Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Background

Several signaling pathways are involved in the process of angiogenesis, which is one of the most important hallmarks of glioblastoma multiforme (GBM). Identifying related gene variants can help researchers work out what causes anti-angiogenesis drug resistance.

Objective

The goal of this systematic analysis was to identify all mutations and polymorphisms involved in angiogenesis pathways in GBM and their impact on clinical outcomes.

Methods

The keywords include glioblastoma, angiogenesis, signaling pathway, mutation, polymorphism, and related terms used to search ISI, PubMed, and Scopus for relevant articles published up to January 2022. The PRISMA protocol was used to conduct our systematic review. The related articles were taken into consideration. The risk of bias in the associated articles was surveyed, as well as the article scoring. Two authors collaborated on data extraction.

Results

The inclusion criteria were included in 32 articles out of a total of 787 articles. , , , , and are the pathways that have been studied the most. , , , and HIF1a are the genes with the highest frequency of mutations or polymorphisms.

Conclusion

In conclusion, this study found that angiogenesis in primary or recurrent GBM is linked to gene changes in eleven signaling pathways. However, some of these gene mutations have been researched numerous times in relation to angiogenesis, while others have only been studied once. Understanding these changes will help us employ combination therapies more effectively for GBM patients' survival and personal medicine.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524023666230725115812
2023-10-04
2024-11-26
Loading full text...

Full text loading...

