Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Dementia in neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB) is a progressive neurological condition affecting millions worldwide. The amphiphilic molecule GM2 gangliosides are abundant in the human brain and play important roles in neuronal development, intercellular recognition, myelin stabilization, and signal transduction. GM2 ganglioside’s degradation requires hexosaminidase A (HexA), a heterodimer composed of an α subunit encoded by HEXA and a β subunit encoded by HEXB. The hydrolysis of GM2 also requires a non-enzymatic protein, the GM2 activator protein (GM2-AP), encoded by GM2A. Pathogenic mutations of HEXA, HEXB, and GM2A are responsible for autosomal recessive diseases known as GM2 gangliosidosis, caused by the excessive intralysosomal accumulation of GM2 gangliosides. In AD, PD and DLB, GM2 ganglioside accumulation is reported to facilitate Aβ and α-synuclein aggregation into toxic oligomers and plaques through activation of downstream signaling pathways, such as protein kinase C (PKC) and oxidative stress factors. This review explored the potential role of GM2 ganglioside alteration in toxic protein aggregations and its related signaling pathways leading to neurodegenerative diseases. Further review explored potential therapeutic approaches, which include synthetic and phytomolecules targeting GM2 ganglioside accumulation in the brain, holding a promise for providing new and effective management for dementia.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240264547231017110613
2023-10-24
2024-11-26
Loading full text...

Full text loading...

References

  1. HsiehY.C. NegriJ. HeA. Elevated ganglioside GM2 activator (GM2A) in human brain tissue reduces neurite integrity and spontaneous neuronal activity.Mol. Neurodegener.20221716110.1186/s13024‑022‑00558‑4 36131294
    [Google Scholar]
  2. BiselB. PavoneF.S. CalamaiM. GM1 and GM2 gangliosides: Recent developments.Biomol. Concepts201451879310.1515/bmc‑2013‑0039 25372744
    [Google Scholar]
  3. AldabbaghY. IslamA. ZhangW. WhitingP. AliA.B. Alzheimer’s disease enhanced tonic inhibition is correlated with upregulated astrocyte GABA Transporter-3/4 in a knock-in APP mouse model.Front. Pharmacol.20221382249910.3389/fphar.2022.822499 35185574
    [Google Scholar]
  4. Küpeli AkkolE. BardakcıH. YücelÇ. Şeker KaratoprakG. KarpuzB. KhanH. A new perspective on the treatment of alzheimer’s disease and sleep deprivation-related consequences: Can curcumin help?Oxid. Med. Cell. Longev.2022202212310.1155/2022/6168199 35069976
    [Google Scholar]
  5. ToroC. ZainabM. TifftC.J. The GM2 gangliosidoses: Unlocking the mysteries of pathogenesis and treatment.Neurosci. Lett.202176413619510.1016/j.neulet.2021.136195 34450229
    [Google Scholar]
  6. KoG. KimJ. JeonY.J. LeeD. BaekH.M. ChangK.A. Salvia miltiorrhiza alleviates memory deficit induced by ischemic brain injury in a transient mcao mouse model by inhibiting ferroptosis.Antioxidants202312478510.3390/antiox12040785 37107160
    [Google Scholar]
  7. SuzukiM. SangoK. WadaK. NagaiY. Pathological role of lipid interaction with α-synuclein in Parkinson’s disease.Neurochem. Int.20181199710610.1016/j.neuint.2017.12.014 29305919
    [Google Scholar]
  8. Brain network homeostasis and plasticity of salidroside for achieving neuroprotection and treating psychiatric sequelae stemming from stress.Research Square2023
    [Google Scholar]
  9. BuscheM.A. EichhoffG. AdelsbergerH. AbramowskiD. WiederholdK.H. HaassC. Clusters of hyperactive neurons near amyloid plaques in a mouse model of alzheimer’s disease.Science1979321589616861689
    [Google Scholar]
  10. SingerH.S. MinkJ.W. GilbertD.L. JankovicJ. Metabolic disorders with associated movement abnormalities. In: Movement Disorders in Childhood.Elsevier202244353310.1016/B978‑0‑12‑820552‑5.00018‑8
