Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1566-5240
  • E-ISSN:

Abstract

Pregabalin (PG) and diclofenac diethylamine (DEE) are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on studies. Pluronic organogel containing pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥1200, respectively. studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEE-based nanogel across the human skin can be achieved to inhibit inflammation and pain.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240291343240306054318
2024-06-05
2024-10-12
Loading full text...

Full text loading...

References

  1. BarkinR.L. Topical nonsteroidal anti-inflammatory drugs.Am. J. Ther.201522538840710.1097/MJT.0b013e3182459abd 22367354
    [Google Scholar]
  2. PradalJ. ValletC. FrappinG. BariguianF. LombardiM.S. Importance of the formulation in the skin delivery of topical diclofenac: not all topical diclofenac formulations are the same.J. Pain Res.2019121149115410.2147/JPR.S191300 31114298
    [Google Scholar]
  3. RodriguesR.F. NunesJ.B. AgostiniS.B.N. Preclinical evaluation of polymeric nanocomposite containing pregabalin for sustained release as potential therapy for neuropathic pain.Polymers20211321383710.3390/polym13213837 34771392
    [Google Scholar]
  4. XiaM. TianC. LiuL. HuR. GuiS. ChuX. Transdermal administration of ibuprofen-loaded gel: Preparation, pharmacokinetic profile, and tissue distribution.AAPS PharmSciTech20202138410.1208/s12249‑020‑1627‑1
    [Google Scholar]
  5. ManikkathJ. HegdeA.R. KalthurG. ParekhH.S. MutalikS. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen.Int. J. Pharm.20175211-211011910.1016/j.ijpharm.2017.02.002 28163223
    [Google Scholar]
  6. LiuN. SongW. SongT. FangL. Design and evaluation of a novel felbinac transdermal patch: combining ion-pair and chemical enhancer strategy.AAPS Pharm Sci Tech201617226227110.1208/s12249‑015‑0342‑9 26070544
    [Google Scholar]
  7. VanajaK. SS. ShivakumarH.N. MurthyS.N. Influence of iontophoresis on delivery of NSAID-loaded deformable liposomal dispersions: in vitro and in vivo evaluation.Ther. Deliv.202314428129410.4155/tde‑2023‑0005 37340895
    [Google Scholar]
  8. Coskun BenlidayiI. GokcenN. BasaranS. Comparative short-term effectiveness of ibuprofen gel and cream phonophoresis in patients with knee osteoarthritis.Rheumatol. Int.201838101927193210.1007/s00296‑018‑4099‑9 30003324
    [Google Scholar]
  9. Environmental assessment: Pregabalin for use in management of central neuropathic pain due to spinal cord injury.Neuro. J.2012671017921800
    [Google Scholar]
  10. PatelV. LalaniR. BardoliwalaD. GhoshS. MisraA. Lipid-based oral formulation strategies for lipophilic drugs.AAPS PharmSciTech20181983609363010.1208/s12249‑018‑1188‑8 30255474
    [Google Scholar]
  11. KokateA. LiX. JastiB. Effect of drug lipophilicity and ionization on permeability across the buccal mucosa: A technical note.AAPS PharmSciTech20089250150410.1208/s12249‑008‑9071‑7 18431653
    [Google Scholar]
  12. ShafiqueN. SiddiquiT. ZamanM. Transdermal patch, co-loaded with Pregabalin and Ketoprofen for improved bioavailability; in vitro studies.Polym. Polymer Compos.2021299_supplS376S38810.1177/09673911211004516
    [Google Scholar]
  13. ArafaM.G. AyoubB.M. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems.Sci. Rep.2017714150310.1038/srep41503 28134262
