Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Early pregnancy loss (EPL) or spontaneous loss of an intrauterine pregnancy within the first trimester occurs commonly worldwide. It is useful to predict the possibility of fetal chromosomal abnormalities using other cheap and easily available markers.

Objective

This study aimed to evaluate whether the uterine artery pulsatility index (UtA-PI) can predict fetal chromosomal abnormality in early pregnancy loss (EPL).

Methods

This was a retrospective cohort study including 148 women who underwent dilation and curettage for missed abortion. The UtA-PI was measured and evaluated by transvaginal ultrasound. Abnormal UtA-PI was identified through the mean of left and right UA-PI ≥ 90th percentiles of the relevant values for the corresponding gestational age. Copy number variation sequencing (CNV-seq) was performed on EPL cases without maternal cell contamination.

Results

107 (72.3%) cases were classified with normal UtA-PI, while 41 (27.7%) cases were classified with abnormal UtA-PI. The fetal chromosomal abnormality rate was significantly higher in cases with normal UtA-PI than in those with abnormal UtA-PI (67.3% 22.0%, = 7.1 × 10-7). Compared to cases with abnormal UtA-PI, the risk of fetal chromosomal abnormalities in cases with normal UtA-PI increased with an odds ratio of 7.3 (95% confidence interval [CI]: 3.2‒17.0, = 4 × 10-7). The predictive value of normal UtA-PI alone for fetal chromosomal abnormalities was shown to have an area under the curve of 0.67‒0.71 in our population.

Conclusion

The UtA-PI seems to be lower and less likely to be elevated in EPL with fetal chromosomal abnormalities compared to those without aneuploidies. We suggest that UtA-PI should be examined in all EPL patients.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230714122732
2024-01-01
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e140723218741.html?itemId=/content/journals/cmir/10.2174/1573405620666230714122732&mimeType=html&fmt=ahah