    [Google Scholar]
  11. SipioneS. MonyrorJ. GalleguillosD. SteinbergN. KadamV. Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications.Front. Neurosci.20201457296510.3389/fnins.2020.572965 33117120
    [Google Scholar]
  12. KhanU.A. LiuL. ProvenzanoF.A. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease.Nat. Neurosci.201417230431110.1038/nn.3606 24362760
    [Google Scholar]
  13. YamanakaS. JohnsonM.D. GrinbergA. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease.Proc. Natl. Acad. Sci.199491219975997910.1073/pnas.91.21.9975 7937929
    [Google Scholar]
  14. LealA.F. Benincore-FlórezE. Solano-GalarzaD. JaramilloR.G.G. Echeverri-PeñaO.Y. SuarezD.A. GM2 Gangliosidoses: Clinical features, pathophysiological aspects, and current therapies.Int. J. Mol. Sci.20202117127
    [Google Scholar]
  15. PetracheA.L. RajulawallaA. ShiA. Aberrant excitatory–inhibitory synaptic mechanisms in entorhinal cortex microcircuits during the pathogenesis of alzheimer’s disease.Cereb. Cortex20192941834185010.1093/cercor/bhz016 30766992
    [Google Scholar]
  16. KehrerC. KustermannW. BöhringerJ. Krägeloh-MannI. TrollmannR. BrackmannF. Rare variant of GM2 gangliosidosis through activator-protein deficiency.Neuropediatrics201748212713010.1055/s‑0037‑1598646 28192816
    [Google Scholar]
  17. GasiorowskaA. WydrychM. DrapichP. The biology and pathobiology of glutamatergic, cholinergic, and dopaminergic signaling in the aging brain.Front. Aging Neurosci.20211365493110.3389/fnagi.2021.654931 34326765
    [Google Scholar]
  18. OgawaY. FurusawaE. SaitohT. Inhibition of astrocytic adenosine receptor A2A attenuates microglial activation in a mouse model of Sandhoff disease.Neurobiol. Dis.201811814215410.1016/j.nbd.2018.07.014 30026035
    [Google Scholar]
  19. MuffatJ. LiY. YuanB. Efficient derivation of microglia-like cells from human pluripotent stem cells.Nat. Med.201622111358136710.1038/nm.4189 27668937
    [Google Scholar]
  20. MontaniL. Lipids in regulating oligodendrocyte structure and function.Semin. Cell Dev. Biol.202111211412210.1016/j.semcdb.2020.07.016 32912639
    [Google Scholar]
  21. PantD.C. Aguilera-AlbesaS. PujolA. Ceramide signalling in inherited and multifactorial brain metabolic diseases.Neurobiol. Dis.202014310501410.1016/j.nbd.2020.105014 32653675
    [Google Scholar]
  22. DogbeviaG. GrasshoffH. OthmanA. PennoA. SchwaningerM. Brain endothelial specific gene therapy improves experimental Sandhoff disease.J. Cereb. Blood Flow Metab.20204061338135010.1177/0271678X19865917 31357902
    [Google Scholar]
  23. BelarbiK. CuvelierE. BonteM.A. Glycosphingolipids and neuroinflammation in Parkinson’s disease.Mol. Neurodegener.20201515910.1186/s13024‑020‑00408‑1 33069254
    [Google Scholar]
  24. SikoraJ. DworskiS. JonesE.E. Acid ceramidase deficiency in mice results in a broad range of central nervous system abnormalities.Am. J. Pathol.2017187486488310.1016/j.ajpath.2016.12.005 28342444
    [Google Scholar]
  25. SchnaarR.L. Gerardy-SchahnR. HildebrandtH. Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration.Physiol. Rev.201494246151810.1152/physrev.00033.2013 24692354
    [Google Scholar]
  26. ItokazuY. LiD. YuR.K. Intracerebroventricular infusion of gangliosides augments the adult neural stem cell pool in mouse brain.ASN Neuro20191110.1177/1759091419884859 31635474
    [Google Scholar]
  27. ZervasM. DobrenisK. WalkleyS.U. Neurons in niemann-pick disease type c accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations.J. Neuropathol. Exp. Neurol.2001601496410.1093/jnen/60.1.49 11202175
    [Google Scholar]
  28. PradeepP. KangH. LeeB. Glycosylation and behavioral symptoms in neurological disorders.Transl. Psychiatry202313115410.1038/s41398‑023‑02446‑x 37156804
    [Google Scholar]
