑8019.2012.01505.x 22913443
    [Google Scholar]
  17. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  18. BabbushK. BabbushR. KhachemouneA. The therapeutic use of antioxidants for melasma.J. Drugs Dermatol.202019878879210.36849/JDD.2020.5079 32845595
    [Google Scholar]
  19. FliegerJ. FliegerW. BajJ. MaciejewskiR. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles.Materials (Basel)20211415413510.3390/ma14154135 34361329
    [Google Scholar]
  20. KimJ. KimK. YuB. Optimization of antioxidant and skin-whitening compounds extraction condition from tenebrio molitor Larvae (Mealworm).Molecules2018239234010.3390/molecules23092340 30216986
    [Google Scholar]
  21. MendonçaJ.S. GuimarãesR.C.A. Zorgetto-PinheiroV.A. Natural antioxidant evaluation: A review of detection methods.Molecules20222711356310.3390/molecules27113563 35684500
    [Google Scholar]
  22. BooY.C. Natural Nrf2 modulators for skin protection.Antioxidants20209981210.3390/antiox9090812 32882952
    [Google Scholar]
  23. ChaiprasongsukA. PanichU. Role of phytochemicals in skin photoprotection via regulation of Nrf2.Front. Pharmacol.20221382388110.3389/fphar.2022.823881 35645796
    [Google Scholar]
  24. EdamitsuT. TaguchiK. OkuyamaR. YamamotoM. AHR and NRF2 in skin homeostasis and atopic dermatitis.Antioxidants202211222710.3390/antiox11020227 35204110
    [Google Scholar]
  25. IkehataH. YamamotoM. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation.Toxicol. Appl. Pharmacol.2018360697710.1016/j.taap.2018.09.038 30268578
    [Google Scholar]
  26. ChaiprasongsukA. OnkoksoongT. PluemsamranT. LimsaenguraiS. PanichU. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses.Redox Biol.20168799010.1016/j.redox.2015.12.006 26765101
    [Google Scholar]
  27. GęgotekA. SkrzydlewskaE. The role of transcription factor Nrf2 in skin cells metabolism.Arch. Dermatol. Res.2015307538539610.1007/s00403‑015‑1554‑2 25708189
    [Google Scholar]
  28. LiZ. ZouJ. CaoD. MaX. Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases.Biomed. Pharmacother.202013011059910.1016/j.biopha.2020.110599 33236719
    [Google Scholar]
  29. WangX. YangY. LiuX. GaoX. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza.Adv. Pharmacol.202087437010.1016/bs.apha.2019.10.001 32089238
    [Google Scholar]
  30. LiZ. XuS. LiuP. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics.Acta Pharmacol. Sin.201839580282410.1038/aps.2017.193 29698387
    [Google Scholar]
  31. WuM. YangF. HuangD. Tanshinone I attenuates fibrosis in fibrotic kidneys through down-regulation of inhibin beta-A.BMC Complement. Med. Ther.2022221110
    [Google Scholar]
  32. XuL. ZhangY. JiN. Tanshinone IIA regulates the TGF β1/Smad signaling pathway to ameliorate non alcoholic steatohepatitis related fibrosis.Exp. Ther. Med.202224148610.3892/etm.2022.11413 35761808
    [Google Scholar]
  33. ZhangP. ZhangQ. LiuX. Tanshinone protects against spinal cord ischemia-reperfusion injury by inhibiting JNK Activity.Comput. Intell. Neurosci.202220221610.1155/2022/7619797 35602615
    [Google Scholar]
  34. LiY. WuH. WangZ. TangH. YangL. Tanshinone IIA, a melanogenic ingredient basis of Salvia miltiorrhiza Bunge.Zhonghua Pifuke Yixue Zazhi2021391334010.4103/ds.ds_1_21
    [Google Scholar]
  35. ZhongH. AnX. LiY. Sodium tanshinone IIA silate increases melanin synthesis by activating the MAPK and PKA pathways and protects melanocytes from H 2 O 2 -induced oxidative stress.RSC Advances2019933187471875710.1039/C8RA09786K 35516905
    [Google Scholar]
  36. TaoS. JustinianoR. ZhangD.D. WondrakG.T. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.Redox Biol.20131153254110.1016/j.redox.2013.10.004 24273736
    [Google Scholar]
  37. LiangB. PengL. LiR. Lycium barbarum polysaccharide protects HSF cells against ultraviolet-induced damage through the activation of Nrf2.Cell. Mol. Biol. Lett.20182311810.1186/s11658‑018‑0084‑2 29743894
    [Google Scholar]
  38. DunawayS. OdinR. ZhouL. JiL. ZhangY. KadekaroA.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation.Front. Pharmacol.2018939210.3389/fphar.2018.00392 29740318
    [Google Scholar]
  39. LeeC.H. WuS.B. HongC.H. YuH.S. WeiY.H. Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: The implication in UV-Based Phototherapy.Int. J. Mol. Sci.20131436414643510.3390/ijms14036414 23519108
    [Google Scholar]