    [Google Scholar]
  14. DiasS.F.L. NogueiraS.S. de França DouradoF. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine.Carbohydr. Polym.201614325426110.1016/j.carbpol.2016.02.004 27083367
    [Google Scholar]
  15. Al-MawlaL. Al-AkaylehF. DaadoueS. Development, characterization, and ex vivo permeation assessment of diclofenac diethylamine deep eutectic systems across human skin.J. Pharm. Innov.20231842196220910.1007/s12247‑023‑09784‑9
    [Google Scholar]
  16. HamedR. MahmoudN.N. AlnadiS.H. AlkilaniA.Z. HusseinG. Diclofenac diethylamine nanosystems-loaded bigels for topical delivery: Development, rheological characterization, and release studies.Drug Dev. Ind. Pharm.202046101705171510.1080/03639045.2020.1820038 32892653
    [Google Scholar]
  17. SharmaA. VermaN. Formulation and evaluation of double-layered (matrix and drug-in-adhesive) transdermal patches of diclofenac diethylamine: In vitro and ex vivo permeation studies.Indian J Pharma Edu Res2023572ss234s24310.5530/ijper.57.2s.27
    [Google Scholar]
  18. AroraP. MukherjeeB. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt.J. Pharm. Sci.20029192076208910.1002/jps.10200 12210054
    [Google Scholar]
  19. RouseC.K. MartinA.D. EastonC.J. ThordarsonP. A peptide amphiphile organogelator of polar organic solvents.Sci. Rep.2017714366810.1038/srep43668 28255169
    [Google Scholar]
  20. SahooS. KumarN. BhattacharyaC. Organogels: Properties and applications in drug delivery.Des. Monomers Polym.20111429510810.1163/138577211X555721
    [Google Scholar]
  21. IlomuanyaM.O. Ubani-UkomaU.N. SowemimoA.A. AkandeG.W. KunalP. Formulation and evaluation of detarium oil based organogel for sustained release of metronidazole via topical delivery.J. Pharm. Bioresour.20211729610410.4314/jpb.v17i2.3
    [Google Scholar]
  22. IwanagaK. KawaiM. MiyazakiM. KakemiM. Application of organogels as oral controlled release formulations of hydrophilic drugs.Int. J. Pharm.20124361-286987210.1016/j.ijpharm.2012.06.041 22766444
    [Google Scholar]
  23. WuQ. QiS. ZhaoT. YanH. LiuM. Multiple network organohydrogels with high strength and anti-swelling properties in different solvents.Giant2021610005810.1016/j.giant.2021.100058
    [Google Scholar]
  24. GräbnerD. HoffmannH. Rheology of cosmetic formulations.Cosmet Sci Technol Theor Princ Appl201747148810.1016/B978‑0‑12‑802005‑0.00027‑6
    [Google Scholar]
  25. AlsaabH. BonamS.P. BahlD. ChowdhuryP. AlexanderK. BodduS.H.S. Organogels in drug delivery: A special emphasis on organogels pluronic lecithin.J. Pharm. Pharm. Sci.20161925227310.18433/J3V89W 27518174
    [Google Scholar]
  26. Dr. Mariya S. Organogels in topical drug delivery system : A systematic review.World J. Pharm. Res.2022111810183310.20959/wjpr202216‑26293
    [Google Scholar]
  27. BodduS.H. BonamS.P. WeiY. AlexanderK. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery.Int. J. Pharm. Compd.2014183256261 25306775
    [Google Scholar]
  28. BelgamwarV.S. SuranaS.J. PandeyM.S. Topical delivery of flurbiprofen from pluronic lecithin organogel.Indian J. Pharm. Sci.2009711879010.4103/0250‑474X.51955 20177469
    [Google Scholar]
  29. JhawatV. GuptaS. SainiV. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.Drug Deliv.20162393573358110.1080/10717544.2016.1212439 27494650
    [Google Scholar]
