Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aim

The study aimed to explore an approach for accurately assembling high-quality lymph node clinical target volumes (CTV) on CT images in cervical cancer radiotherapy with the encoder-decoder 3D network.

Methods

216 cases of CT images treated at our center between 2017 and 2020 were included as a sample, which were divided into two cohorts, including 152 cases and 64 cases, respectively. Para-aortic lymph node, common iliac, external iliac, internal iliac, obturator, presacral, and groin nodal regions were delineated as sub-CTV manually in the cohort including 152 cases. Then, the 152 cases were randomly divided into training (96 cases), validation (36 cases), and test (20 cases) groups for the training process. Each structure was individually trained and optimized through a deep learning model. An additional 64 cases with 6 different clinical conditions were taken as examples to verify the feasibility of CTV generation based on our model. Dice similarity coefficient (DSC) and Hausdorff distance (HD) metrics were both used for quantitative evaluation.

Results

Comparing auto-segmentation results to ground truth, the mean DSC value/HD was 0.838/7.7mm, 0.853/4.7mm, 0.855/4.7mm, 0.844/4.7mm, 0.784/5.2mm, 0.826/4.8mm and 0.874/4.8mm for CTV_PAN, CTV_common iliac, CTV_internal iliac, CTV_external iliac, CTV_obturator, CTV_presacral, and CTV_groin, respectively. The similarity comparison results of six different clinical situations were 0.877/4.4mm, 0.879/4.6mm, 0.881/4.2mm, 0.882/4.3mm, 0.872/6.0mm, and 0.875/4.9mm for DSC value/HD, respectively.

Conclusion

We have developed a deep learning-based approach to segmenting lymph node sub-regions automatically and assembling high-quality CTVs according to clinical needs in cervical cancer radiotherapy. This work can increase the efficiency of the process of cervical cancer detection and treatment.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230915125606
2024-01-01
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e150923221162.html?itemId=/content/journals/cmir/10.2174/1573405620666230915125606&mimeType=html&fmt=ahah