  29. ItokazuY. FuchigamiT. MorganJ.C. YuR.K. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse.Mol. Ther.202129103059307110.1016/j.ymthe.2021.06.005 34111562
    [Google Scholar]
  30. van KruiningD. LuoQ. van Echten-DeckertG. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods.Adv. Drug Deliv. Rev.202015923224410.1016/j.addr.2020.04.009 32360155
    [Google Scholar]
  31. ChiricozziE. MauriL. LunghiG. Parkinson’s disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/− mouse model.Sci. Rep.2019911933010.1038/s41598‑019‑55885‑2 31852959
    [Google Scholar]
  32. ArigaT. YanagisawaM. WakadeC. Ganglioside metabolism in a transgenic mouse model of Alzheimer’s disease: expression of Chol-1α antigens in the brain.ASN Neuro201024AN2010002110.1042/AN20100021 20930939
    [Google Scholar]
  33. ChowdhuryS. WuG. LuZ.H. KumarR. LedeenR. Age-related decline in gangliosides GM1 and GD1a in Non-CNS tissues of normal mice: Implications for peripheral symptoms of parkinson’s disease.Biomedicines202311120910.3390/biomedicines11010209 36672717
    [Google Scholar]
  34. ChenH. ChanA.Y. StoneD.U. MandalN.A. Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders.Surv. Ophthalmol.2014591647610.1016/j.survophthal.2013.02.005 24011710
    [Google Scholar]
  35. VasquesJ. de Jesus GonçalvesR. da Silva-JuniorA. MartinsR. GubertF. Mendez-OteroR. Gangliosides in nervous system development, regeneration, and pathologies.Neural Regen. Res.2023181818610.4103/1673‑5374.343890 35799513
    [Google Scholar]
  36. KayaE. SmithD.A. SmithC. BolandB. StruppM. PlattF.M. Beneficial effects of acetyl-dl-leucine (ADLL) in a mouse model of sandhoff disease.J. Clin. Med.202094105010.3390/jcm9041050 32276303
    [Google Scholar]
  37. MirzaeiR. BouzariB. Hosseini-FardS.R. Role of microbiota-derived short-chain fatty acids in nervous system disorders.Biomed. Pharmacother.202113911166110.1016/j.biopha.2021.111661 34243604
    [Google Scholar]
  38. TamagawaK. MorimatsuY. FujisawaK. HaraA. TaketomiT. Neuropathological study and chemico-pathoiogical correlation in sibling cases of Sanfilippo syndrome type B.Brain Dev.19857659960910.1016/S0387‑7604(85)80008‑5 3938624
    [Google Scholar]
  39. WalkleyS.U. SuzukiK. Consequences of NPC1 and NPC2 loss of function in mammalian neurons.Biochim. Biophys. Acta Mol. Cell Biol. Lipids200416851-3486210.1016/j.bbalip.2004.08.011 15465426
    [Google Scholar]
  40. AgrawalI. LimY.S. NgS.Y. LingS.C. Deciphering lipid dysregulation in ALS: From mechanisms to translational medicine.Transl. Neurodegener.20221114810.1186/s40035‑022‑00322‑0 36345044
    [Google Scholar]
  41. MächtelR. BorosF.A. DobertJ.P. ArnoldP. ZunkeF. From lysosomal storage disorders to parkinson’s disease – challenges and opportunities.J. Mol. Biol.20234351216793210.1016/j.jmb.2022.167932 36572237
    [Google Scholar]
  42. RizvanovA.A. ShaimardanovaA.A. ChulpanovaD.S. SolovyevaV.V. AimaletdinovA.M. Functionality of a bicistronic construction containing HEXA and HEXB genes encoding β-hexosaminidase A for cell-mediated therapy of GM2 gangliosidoses.Neural Regen. Res.202217112212910.4103/1673‑5374.314310 34100447
    [Google Scholar]
  43. Cachón-GonzálezM.B. WangS.Z. McNairR. Gene transfer corrects acute GM2 gangliosidosis--potential therapeutic contribution of perivascular enzyme flow.Mol. Ther.20122081489150010.1038/mt.2012.44 22453766
    [Google Scholar]
  44. YangJ. WiseL. TLR4 cross-talk with nlrp3 inflammasome and complement signaling pathways in alzheimer’s disease.Front. Immunol.202011
    [Google Scholar]
  45. KanyS. VollrathJ.T. ReljaB. Cytokines in inflammatory disease.Int. J. Mol. Sci.20192023600810.3390/ijms20236008 31795299
    [Google Scholar]
  46. MaguireA.S. MartinD.R. White matter pathology as a barrier to gangliosidosis gene therapy.Front. Cell. Neurosci.20211568210610.3389/fncel.2021.682106 34456684