  30. NarulaA. SabraR. LiN. Mechanisms and extent of enhanced passive permeation by colloidal drug particles.Mol. Pharm.20221993085309910.1021/acs.molpharmaceut.2c00124 35998304
    [Google Scholar]
  31. PhamQ.D. BjörklundS. EngblomJ. TopgaardD. SparrE. Chemical penetration enhancers in stratum corneum: Relation between molecular effects and barrier function.J. Control. Release201623217518710.1016/j.jconrel.2016.04.030 27108613
    [Google Scholar]
  32. KarandeP. MitragotriS. Biochimica et Biophysica Acta Enhancement of transdermal drug delivery via synergistic action of chemicals.Biochim. Biophys. Acta20091788112362237310.1016/j.bbamem.2009.08.015
    [Google Scholar]
  33. MoserK. KriwetK. NaikA. KaliaY.N. GuyR.H. Passive skin penetration enhancement and its quantification in vitro.Eur. J. Pharm. Biopharm.200152210311210.1016/S0939‑6411(01)00166‑7 11522474
    [Google Scholar]
  34. IshiiH. TodoH. SugibayashiK. Effect of thermodynamic activity on skin permeation and skin concentration of triamcinolone acetonide.Chem. Pharm. Bull.201058455656110.1248/cpb.58.556
    [Google Scholar]
  35. SloanK.B. KochS.A.M. SiverK.G. FlowersF.P. Use of solubility parameters of drug and vehicle to predict flux through skin.J. Invest. Dermatol.198687224425210.1111/1523‑1747.ep12696635 3734472
    [Google Scholar]
  36. MillsSEE NicolsonK.P. SmithB.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies.Br. J. Anaesth.20191232e273e28310.1016/j.bja.2019.03.023 31079836
    [Google Scholar]
  37. MalikKM BeckerlyR ImaniF Musculoskeletal disorders a universal source of pain and disability misunderstood and mismanaged: A critical analysis based on the U.S. model of care.Anesth Pain Med2018In Press(In Press): e8553210.5812/aapm.8553230775292
    [Google Scholar]
  38. Pabón-PorrasM.A. Molina-RíosS. Flórez-SuárezJ.B. Coral-AlvaradoP.X. Méndez-PatarroyoP. Quintana-LópezG. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system.SAGE Open Med.2019710.1177/2050312119876146 35154753
    [Google Scholar]
  39. DerryS. BellR.F. StraubeS. WiffenP.J. AldingtonD. MooreR.A. Pregabalin for neuropathic pain in adults.Cochrane Libr.201911CD00707610.1002/14651858.CD007076.pub3 30673120
    [Google Scholar]
  40. PredelH.G. GiannettiB. PabstH. SchaeferA. HugA.M. BurnettI. Efficacy and safety of diclofenac diethylamine 1.16% gel in acute neck pain: a randomized, double-blind, placebo-controlled study.BMC Musculoskelet. Disord.201314125010.1186/1471‑2474‑14‑250 23964752
    [Google Scholar]
  41. KimY.E. JungH.Y. ParkN. KimJ. Adhesive composite hydrogel patch for sustained transdermal drug delivery to treat atopic dermatitis.Chem. Mater.20233531209121710.1021/acs.chemmater.2c03234
    [Google Scholar]
  42. SuY. LuW. FuX. Formulation and pharmacokinetic evaluation of a drug-in-adhesive patch for transdermal delivery of koumine.AAPS Pharm Sci Tech202021829710.1208/s12249‑020‑01793‑y 33099696
    [Google Scholar]
  43. RoostermanD. GoergeT. SchneiderS.W. BunnettN.W. SteinhoffM. Neuronal control of skin function: The skin as a neuroimmunoendocrine organ.Physiol. Rev.20068641309137910.1152/physrev.00026.2005 17015491
    [Google Scholar]
  44. AmanullahA. UpadhyayA. DhimanR. Development and challenges of diclofenac-based novel therapeutics: Targeting cancer and complex diseases.Cancers20221418438510.3390/cancers14184385 36139546
    [Google Scholar]