References

  1. SeverR. BruggeJ.S. Signal transduction in cancer.Cold Spring Harb. Perspect. Med.201554a00609810.1101/cshperspect.a006098 25833940
    [Google Scholar]
  2. HundsbergerT. ReardonD.A. WenP.Y. Angiogenesis inhibitors in tackling recurrent glioblastoma.Expert Rev. Anticancer Ther.201717650751510.1080/14737140.2017.1322903 28438066
    [Google Scholar]
  3. SubramaniyanV. FuloriaS. GuptaG. A review on epidermal growth factor receptor’s role in breast and non-small cell lung cancer.Chem. Biol. Interact.202235110973510.1016/j.cbi.2021.109735 34742684
    [Google Scholar]
  4. IsmailA.A. ShakerB.T. BajouK. The plasminogen–activator plasmin system in physiological and pathophysiological angiogenesis.Int. J. Mol. Sci.202123133710.3390/ijms23010337 35008762
    [Google Scholar]
  5. WangJ. HuY. ZhouX. A radiomics model based on DCE-MRI and DWI may improve the prediction of estimating IDH1 mutation and angiogenesis in gliomas.Eur. J. Radiol.202214711014110.1016/j.ejrad.2021.110141 34995947
    [Google Scholar]
  6. JinJ. WuX. YinJ. Identification of genetic mutations in cancer: Challenge and opportunity in the new era of targeted therapy.Front. Oncol.2019926310.3389/fonc.2019.00263 31058077
    [Google Scholar]
  7. OliverL. LalierL. SalaudC. HeymannD. CartronP.F. ValletteF. Drug resistance in glioblastoma: Are persisters the key to therapy?Cancer Drug Resist.20203328730110.20517/cdr.2020.29
    [Google Scholar]
  8. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  9. Van MeirE.G. HadjipanayisC.G. NordenA.D. ShuH.K. WenP.Y. OlsonJ.J. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma.CA Cancer J. Clin.201060316619310.3322/caac.20069 20445000
    [Google Scholar]
  10. NicolaidisS. Biomarkers of glioblastoma multiforme.Metabolism2015643Suppl. 1S22S2710.1016/j.metabol.2014.10.031 25468141
    [Google Scholar]
  11. LiberatiA AltmanDG TetzlaffJ The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate health care interventions: Explanation and elaboration.Ann Intern Med20091514W10.7326/0003‑4819‑151‑4‑200908180‑0013619622512
    [Google Scholar]
  12. ViswanathanM. BerkmanN.D. DrydenD.M. HartlingL. Assessing risk of bias and confounding in observational studies of interventions or exposures: Further development of the RTI item bank.RockvilleAgency for Healthcare Research and Quality2013
    [Google Scholar]
  13. ZamanN. DassS.S. Du ParcqP. The KDR (VEGFR-2) genetic polymorphism Q472H and c-KIT polymorphism M541L are associated with more aggressive behaviour in astrocytic gliomas.Cancer Genomics Proteomics202017671572710.21873/cgp.20226 33099473
    [Google Scholar]
  14. GeJ. LiC. XueF. Apatinib plus temozolomide: An effective salvage treatment for recurrent glioblastoma.Front. Oncol.20211060117510.3389/fonc.2020.601175 33634023
    [Google Scholar]
  15. GarginiR Segura-CollarB HerránzB The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas.Sci Transl Med202012527eaax150110.1126/scitranslmed.aax150131969485
    [Google Scholar]
  16. ChoiK.S. ChoiS.H. JeongB. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network.Neuro-oncol.20192191197120910.1093/neuonc/noz095 31127834
    [Google Scholar]
  17. VasconcelosV.C.A. LourençoG.J. BritoA.B.C. Associations of VEGFA and KDR single-nucleotide polymorphisms and increased risk and aggressiveness of high-grade gliomas.Tumour Biol.201941910.1177/1010428319872092 31486713
    [Google Scholar]
  18. SunC. ZhaoY. ShiJ. Isocitrate dehydrogenase1 mutation reduces the pericyte coverage of microvessels in astrocytic tumours.J. Neurooncol.2019143218719610.1007/s11060‑019‑03156‑5 31004262
    [Google Scholar]
  19. HovingaK.E. McCreaH.J. BrennanC. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma.J. Neurooncol.2019142233734510.1007/s11060‑019‑03102‑5 30680510
    [Google Scholar]
  20. DjanI. LucicS. BjelanM. VuckovicN. VucinicN. MorgantiA.G. The VEGF gene polymorphism in glioblastoma may be a new prognostic marker of overall survival.J. BUON201924624752482
    [Google Scholar]
  21. BurgenskeD.M. YangJ. DeckerP.A. Molecular profiling of long-term IDH-wildtype glioblastoma survivors.Neuro-oncol.201921111458146910.1093/neuonc/noz129 31346613