    [Google Scholar]
  47. ShinJ. KimG. LeeJ.W. Identification of ganglioside GM 2 activator playing a role in cancer cell migration through proteomic analysis of breast cancer secretomes.Cancer Sci.2016107682883510.1111/cas.12935 27002480
    [Google Scholar]
  48. Espinosa-OlivaA.M. García-RevillaJ. Alonso-BellidoI.M. BurguillosM.A. Brainiac caspases: Beyond the wall of apoptosis.Front. Cell. Neurosci.20191350010.3389/fncel.2019.00500 31749689
    [Google Scholar]
  49. LumJ.S. BergT. ChisholmC.G. VendruscoloM. YerburyJ.J. Vulnerability of the spinal motor neuron presynaptic terminal sub-proteome in ALS.Neurosci. Lett.202277813661410.1016/j.neulet.2022.136614 35367314
    [Google Scholar]
  50. SvirinE. de MunterJ. UmriukhinA. Aberrant ganglioside functions to underpin dysregulated myelination, insulin signalling, and cytokine expression: Is there a link and a room for therapy?Biomolecules20221210143410.3390/biom12101434 36291644
    [Google Scholar]
  51. LeeY. MillerM.R. FernandezM.A. Early lysosome defects precede neurodegeneration with amyloid-β and tau aggregation in NHE6-null rat brain.Brain202214593187320210.1093/brain/awab467 34928329
    [Google Scholar]
  52. Campos-PeñaV. Pichardo-RojasP. Sánchez-BarbosaT. Amyloid β, lipid metabolism, basal cholinergic system, and therapeutics in alzheimer’s disease.Int. J. Mol. Sci.202223201209210.3390/ijms232012092 36292947
    [Google Scholar]
  53. SolisE.Jr HascupK.N. HascupE.R. Alzheimer’s Disease: The link between amyloid-β and neurovascular dysfunction.J. Alzheimers Dis.20207641179119810.3233/JAD‑200473 32597813
    [Google Scholar]
  54. LaiY. LinP. LinF. Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning.Front. Immunol.202213104641010.3389/fimmu.2022.1046410 36569892
    [Google Scholar]
  55. BensalemJ. HeinL.K. HassiotisS. Modifying dietary protein impacts mTOR signaling and brain deposition of amyloid β in a knock-in mouse model of alzheimer disease.J. Nutr.202315351407141910.1016/j.tjnut.2023.02.035 36870538
    [Google Scholar]
  56. DemirS.A. TimurZ.K. AteşN. MartínezL.A. SeyrantepeV. GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay-Sachs disease.J. Neuroinflammation202017127710.1186/s12974‑020‑01947‑6 32951593
    [Google Scholar]
  57. İnciA. Cengiz ErginF.B. BiberoğluG. Okurİ. EzgüF.S. TümerL. Two patients from Turkey with a novel variant in the GM2A gene and review of the literature.J. Pediatr. Endocrinol. Metab.202134680581210.1515/jpem‑2020‑0655 33819415
    [Google Scholar]
  58. JónssonH. SulemP. KehrB. Parental influence on human germline de novo mutations in 1,548 trios from Iceland.Nature2017549767351952210.1038/nature24018 28959963
    [Google Scholar]
  59. Sanchez-VaroR. Mejias-OrtegaM. Fernandez-ValenzuelaJ.J. Transgenic mouse models of alzheimer’s disease: An integrative analysis.Int. J. Mol. Sci.20222310540410.3390/ijms23105404 35628216
    [Google Scholar]
  60. Estaun-PanzanoJ. ArotcarenaM.L. BezardE. Monitoring α-synuclein aggregation.Neurobiol. Dis.202317610596610.1016/j.nbd.2022.105966 36527982
    [Google Scholar]
  61. Peña-BautistaC. KumarR. BaqueroM. Misfolded alpha-synuclein detection by RT-QuIC in dementia with lewy bodies: a systematic review and meta-analysis.Front. Mol. Biosci.202310119345810.3389/fmolb.2023.1193458 37266333
    [Google Scholar]
  62. CalabresiP. MechelliA. NataleG. Volpicelli-DaleyL. Di LazzaroG. GhiglieriV. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction.Cell Death Dis.202314317610.1038/s41419‑023‑05672‑9 36859484
    [Google Scholar]
  63. BrockmannK. QuadaltiC. LercheS. Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson’s disease and dementia with Lewy bodies.Acta Neuropathol. Commun.20219117510.1186/s40478‑021‑01276‑6 34717775
    [Google Scholar]