  45. DattaD. PanchalD.S. VenugantiV.V.K. VenugantiK. Transdermal delivery of vancomycin hydrochloride: Influence of chemical and physical permeation enhancers.Int. J. Pharm.202160212066310.1016/j.ijpharm.2021.120663 33933644
    [Google Scholar]
  46. VenugantiV.V.K. PerumalO.P. Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil.Int. J. Pharm.20083611-223023810.1016/j.ijpharm.2008.05.034 18582550
    [Google Scholar]
  47. PrasanthiD. LakshmiP.K. Effect of chemical enhancers in transdermal permeation of alfuzosin hydrochloride.ISRN Pharm.201220121810.5402/2012/965280 23316394
    [Google Scholar]
  48. OsborneD.W. MusakhanianJ. Skin penetration and permeation properties of transcutol®—neat or diluted mixtures.AAPS Pharm Sci Tech20181983512353310.1208/s12249‑018‑1196‑8 30421383
    [Google Scholar]
  49. PitzantiG. RosaA. NiedduM. Transcutol® p containing slns for improving 8-methoxypsoralen skin delivery.Pharmaceutics2020121097310.3390/pharmaceutics12100973 33076355
    [Google Scholar]
  50. CensiR. MartenaV. HotiE. MalajL. Di MartinoP. Permeation and skin retention of quercetin from microemulsions containing Transcutol ® P.Drug Dev. Ind. Pharm.20123891128113310.3109/03639045.2011.641564 22188183
    [Google Scholar]
  51. ChouT.C. Drug combination studies and their synergy quantification using the Chou-Talalay method.Cancer Res.201070244044610.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  52. WróblewskaM. SzymańskaE. WinnickaK. The influence of tea tree oil on antifungal activity and pharmaceutical characteristics of pluronic®F‐127 gel formulations with Ketoconazole.Int. J. Mol. Sci.202122211132610.3390/ijms222111326 34768755
    [Google Scholar]
  53. ÇelenÇ. KeçecilerC. YaparE.A. GökçeE.H. NalbantsoyA. Evaluation of resveratrol organogels prepared by micro-irradiation: Fibroblast proliferation through in vitro wound healing.Turk Biyokim. Derg.201843438539210.1515/tjb‑2016‑0283
    [Google Scholar]
  54. PatelD. PatelV. Development and characterization of pluronic lecithin organogel containing fluocinolone acetonide.Drug Dev. Ind. Pharm.202147337738410.1080/03639045.2021.1879832 33493079
    [Google Scholar]
  55. BalataG. El NahasH.M. RadwanS. Propolis organogel as a novel topical delivery system for treating wounds.Drug Deliv.2014211556110.3109/10717544.2013.847032 24295500
    [Google Scholar]
  56. BaW. LiZ. WangL. Optimization and evaluation of pluronic lecithin organogels as a transdermal delivery vehicle for sinomenine.Pharm. Dev. Technol.201621553554510.3109/10837450.2015.1022791 25757643
    [Google Scholar]
  57. SharmaG. KaurB. ThakurK. Pluronic F127-tailored lecithin organogel of acyclovir: Preclinical evidence of antiviral activity using BALB/c murine model of cutaneous HSV-1 infection.Drug Deliv. Transl. Res.202212121322810.1007/s13346‑021‑00899‑5 33486688
    [Google Scholar]
  58. ParhiR. SureshP. PattnaikS. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: Effect of solvents/penetration enhancers on ex vivo permeation.Drug Deliv. Transl. Res.20166324325310.1007/s13346‑015‑0276‑5 26754742
    [Google Scholar]
  59. LalanM.S. KhodeS.S. ShahK.S. PatelP.C. Preliminary development studies of halobetasol propionate organogel for management of atopic dermatitis.Int. J. Pharm. Sci. Res.201781000100910.13040/IJPSR.0975‑8232.8(2).1000‑09
    [Google Scholar]