References

  1. ArbynM. WeiderpassE. BruniL. de SanjoséS. SaraiyaM. FerlayJ. BrayF. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis.Lancet Glob. Health202082e191e20310.1016/S2214‑109X(19)30482‑631812369
    [Google Scholar]
  2. PetrelliF. De StefaniA. RaspagliesiF. LorussoD. BarniS. Radiotherapy with concurrent cisplatin-based doublet or weekly cisplatin for cervical cancer: A systematic review and meta-analysis.Gynecol. Oncol.2014134116617110.1016/j.ygyno.2014.04.04924793000
    [Google Scholar]
  3. KohW.J. Abu-RustumN.R. BeanS. BradleyK. CamposS.M. ChoK.R. ChonH.S. ChuC. ClarkR. CohnD. CrispensM.A. DamastS. DorigoO. EifelP.J. FisherC.M. FrederickP. GaffneyD.K. HanE. HuhW.K. LurainJ.R.III MarianiA. MutchD. NagelC. NekhlyudovL. FaderA.N. RemmengaS.W. ReynoldsR.K. TillmannsT. UedaS. WyseE. YasharC.M. McMillianN.R. ScavoneJ.L. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.2019171648410.6004/jnccn.2019.000130659131
    [Google Scholar]
  4. TeohM. ClarkC.H. WoodK. WhitakerS. NisbetA. Volumetric modulated arc therapy: A review of current literature and clinical use in practice.Br. J. Radiol.201184100796799610.1259/bjr/2237334622011829
    [Google Scholar]
  5. KimN. ChangJ.S. KimY.B. KimJ.S. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers.Radiat. Oncol.202015110610.1186/s13014‑020‑01562‑y32404123
    [Google Scholar]
  6. HarariP.M. SongS. ToméW.A. Emphasizing conformal avoidance versus target definition for IMRT planning in head-and-neck cancer.Int. J. Radiat. Oncol. Biol. Phys.201077395095810.1016/j.ijrobp.2009.09.06220378266
    [Google Scholar]
  7. BrouwerC.L. SteenbakkersR.J.H.M. van den HeuvelE. DuppenJ.C. NavranA. BijlH.P. ChouvalovaO. BurlageF.R. MeertensH. LangendijkJ.A. van ’t VeldA.A. 3D Variation in delineation of head and neck organs at risk.Radiat. Oncol.2012713210.1186/1748‑717X‑7‑3222414264
    [Google Scholar]
  8. NelmsB.E. ToméW.A. RobinsonG. WheelerJ. Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer.Int. J. Radiat. Oncol. Biol. Phys.201282136837810.1016/j.ijrobp.2010.10.01921123004
    [Google Scholar]
  9. SmallW.Jr MellL.K. AndersonP. CreutzbergC. De Los SantosJ. GaffneyD. JhingranA. PortelanceL. SchefterT. IyerR. VariaM. WinterK. MundtA.J. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer.Int. J. Radiat. Oncol. Biol. Phys.200871242843410.1016/j.ijrobp.2007.09.04218037584
    [Google Scholar]
  10. ToitaT. OhnoT. KaneyasuY. UnoT. YoshimuraR. KodairaT. FurutaniK. KasuyaG. IshikuraS. KamuraT. HiraokaM. A consensus-based guideline defining the clinical target volume for pelvic lymph nodes in external beam radiotherapy for uterine cervical cancer.Jpn. J. Clin. Oncol.201040545646310.1093/jjco/hyp19120133334
    [Google Scholar]
  11. SmallW.Jr BoschW.R. HarkenriderM.M. StraussJ.B. Abu-RustumN. AlbuquerqueK.V. BeriwalS. CreutzbergC.L. EifelP.J. EricksonB.A. FylesA.W. HentzC.L. JhingranA. KloppA.H. KunosC.A. MellL.K. PortelanceL. PowellM.E. ViswanathanA.N. YacoubJ.H. YasharC.M. WinterK.A. GaffneyD.K. NRG oncology/RTOG consensus guidelines for delineation of clinical target volume for intensity modulated pelvic radiation therapy in postoperative treatment of endometrial and cervical cancer: an update.Int. J. Radiat. Oncol. Biol. Phys.2021109241342410.1016/j.ijrobp.2020.08.06132905846
    [Google Scholar]
  12. ToitaT. OhnoT. KaneyasuY. KatoT. UnoT. HatanoK. NorihisaY. KasamatsuT. KodairaT. YoshimuraR. IshikuraS. HiraokaM. A consensus-based guideline defining clinical target volume for primary disease in external beam radiotherapy for intact uterine cervical cancer.Jpn. J. Clin. Oncol.20114191119112610.1093/jjco/hyr09621875938
    [Google Scholar]
  13. LimK. SmallW.Jr PortelanceL. CreutzbergC. Jürgenliemk-SchulzI.M. MundtA. MellL.K. MayrN. ViswanathanA. JhingranA. EricksonB. De Los SantosJ. GaffneyD. YasharC. BeriwalS. WolfsonA. TaylorA. BoschW. El NaqaI. FylesA. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer.Int. J. Radiat. Oncol. Biol. Phys.201179234835510.1016/j.ijrobp.2009.10.07520472347
    [Google Scholar]
  14. KosminM. LedsamJ. Romera-ParedesB. MendesR. MoinuddinS. de SouzaD. GunnL. KellyC. HughesC.O. KarthikesalingamA. NuttingC. SharmaR.A. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer.Radiother. Oncol.201913513014010.1016/j.radonc.2019.03.00431015159
    [Google Scholar]
  15. Hoang DucA.K. EminowiczG. MendesR. WongS.L. McClellandJ. ModatM. CardosoM.J. MendelsonA.F. VeigaC. KadirT. D’souzaD. OurselinS. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.Med. Phys.20154295027503410.1118/1.492756726328953
    [Google Scholar]
  16. DelponG. EscandeA. RuefT. DarréonJ. FontaineJ. NobletC. SupiotS. LacornerieT. PasquierD. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy.Front. Oncol.2016617810.3389/fonc.2016.0017827536556
    [Google Scholar]