  64. SangoK. YamanakaS. HoffmannA. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism.Nat. Genet.199511217017610.1038/ng1095‑170 7550345
    [Google Scholar]
  65. ZhouH. LinB. YangJ. Analysis of the mechanism of buyang huanwu decoction against cerebral ischemia-reperfusion by multi-omics.J. Ethnopharmacol.202330511611210.1016/j.jep.2022.116112 36581164
    [Google Scholar]
  66. PandeyM.K. Exploring pro-inflammatory immunological mediators: Unraveling the mechanisms of neuroinflammation in lysosomal storage diseases.Biomedicines2023114106710.3390/biomedicines11041067 37189685
    [Google Scholar]
  67. MartinsC. Brunel-GuittonC. LortieA. Atypical juvenile presentation of GM2 gangliosidosis AB in a patient compound-heterozygote for c.259G > T and c.164C > T mutations in the GM2A gene.Mol. Genet. Metab. Rep.201711242910.1016/j.ymgmr.2017.01.017 28417072
    [Google Scholar]
  68. KwanJ. VullagantiM. Amyotrophic lateral sclerosis mimics.Muscle Nerve202266324025210.1002/mus.27567 35607838
    [Google Scholar]
  69. NestrasilI. AhmedA. UtzJ.M. RudserK. WhitleyC.B. Jarnes-UtzJ.R. Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: Volumetric quantitative MRI study.Mol. Genet. Metab.201812329710410.1016/j.ymgme.2017.12.432 29352662
    [Google Scholar]
  70. StensonP.D. MortM. BallE.V. The human gene mutation database (HGMD®): Optimizing its use in a clinical diagnostic or research setting.Hum. Genet.2020139101197120710.1007/s00439‑020‑02199‑3 32596782
    [Google Scholar]
  71. HayashiJ. CarverJ.A. β-Synuclein: An enigmatic protein with diverse functionality.Biomolecules202212114210.3390/biom12010142 35053291
    [Google Scholar]
  72. LeongT.W. PalA. CaiQ. Clinical gene therapy development for the central nervous system: Candidates and challenges for AAVs.J. Control. Release202335751153010.1016/j.jconrel.2023.04.009 37040842
    [Google Scholar]
  73. KidoJ. SugawaraK. NakamuraK. Gene therapy for lysosomal storage diseases: Current clinical trial prospects.Front. Genet.202314106492410.3389/fgene.2023.1064924 36713078
    [Google Scholar]
  74. PicacheJ.A. ZhengW. ChenC.Z. Therapeutic strategies for tay-sachs disease.Front. Pharmacol.20221390664710.3389/fphar.2022.906647 35865957
    [Google Scholar]
  75. TsujiD. AkeboshiH. MatsuokaK. Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis.Ann. Neurol.201169469170110.1002/ana.22262 21520232
    [Google Scholar]
  76. MarshallJ. NietupskiJ.B. ParkH. Substrate reduction therapy for sandhoff disease through inhibition of glucosylceramide synthase activity.Mol. Ther.20192781495150610.1016/j.ymthe.2019.05.018 31208914
    [Google Scholar]
  77. LealA.F. CifuentesJ. QuezadaV. CRISPR/nCas9-based genome editing on gm2 gangliosidoses fibroblasts via non-viral vectors.Int. J. Mol. Sci.202223181067210.3390/ijms231810672 36142595
    [Google Scholar]
  78. SantosR. AmaralO. Advances in sphingolipidoses: CRISPR-Cas9 editing as an option for modelling and therapy.Int. J. Mol. Sci.20192023589710.3390/ijms20235897 31771289
    [Google Scholar]
  79. ChiricozziE. NiemirN. AureliM. Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on β-hexosaminidase activity in Sandhoff fibroblasts.Mol. Neurobiol.201450115916710.1007/s12035‑013‑8605‑5 24356898
    [Google Scholar]
  80. VuM. LiR. BaskfieldA. Neural stem cells for disease modeling and evaluation of therapeutics for Tay-Sachs disease.Orphanet J. Rare Dis.201813115210.1186/s13023‑018‑0886‑3 30220252
    [Google Scholar]
  81. CalzoniE. CesarettiA. MontegioveN. Di MicheleA. PellegrinoR.M. EmilianiC. HexA-enzyme coated polymer nanoparticles for the development of a drug-delivery system in the treatment of sandhoff lysosomal storage disease.J. Funct. Biomater.20221323710.3390/jfb13020037 35466219
    [Google Scholar]
  82. BeegleJ. HendrixK. MacielH. NoltaJ.A. AndersonJ.S. Improvement of motor and behavioral activity in Sandhoff mice transplanted with human CD34+ cells transduced with a HexA/HexB expressing lentiviral vector.J. Gene Med.2020229e320510.1002/jgm.3205 32335981