  40. SalamaS.A. ArabH.H. OmarH.A. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines.Chem. Biol. Interact.2018285404710.1016/j.cbi.2018.02.034 29499191
    [Google Scholar]
  41. TsuchidaK. SakiyamaN. OguraY. KobayashiM. Skin lightness affects ultraviolet A‐induced oxidative stress: Evaluation using ultraweak photon emission measurement.Exp. Dermatol.202332214615310.1111/exd.14690 36256509
    [Google Scholar]
  42. KiyoiT. LiuS. TakemasaE. HatoN. MogiM. Intermittent environmental exposure to hydrogen prevents skin photoaging through reduction of oxidative stress.Geriatr. Gerontol. Int.202323430431210.1111/ggi.14562 36807963
    [Google Scholar]
  43. ParkS. ChoiE. KimS. Oxidative stress-protective and anti-melanogenic effects of loliolide and ethanol extract from fresh water green algae, Prasiola japonica.Int. J. Mol. Sci.2018199282510.3390/ijms19092825 30231594
    [Google Scholar]
  44. Alekhya SitaGJ GowthamiM SrikanthG Protective role of luteolin against bisphenol A induced renal toxicity through suppressing oxidative stress, inflammation, and upregulating Nrf2/ARE/ HO 1 pathway.IUBMB Life2019717iub.206610.1002/iub.2066 31091348
    [Google Scholar]
  45. LiH. ZhangQ. LiW. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish.Toxicol. Appl. Pharmacol.2019373486110.1016/j.taap.2019.04.016 31022495
    [Google Scholar]
  46. MaQ. Role of nrf2 in oxidative stress and toxicity.Annu. Rev. Pharmacol. Toxicol.201353140142610.1146/annurev‑pharmtox‑011112‑140320 23294312
    [Google Scholar]
  47. UllahS. ParkC. IkramM. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues.Bioorg. Chem.201987435510.1016/j.bioorg.2019.03.001 30856375
    [Google Scholar]
  48. HuZ.M. ZhouQ. LeiT.C. DingS.F. XuS.Z. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: Biosafety as skin whitening agents.J. Dermatol. Sci.200955317918410.1016/j.jdermsci.2009.06.003 19574027
    [Google Scholar]
  49. PanichU. Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system.Arch. Pharm. Res.2011345811820
    [Google Scholar]
  50. LiuC. VojnovicD. KochevarI.E. JurkunasU.V. UV-A irradiation activates Nrf2-regulated antioxidant defense and induces p53/caspase3-dependent apoptosis in corneal endothelial cells.Invest. Ophthalmol. Vis. Sci.20165742319232710.1167/iovs.16‑19097 27127932
    [Google Scholar]
  51. DurchdewaldM. BeyerT.A. JohnsonD.A. JohnsonJ.A. WernerS. auf dem KellerU. Electrophilic chemicals but not UV irradiation or reactive oxygen species activate Nrf2 in keratinocytes in vitro and in vivo.J. Invest. Dermatol.2007127364665310.1038/sj.jid.5700585 17008872
    [Google Scholar]
  52. ChenW.J. WuC. XuZ. KuseY. HaraH. DuhE.J. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.Exp. Eye Res.201715415115810.1016/j.exer.2016.12.001 27923559
    [Google Scholar]
  53. ParkD.J. SekhonS.S. YoonJ. KimY.H. MinJ. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.Mol. Cell. Biochem.20164131-211912510.1007/s11010‑015‑2645‑2 26738491
    [Google Scholar]
  54. KasraeeB. NikolicD.S. SalomonD. Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer.Exp. Dermatol.2012211192410.1111/j.1600‑0625.2011.01394.x 22082249
    [Google Scholar]
  55. OnkoksoongT. JeayengS. PoungvarinN. Thai herbal antipyretic 22 formula (APF22) inhibits UVA-mediated melanogenesis through activation of Nrf2-regulated antioxidant defense.Phytother. Res.20183281546155410.1002/ptr.6083 29672960
    [Google Scholar]
  56. Sharath BabuG.R. AnandT. IlaiyarajaN. KhanumF. GopalanN. Pelargonidin modulates Keap1/Nrf2 pathway gene expression and ameliorates citrinin-induced oxidative stress in HepG2 cells.Front. Pharmacol.2017886810.3389/fphar.2017.00868 29230174
    [Google Scholar]
  57. DaiC. LiuY. DongZ. Tanshinone I alleviates motor and cognitive impairments via suppressing oxidative stress in the neonatal rats after hypoxic-ischemic brain damage.Mol. Brain20171015210.1186/s13041‑017‑0332‑9 29137683
    [Google Scholar]
  58. CuadradoA. RojoA.I. WellsG. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases.Nat. Rev. Drug Discov.201918429531710.1038/s41573‑018‑0008‑x 30610225
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240263196230920161019
Loading
/content/journals/cmm/10.2174/0115665240263196230920161019
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antioxidant defense mechanism; dihydrotanshinone; melanogenesis; Nrf2; tanshinone I; UVA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test