    [Google Scholar]
  22. PolívkaJ.Jr PeštaM. PituleP. IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme.Oncotarget2018923164621647610.18632/oncotarget.24536 29662659
    [Google Scholar]
  23. LinharesP. Viana-PereiraM. FerreiraM. Genetic variants of vascular endothelial growth factor predict risk and survival of gliomas.Tumour Biol.201840310.1177/1010428318766273 29584591
    [Google Scholar]
  24. ChengW.Y. ShenC.C. ChiaoM.T. High expression of a novel splicing variant of VEGF, L-VEGF144 in glioblastoma multiforme is associated with a poorer prognosis in bevacizumab treatment.J. Neurooncol.20181401374710.1007/s11060‑018‑2928‑z 29909500
    [Google Scholar]
  25. CalastriM.C.J. RodriguesN.L.T.O. HatoriG. Genetic variants related to angiogenesis and apoptosis in patients with glioma.Arq. Neuropsiquiatr.201876639339810.1590/0004‑282x20180051 29972422
    [Google Scholar]
  26. YalazaC. AkH. CagliM.S. OzgirayE. AtayS. AydinH.H. R132H mutation in IDH1 gene is associated with increased tumor HIF1-alpha and serum VEGF levels in primary glioblastoma multiforme.Ann. Clin. Lab. Sci.2017473362364 28667042
    [Google Scholar]
  27. VeganzonesS. de la OrdenV. RequejoL. Genetic alterations of IDH1 and Vegf in brain tumors.Brain Behav.201779e0071810.1002/brb3.718 28948065
    [Google Scholar]
  28. EskilssonE. RoslandG.V. TalasilaK.M. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation.Neuro-oncol.201618121644165510.1093/neuonc/now113 27286795
    [Google Scholar]
  29. PooyanH. AhmadE. AzadehR. 4G/5G and A-844G polymorphisms of plasminogen activator Inhibitor-1 Associated with Glioblastoma in Iran-a Case-Control Study.APJCP2015161563276330 26434837
    [Google Scholar]
  30. LiuH. MaoP. XieC. XieW. WangM. JiangH. Association between interleukin 8–251 T/A and +781 C/T polymorphisms and glioma risk.Diagn. Pathol.201510113810.1186/s13000‑015‑0378‑x 26249370
    [Google Scholar]
  31. KawasoeT. TakeshimaH. YamashitaS. Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme.J. Neurosurg.2015122231732310.3171/2014.10.JNS132159 25415071
    [Google Scholar]
  32. da SilvaR. UnoM. MarieS.K.N. Oba-ShinjoS.M. LOX expression and functional analysis in astrocytomas and impact of IDH1 mutation.PLoS One2015103e011978110.1371/journal.pone.0119781 25790191
    [Google Scholar]
  33. Arevalo-PerezJ. ThomasA.A. KaleyT. T1-weighted dynamic contrast-enhanced MRI as a noninvasive biomarker of epidermal growth factor receptor vIII status.AJNR Am. J. Neuroradiol.201536122256226110.3174/ajnr.A4484 26338913
    [Google Scholar]
  34. FerrareseR. HarshG.R.IV YadavA.K. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression.J. Clin. Invest.201412472861287610.1172/JCI68836 24865424
    [Google Scholar]
  35. PopovS. JuryA. LaxtonR. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology.PLoS One201382e5632810.1371/journal.pone.0056328 23451042
    [Google Scholar]
  36. SjöströmS. WibomC. AnderssonU. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome.J. Neurooncol.2011104252352710.1007/s11060‑010‑0504‑2 21191630
    [Google Scholar]
  37. HasslerM. SeidlS. Fazeny-DoernerB. Diversity of cytogenetic and pathohistologic profiles in glioblastoma.Cancer Genet. Cytogenet.20061661465510.1016/j.cancergencyto.2005.08.021 16616111
    [Google Scholar]
  38. JiangH. LianM. XieJ. LiJ. WangM. Three single nucleotide polymorphisms of the vascular endothelial growth factor (VEGF) gene and glioma risk in a Chinese population.J. Int. Med. Res.20134151484149410.1177/0300060513498667 24008569
    [Google Scholar]
  39. BurfordA. LittleS.E. JuryA. Distinct phenotypic differences associated with differential amplification of receptor tyrosine kinase genes at 4q12 in glioblastoma.PLoS One201388e7177710.1371/journal.pone.0071777 23990986
    [Google Scholar]
  40. TykocinskiE.S. GrantR.A. KapoorG.S. Use of magnetic perfusion-weighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma.Neuro-oncol.201214561362310.1093/neuonc/nos073 22492960
    [Google Scholar]