  60. GiordanoJ. DaleoC. SacksS.M. Topical ondansetron attenuates nociceptive and inflammatory effects of intradermal capsaicin in humans.Eur. J. Pharmacol.19983541R13R1410.1016/S0014‑2999(98)00492‑0 9726643
    [Google Scholar]
  61. HusseinA. El-AmmawiT. MadyF. Abd elkaderH. EssaH. Formulation and clinical evaluation of silymarin pluronic-lecithin organogels for treatment of atopic dermatitis.Drug Des. Devel. Ther.2016101101111010.2147/DDDT.S103423 27022248
    [Google Scholar]
  62. EspositoE. RavaniL. MarianiP. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin.Eur. J. Pharm. Biopharm.201486212113210.1016/j.ejpb.2013.12.011 24361485
    [Google Scholar]
  63. BhatiaA. SinghB. RazaK. WadhwaS. KatareO.P. Tamoxifen-loaded lecithin organogel (LO) for topical application: Development, optimization and characterization.Int. J. Pharm.20134441-2475910.1016/j.ijpharm.2013.01.029 23353077
    [Google Scholar]
  64. JadhavK. KadamV. PisalS. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole.Curr. Drug Deliv.20096217418310.2174/156720109787846252 19450224
    [Google Scholar]
  65. AboofazeliR. ZiaH. NeedhamT.E. Transdermal delivery of nicardipine: An approach to in vitro permeation enhancement.Drug Deliv.20029423924710.1080/10717540260397855 12511202
    [Google Scholar]
  66. FayezS.M. ShadeedS.G. KhafagyE.S.A. Abdel JaleelG.A. GhorabM.M. El-NahhasS.A. Formulation and evaluation of etodolac lecithin organogel transdermal delivery systems.Int. J. Pharm. Pharm. Sci.20157325334
    [Google Scholar]
  67. LimP.F.C. LiuX.Y. KangL. HoP.C.L. ChanY.W. ChanS.Y. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol.Int. J. Pharm.20063111-215716410.1016/j.ijpharm.2005.12.042 16451823
    [Google Scholar]
  68. RajpootK. Acyclovir-loaded sorbitan esters-based organogel: development and rheological characterization.Artif. Cells Nanomed. Biotechnol.201745355155910.3109/21691401.2016.1161639 27019055
    [Google Scholar]
  69. GopalanK. JoseJ. Development of amphotericin b Based organogels against mucocutaneous fungal infections.Braz. J. Pharm. Sci.202056e1750910.1590/s2175‑97902020000117509
    [Google Scholar]
  70. UpadhyayK.K. TiwariC. KhopadeA.J. BohidarH.B. JainS.K. Sorbitan ester organogels for transdermal delivery of sumatriptan.Drug Dev. Ind. Pharm.200733661762510.1080/03639040701199266 17613026
    [Google Scholar]
  71. GotoS. KawataM. SuzukiT. KimN.S. ItoC. Preparation and evaluation of Eudragit gels. I: Eudragit organogels containing drugs as rectal sustained-release preparations.J. Pharm. Sci.1991801095896110.1002/jps.2600801011 1784005
    [Google Scholar]
  72. LiuH. WangY. HanF. YaoH. LiS. Gelatin‐stabilised microemulsion‐based organogels facilitates percutaneous penetration of Cyclosporin A In vitro and dermal pharmacokinetics In vivo.J. Pharm. Sci.200796113000300910.1002/jps.20898 17705159
    [Google Scholar]
  73. KantariaS. ReesG.D. LawrenceM.J. Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery.J. Control. Release1999602-335536510.1016/S0168‑3659(99)00092‑9 10425340
    [Google Scholar]
  74. ViraniA. PuriV. MohdH. Michniak-KohnB. Effect of penetration enhancers on transdermal delivery of oxcarbazepine, an antiepileptic drug using microemulsions.Pharmaceutics202315118310.3390/pharmaceutics15010183 36678811
    [Google Scholar]