    [Google Scholar]
  83. KimM.J. DengH.X. WongY.C. SiddiqueT. KraincD. The Parkinson’s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking.Hum. Mol. Genet.2017264ddw41310.1093/hmg/ddw413 28115417
    [Google Scholar]
  84. MinamisawaM. SuzumuraT. BoseS. Effect of Yuzu (Citrus junos) seed limonoids and spermine on intestinal microbiota and hypothalamic tissue in the sandhoff disease mouse model.Med. Sci.2021911710.3390/medsci9010017 33799734
    [Google Scholar]
  85. VijayalakshmiM. Lakshmana PrabuS. UmamaheswariA. NeethimohanN. Strategies to combat Tay-Sachs disease. In: Drug Delivery Systems for Metabolic Disorders.Elsevier202233734910.1016/B978‑0‑323‑99616‑7.00017‑7
    [Google Scholar]
  86. MaginiA. PolchiA. Di MeoD. Curcumin analogue C1 promotes hex and gal recruitment to the plasma membrane via mTORC1-Independent TFEB activation.Int. J. Mol. Sci.2019206136310.3390/ijms20061363 30889901
    [Google Scholar]
  87. De MasiR. OrlandoS. GANAB and N-glycans substrates are relevant in human physiology, polycystic pathology and multiple sclerosis: A review.Int. J. Mol. Sci.20222313737310.3390/ijms23137373 35806376
    [Google Scholar]
  88. SalauV.F. ErukainureO.L. IbejiC.U. OlasehindeT.A. KoorbanallyN.A. IslamM.S. Ferulic acid modulates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury.Neurotox. Res.202037494495510.1007/s12640‑019‑00099‑7 31422569
    [Google Scholar]
  89. BoomgaardenI. EgertS. RimbachG. WolfframS. MüllerM.J. DöringF. Quercetin supplementation and its effect on human monocyte gene expression profiles in vivo.Br. J. Nutr.2010104333634510.1017/S0007114510000711 20416132
    [Google Scholar]
  90. ArborS.C. LaFontaineM. CumbayM. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores.Yale J. Biol. Med.2016891521 27505013
    [Google Scholar]
  91. ReyF. BerardoC. MaghrabyE. Redox imbalance in neurological disorders in adults and children.Antioxidants202312496510.3390/antiox12040965 37107340
    [Google Scholar]
  92. AxelsenP.H. KomatsuH. MurrayI.V.J. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease.Physiology2011261546910.1152/physiol.00024.2010 21357903
    [Google Scholar]
  93. SimãoF. MattéA. BreierA.C. Resveratrol prevents global cerebral ischemia-induced decrease in lipid content.Neurol. Res.2013351596410.1179/1743132812Y.0000000116 23317800
    [Google Scholar]
  94. ContriA. BrunatiA.M. TrentinL. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis.J. Clin. Invest.2005115236937810.1172/JCI200522094 15650771
    [Google Scholar]
  95. VermaS. RanawatP. NehruB. Studies on the neuromodulatory effects of Ginkgo biloba on alterations in lipid composition and membrane integrity of rat brain following aluminium neurotoxicity.Neurochem. Res.20204592143216010.1007/s11064‑020‑03075‑2 32594293
    [Google Scholar]
  96. BanningA. TikkanenR. Towards splicing therapy for lysosomal storage disorders: Methylxanthines and luteolin ameliorate splicing defects in aspartylglucosaminuria and classic late infantile neuronal ceroid lipofuscinosis.Cells20211011281310.3390/cells10112813 34831035
    [Google Scholar]
  97. DhakalS. RamslandP.A. AdhikariB. MacreadieI. Trans-chalcone plus baicalein synergistically reduce intracellular amyloid Beta (Aβ42) and Protect from Aβ42 induced oxidative damage in yeast models of alzheimer’s disease.Int. J. Mol. Sci.20212217945610.3390/ijms22179456 34502362
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240264547231017110613
Loading
/content/journals/cmm/10.2174/0115665240264547231017110613
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Dementia; GM2 ganglioside; GM2-AP; PKC; potential therapy; synaptic loss
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test