  41. ChenH. WangW. XingjieZ. SongX. FanW. KekeZ. Association between genetic variations of vascular endothelial growth factor receptor 2 and glioma in the Chinese Han population.J. Mol. Neurosci.201247344845710.1007/s12031‑012‑9705‑9
    [Google Scholar]
  42. BaoG. WangM. GuoS. HanY. XuG. Vascular endothelial growth factor +936 C/T gene polymorphism and glioma risk in a Chinese Han population.Genet. Test. Mol. Biomarkers2011151-210310610.1089/gtmb.2010.0141 21117958
    [Google Scholar]
  43. GalanisE. AndersonS.K. LafkyJ.M. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): A North Central Cancer Treatment Group Trial.Clin. Cancer Res.201319174816482310.1158/1078‑0432.CCR‑13‑0708 23833308
    [Google Scholar]
  44. BurimR.V. TeixeiraS.A. ColliB.O. ICAM-1 (Lys469Glu) and PECAM-1 (Leu125Val) polymorphisms in diffuse astrocytomas.Clin. Exp. Med.20099215716310.1007/s10238‑009‑0040‑6 19306055
    [Google Scholar]
  45. Sanchez-VegaF. MinaM. ArmeniaJ. ChatilaW.K. LunaA. LaK.C. Oncogenic signaling pathways in the cancer genome atlas.Cell2018173232133710.1016/j.cell.2018.03.035
    [Google Scholar]
  46. KararJ. MaityA. PI3K/AKT/mTOR pathway in angiogenesis.Front. Mol. Neurosci.201145110.3389/fnmol.2011.00051 22144946
    [Google Scholar]
  47. GuptaR. Webb-MyersR. FlanaganS. BucklandM.E. Isocitrate dehydrogenase mutations in diffuse gliomas: Clinical and aetiological implications.J. Clin. Pathol.2011641083584410.1136/jclinpath‑2011‑200227 21752797
    [Google Scholar]
  48. OhbaS. HiroseY. Biological significance of mutant isocitrate dehydrogenase 1 and 2 in gliomagenesis.Neurol. Med. Chir.201656417017910.2176/nmc.ra.2015‑0322
    [Google Scholar]
  49. DangL. JinS. SuS.M. IDH mutations in glioma and acute myeloid leukemia.Trends Mol. Med.201016938739710.1016/j.molmed.2010.07.002 20692206
    [Google Scholar]
  50. PirozziC. CarpenterA. HennikaT. BecherO. YanH. Tumor-Specific Mutations in Gliomas and Their Implications for Immunotherapy Translational Immunotherapy of Brain Tumors.AmsterdamElsevier20178310710.1016/B978‑0‑12‑802420‑1.00005‑3
    [Google Scholar]
  51. BrandnerS. von DeimlingA. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas.Neuropathol. Appl. Neurobiol.201541669472010.1111/nan.12246 25944653
    [Google Scholar]
  52. YangK. WuZ. ZhangH. Glioma targeted therapy: Insight into future of molecular approaches.Mol. Cancer20222113910.1186/s12943‑022‑01513‑z 35135556
    [Google Scholar]
  53. LiuQ. CaoP. Clinical and prognostic significance of HIF-1α in glioma patients: A meta-analysis.Int. J. Clin. Exp. Med.20158122207322083 26885182
    [Google Scholar]
  54. WeathersS.P. de GrootJ. VEGF Manipulation in Glioblastoma.Oncology20152910720727 26470893
    [Google Scholar]
  55. FiguerasA. ArbosM.A. QuilesM.T. ViñalsF. GermàJ.R. CapellàG. The impact of KRAS mutations on VEGF-A production and tumour vascular network.BMC Cancer201313112510.1186/1471‑2407‑13‑125 23506169
    [Google Scholar]
  56. RahimiM. BehjatiF. Khorram KhorshidH.R. KarimlouM. KeyhaniE. The relationship between KIT copy number variation, protein expression, and angiogenesis in sporadic breast cancer.Rep. Biochem. Mol. Biol.202091404910.29252/rbmb.9.1.40 32821750
    [Google Scholar]
  57. LiuN. DingD. HaoW. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor.Nucleic Acids Res.201644188693870310.1093/nar/gkw549 27325744
    [Google Scholar]
  58. PeyvandiF. GaragiolaI. BaroncianiL. Role of von Willebrand factor in the haemostasis.Blood Transfus.20119Suppl. 2s3s8
    [Google Scholar]
  59. BergerM.F. MardisE.R. The emerging clinical relevance of genomics in cancer medicine.Nat. Rev. Clin. Oncol.201815635336510.1038/s41571‑018‑0002‑6 29599476
    [Google Scholar]
  60. ChenZ-S ZhangJ-y ZhangY YanY-y Targeted cancer therapies, from small molecules to antibodies, volume II.202314
    [Google Scholar]
/content/journals/cmm/10.2174/1566524023666230725115812
Loading
/content/journals/cmm/10.2174/1566524023666230725115812
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): angiogenesis; glioblastoma multiforme; Mutation; polymorphism; signaling pathway; VEGF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test