  75. MoreiraT.S.A. Pereira de SousaV. PierreM.B.R. A novel transdermal delivery system for the anti-inflammatory lumiracoxib: Influence of oleic acid on in vitro percutaneous absorption and in vivo potential cutaneous irritation.AAPS Pharm Sci Tech201011262162910.1208/s12249‑010‑9420‑1 20373151
    [Google Scholar]
  76. HarjohN. WongT.W. CaramellaC. Transdermal insulin delivery with microwave and fatty acids as permeation enhancers.Int. J. Pharm.202058411941610.1016/j.ijpharm.2020.119416 32423875
    [Google Scholar]
  77. El-SayK.M. AhmedT.A. AljefriA.H. El-SawyH.S. FassihiR. Abou-GharbiaM. Oleic acid-reinforced PEGylated polymethacrylate transdermal film with enhanced antidyslipidemic activity and bioavailability of atorvastatin: A mechanistic ex-vivo/in-vivo analysis.Int. J. Pharm.202160812105710.1016/j.ijpharm.2021.121057 34461173
    [Google Scholar]
  78. HashmatD. ShoaibM.H. AliF.R. SiddiquiF. Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers.PLoS One2020152e022890810.1371/journal.pone.0228908 32107483
    [Google Scholar]
  79. HaqA. Michniak-KohnB. Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study.Drug Deliv.20182511943194910.1080/10717544.2018.1523256 30463442
    [Google Scholar]
  80. CristianoM.C. MancusoA. FrestaM. Topical unsaturated fatty acid vesicles improve antioxidant activity of ammonium glycyrrhizinate.Pharmaceutics202113454810.3390/pharmaceutics13040548 33919824
    [Google Scholar]
  81. ZakirF. VaidyaB. GoyalA.K. MalikB. VyasS.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole.Drug Deliv.201017423824810.3109/10717541003680981 20235758
    [Google Scholar]
  82. SharmaA. AroraS. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate.ISRN Pharm.201220121810.5402/2012/873653 22745918
    [Google Scholar]
  83. MittalR. SharmaA. AroraS. Ufasomes mediated cutaneous delivery of dexamethasone: formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model.J. Pharm.2013201311210.1155/2013/680580 26555990
    [Google Scholar]
  84. GaurP.K. MishraS. VermaA. VermaN. Ceramide-palmitic acid complex based Curcumin solid lipid nanoparticles for transdermal delivery: Pharmacokinetic and pharmacodynamic study.J. Exp. Nanosci.2016111385310.1080/17458080.2015.1025301
    [Google Scholar]
  85. ChoiJ. ChoiM.K. ChongS. ChungS.J. ShimC.K. KimD.D. Effect of fatty acids on the transdermal delivery of donepezil: In vitro and in vivo evaluation.Int. J. Pharm.20124221-2839010.1016/j.ijpharm.2011.10.031 22037444
    [Google Scholar]
  86. HanS.B. KwonS.S. JeongY.M. YuE.R. ParkS.N. Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin.Int. J. Cosmet. Sci.201436658859710.1111/ics.12160 25220288
    [Google Scholar]
  87. Al-AkaylehF. AdwanS. KhanfarM. IdkaidekN. Al-RemawiM. A novel eutectic-based transdermal delivery system for risperidone.AAPS Pharm Sci Tech2021221410.1208/s12249‑020‑01844‑4 33221990
    [Google Scholar]
  88. ZidanA.S. KamalN. AlayoubiA. Effect of isopropyl myristate on transdermal permeation of testosterone from carbopol gel.J. Pharm. Sci.201710671805181310.1016/j.xphs.2017.03.016 28341597
    [Google Scholar]
  89. MalakarJ. SenS.O. NayakA.K. SenK.K. Development and evaluation of microemulsions for transdermal delivery of insulin.ISRN Pharm.201120111710.5402/2011/780150 22389858
    [Google Scholar]
  90. LiuY. ZhaoF. DunJ. QiX. CaoD. Lecithin/isopropyl myristate reverse micelles as transdermal insulin carriers: Experimental evaluation and molecular dynamics simulation.J. Drug Deliv. Sci. Technol.20205910189110.1016/j.jddst.2020.101891