  17. PejavarS. YomS.S. HwangA. SpeightJ. GottschalkA. HsuI.C. RoachM.III XiaP. Computer-assisted, atlas-based segmentation for target volume delineation in whole pelvic IMRT for prostate cancer.Technol. Cancer Res. Treat.201312319920610.7785/tcrt.2012.50031323289478
    [Google Scholar]
  18. RohlfingT. BrandtR. MenzelR. RussakoffD.B. MaurerC.R. Quo vadis, atlas-based segmentation? Handbook of biomedical image analysis.Springer200543548610.1007/0‑306‑48608‑3_11
    [Google Scholar]
  19. SartorH. MinarikD. EnqvistO. UlénJ. WittrupA. BjurbergM. TrägårdhE. Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth.Clin. Transl. Radiat. Oncol.202025374510.1016/j.ctro.2020.09.00433005756
    [Google Scholar]
  20. LiuZ. LiuX. XiaoB. WangS. MiaoZ. SunY. ZhangF. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network.Phys. Med.20206918419110.1016/j.ejmp.2019.12.00831918371
    [Google Scholar]
  21. WangZ. ChangY. PengZ. LvY. ShiW. WangF. PeiX. XuX.G. Evaluation of deep learning‐based auto‐segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients.J. Appl. Clin. Med. Phys.2020211227227910.1002/acm2.1309733238060
    [Google Scholar]
  22. RheeD.J. JhingranA. RigaudB. NethertonT. CardenasC.E. ZhangL. VedamS. KryS. BrockK.K. ShawW. O’ReillyF. ParkesJ. BurgerH. FakieN. TrauernichtC. SimondsH. CourtL.E. Automatic contouring system for cervical cancer using convolutional neural networks.Med. Phys.202047115648565810.1002/mp.1446732964477
    [Google Scholar]
  23. CardenasC.E. BeadleB.M. GardenA.S. SkinnerH.D. YangJ. RheeD.J. McCarrollR.E. NethertonT.J. GayS.S. ZhangL. CourtL.E. Generating high-quality lymph node clinical target volumes for head and neck cancer radiation therapy using a fully automated deep learning-based approach.Int. J. Radiat. Oncol. Biol. Phys.2021109380181210.1016/j.ijrobp.2020.10.00533068690
    [Google Scholar]
  24. OtsuN. manC. A threshold selection method from gray-level histogramsIEEE T SYST MAN CY-S.1979916266
    [Google Scholar]
  25. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proceedings of the IEEE conference on computer vision and pattern recognition2016
    [Google Scholar]
  26. WangF. JiangM. QianC. YangS. LiC. ZhangH. Residual attention network for image classification.Proceedings of the IEEE conference on computer vision and pattern recognition21-26 July, USA, 2017, pp. 6450-6458.
    [Google Scholar]
  27. GuZ. ChengJ. FuH. ZhouK. HaoH. ZhaoY. ZhangT. GaoS. LiuJ. Ce-net: Context encoder network for 2d medical image segmentation.IEEE Trans. Med. Imaging201938102281229210.1109/TMI.2019.290356230843824
    [Google Scholar]
  28. JiangJ. LuoY. WangF. FuY. YuH. HeY. Evaluation on auto-segmentation of the clinical target volume (CTV) for Graves’ Ophthalmopathy (GO) with a fully convolutional network (FCN) on ct images.Curr. Med. Imaging Rev.202117340440910.2174/157340561666620091014132332914716
    [Google Scholar]
  29. LeeH. LeeE. KimN. KimJ. ParkK. LeeH. ChunJ. ShinJ. ChangJ.S. KimJ.S. Clinical evaluation of commercial atlas-based auto-segmentation in the head and neck region.Front. Oncol.2019923910.3389/fonc.2019.0023931024843
    [Google Scholar]
  30. MundtA.J. LujanA.E. RotmenschJ. WaggonerS.E. YamadaS.D. FlemingG. RoeskeJ.C. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies.Int. J. Radiat. Oncol. Biol. Phys.20025251330133710.1016/S0360‑3016(01)02785‑711955746
    [Google Scholar]
  31. HeS. GillB.S. HeronD.E. KelleyJ.L. SukumvanichP. OlawaiyeA.B. EdwardsR.P. ComerciJ. BeriwalS. Long-term outcomes using adjuvant pelvic intensity modulated radiation therapy (IMRT) for endometrial carcinoma.Pract. Radiat. Oncol.201771192510.1016/j.prro.2016.06.00527527897
    [Google Scholar]
  32. LiangY. BydderM. YasharC.M. RoseB.S. CornellM. HohC.K. LawsonJ.D. EinckJ. SaenzC. FantaP. MundtA.J. BydderG.M. MellL.K. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies.Int. J. Radiat. Oncol. Biol. Phys.201385240641410.1016/j.ijrobp.2012.04.04422687195
    [Google Scholar]
  33. YoungA.V. WorthamA. WernickI. EvansA. EnnisR.D. Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes.Int. J. Radiat. Oncol. Biol. Phys.201179394394710.1016/j.ijrobp.2010.04.06321281897
    [Google Scholar]
  34. TaylorA. RockallA.G. PowellM.E.B. An atlas of the pelvic lymph node regions to aid radiotherapy target volume definition.Clin. Oncol. (R. Coll. Radiol.)200719754255010.1016/j.clon.2007.05.00217624745
    [Google Scholar]
  35. EifelP.J. WinterK. MorrisM. LevenbackC. GrigsbyP.W. CooperJ. RotmanM. GershensonD. MutchD.G. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: An update of radiation therapy oncology group trial (RTOG) 90-01.J. Clin. Oncol.200422587288010.1200/JCO.2004.07.19714990643
    [Google Scholar]
  36. IsikA. SoranA. GrasiA. BarryN. SezginE. Lymphedema after sentinel lymph node biopsy: Who is at risk?Lymphat. Res. Biol.202220216016310.1089/lrb.2020.009334191608
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230915125606
Loading
/content/journals/cmir/10.2174/1573405620666230915125606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test