    [Google Scholar]
  91. PanchagnulaR. DesuH. JainA. KhandavilliS. Feasibility studies of dermal delivery of paclitaxel with binary combinations of ethanol and isopropyl myristate: Role of solubility, partitioning and lipid bilayer perturbation.Farmaco20056011-1289489910.1016/j.farmac.2005.07.004 16126203
    [Google Scholar]
  92. ZhaoC. QuanP. LiuC. LiQ. FangL. Effect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin.Acta Pharm. Sin. B20166662362810.1016/j.apsb.2016.05.012 27818930
    [Google Scholar]
  93. AkramR. AhmadM. AbrarA. SarfrazR.M. MahmoodA. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride.Drug Des. Devel. Ther.20181234936410.2147/DDDT.S147082 29503528
    [Google Scholar]
  94. ShresthaN. BangaA.K. Development and evaluation of transdermal delivery system of tranylcypromine for the treatment of depression.Drug Deliv. Transl. Res.20231341048105810.1007/s13346‑022‑01269‑5 36482163
    [Google Scholar]
  95. JoseA. MandapalliP.K. VenugantiV.V.K. Liposomal hydrogel formulation for transdermal delivery of pirfenidone.J. Liposome Res.20152621910.3109/08982104.2015.1060611 26114208
    [Google Scholar]
  96. LeeS.G. KangJ.B. KimS.R. Enhanced topical delivery of tacrolimus by a carbomer hydrogel formulation with transcutol P.Drug Dev. Ind. Pharm.201642101636164210.3109/03639045.2016.1160107 26925849
    [Google Scholar]
  97. Zaid AlkilaniA. HamedR. Al-MarabehS. KamalA. Abu-HuwaijR. HamadI. Nanoemulsion-based film formulation for transdermal delivery of carvedilol.J. Drug Deliv. Sci. Technol.20184612212810.1016/j.jddst.2018.05.015
    [Google Scholar]
  98. ShenM. LiuC. WanX. FarahN. FangL. Development of a daphnetin transdermal patch using chemical enhancer strategy: insights of the enhancement effect of Transcutol P and the assessment of pharmacodynamics.Drug Dev. Ind. Pharm.201844101642164910.1080/03639045.2018.1483391 29851521
    [Google Scholar]
  99. MuraS. ManconiM. ValentiD. SinicoC. VilaA.O. FaddaA.M. Transcutol containing vesicles for topical delivery of minoxidil.J. Drug Target.201119318919610.3109/1061186X.2010.483516 20446805
    [Google Scholar]
  100. GodwinD.A. KimN.H. FeltonL.A. Influence of Transcutol® CG on the skin accumulation and transdermal permeation of ultraviolet absorbers.Eur. J. Pharm. Biopharm.2002531232710.1016/S0939‑6411(01)00215‑6 11777749
    [Google Scholar]
  101. MuraP. FaucciM.T. BramantiG. CortiP. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations.Eur. J. Pharm. Sci.20009436537210.1016/S0928‑0987(99)00075‑5 10664476
    [Google Scholar]
  102. ŠpaglováM. ČuchorováM. ŠimunkováV. Possibilities of the microemulsion use as indomethacin solubilizer and its effect on in vitro and ex vivo drug permeation from dermal gels in comparison with transcutol ®.Drug Dev. Ind. Pharm.20204691468147610.1080/03639045.2020.1802483 32715801
    [Google Scholar]
  103. ShakeelF. BabootaS. AhujaA. AliJ. AqilM. ShafiqS. Nanoemulsions as vehicles for transdermal delivery of aceclofenac.AAPS Pharm Sci Tech20078419110.1208/pt0804104 18181525
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240291343240306054318
Loading
/content/journals/cmm/10.2174/0115665240291343240306054318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test