References

  1. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology ACOG Practice Bulletin No. 200: Early Pregnancy Loss.Obstet. Gynecol.20181325e197e20710.1097/AOG.000000000000289930157093
    [Google Scholar]
  2. WilcoxA.J. WeinbergC.R. O’ConnorJ.F. BairdD.D. SchlattererJ.P. CanfieldR.E. ArmstrongE.G. NisulaB.C. Incidence of early loss of pregnancy.N. Engl. J. Med.1988319418919410.1056/NEJM1988072831904013393170
    [Google Scholar]
  3. WangX. ChenC. WangL. ChenD. GuangW. FrenchJ. Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study.Fertil. Steril.200379357758410.1016/S0015‑0282(02)04694‑012620443
    [Google Scholar]
  4. OhnoM. MaedaT. MatsunobuA. A cytogenetic study of spontaneous abortions with direct analysis of chorionic villi.Obstet. Gynecol.1991773394398[PMID: 1992406].1992406
    [Google Scholar]
  5. RomeroS.T. GeiersbachK.B. PaxtonC.N. RoseN.C. SchistermanE.F. BranchD.W. SilverR.M. Differentiation of genetic abnormalities in early pregnancy loss.Ultrasound Obstet. Gynecol.2015451899410.1002/uog.1471325358469
    [Google Scholar]
  6. Bender AtikR. ChristiansenO.B. ElsonJ. KolteA.M. LewisS. MiddeldorpS. NelenW. PeramoB. QuenbyS. VermeulenN. GoddijnM. ESHRE guideline: recurrent pregnancy loss.Hum. Reprod. Open201820182hoy00410.1093/hropen/hoy00431486805
    [Google Scholar]
  7. HennessyM. DennehyR. MeaneyS. LinehanL. DevaneD. RiceR. O’DonoghueK. Clinical practice guidelines for recurrent miscarriage in high-income countries: a systematic review.Reprod. Biomed. Online20214261146117110.1016/j.rbmo.2021.02.01433895080
    [Google Scholar]
  8. CoulamC.B. GoodmanC. DorfmannA. Comparison of ultrasonographic findings in spontaneous abortions with normal and abnormal karyotypes.Hum. Reprod.199712482382610.1093/humrep/12.4.8239159449
    [Google Scholar]
  9. YonedaS. ShiozakiA. YonedaN. SameshimaA. ItoM. ShimaT. NakashimaA. YoshinoO. KigawaM. TakamoriR. ShinagawaY. SaitoS. A Yolk Sac Larger Than 5 mm Suggests an Abnormal Fetal Karyotype, Whereas an Absent Embryo Indicates a Normal Fetal Karyotype.J. Ultrasound Med.20183751233124110.1002/jum.1446729090486
    [Google Scholar]
  10. HuangJ. ZhuW. TangJ. SaravelosS.H. PoonL.C.Y. LiT.C. Do specific ultrasonography features identified at the time of early pregnancy loss predict fetal chromosomal abnormality? – A systematic review and meta-analysis.Genes Dis.20196212913710.1016/j.gendis.2018.10.00131193979
    [Google Scholar]
  11. LeibleS. CanalsA. WaltonR. MitelmanG. CastiglioneA. BironM. FaundezR. SepulvedaW. First-trimester miscarriage rate decreases with hydralazine therapy in pregnancies with early uterine vascular insufficiency: a cohort study.J. Matern. Fetal Neonatal Med.202235256988699710.1080/14767058.2021.193280934074216
    [Google Scholar]
  12. TaylorT.J. QuintonA.E. de VriesB.S. HyettJ.A. First‐trimester ultrasound features associated with subsequent miscarriage: A prospective study.Aust. N. Z. J. Obstet. Gynaecol.201959564164810.1111/ajo.1294430724337
    [Google Scholar]
  13. DaneB. BatmazG. OzkalF. BakarZ. DaneC. Effect of parity on first-trimester uterine artery Doppler indices and their predictive value for pregnancy complications.Gynecol. Obstet. Invest.2014771242810.1159/00035569824216636
    [Google Scholar]
  14. HabaraT. NakatsukaM. KonishiH. AsagiriK. NoguchiS. KudoT. Elevated blood flow resistance in uterine arteries of women with unexplained recurrent pregnancy loss.Hum. Reprod.200217119019410.1093/humrep/17.1.19011756386
    [Google Scholar]
  15. LazzarinN. VaqueroE. ExacoustosC. RomaniniE. AmadioA. ArduiniD. Midluteal phase Doppler assessment of uterine artery blood flow in nonpregnant women having a history of recurrent spontaneous abortions: correlation to different etiologies.Fertil. Steril.20078761383138710.1016/j.fertnstert.2006.11.04917270182
    [Google Scholar]
  16. YangW. WuZ. YuM. PengX. LuW. FengW. KangX. Characteristics of midluteal phase uterine artery hemodynamics in patients with recurrent pregnancy loss.J. Obstet. Gynaecol. Res.20194571230123510.1111/jog.1394430977230
    [Google Scholar]
  17. ProdanN. WagnerP. SonekJ. HoopmannM. MutzA. BruckerS. KaganK.O. First trimester uterine artery pulsatility index levels in euploid and aneuploid pregnancies.Arch. Gynecol. Obstet.201930061559156410.1007/s00404‑019‑05328‑031616987
    [Google Scholar]
  18. DoubiletP.M. BensonC.B. BourneT. BlaivasM. BarnhartK.T. BenacerrafB.R. BrownD.L. FillyR.A. FoxJ.C. GoldsteinS.R. KendallJ.L. LyonsE.A. PorterM.B. PretoriusD.H. Timor-TritschI.E. Diagnostic criteria for nonviable pregnancy early in the first trimester.N. Engl. J. Med.2013369151443145110.1056/NEJMra130241724106937
    [Google Scholar]
  19. Guedes-MartinsL. SaraivaJ. GaioR. MacedoF. AlmeidaH. Uterine artery impedance at very early clinical pregnancy.Prenat. Diagn.201434871972510.1002/pd.432524431243
    [Google Scholar]
  20. YeM. ShiW. HaoY. ZhangL. ChenS. WangL. HeX. LiS. XuC. Associations of mitochondrial DNA copy number and deletion rate with early pregnancy loss.Mitochondrion202055485310.1016/j.mito.2020.07.00632738357
    [Google Scholar]
  21. LiH. DurbinR. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics200925141754176010.1093/bioinformatics/btp32419451168
    [Google Scholar]
  22. KearneyH.M. ThorlandE.C. BrownK.K. Quintero-RiveraF. SouthS.T. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants.Genet. Med.201113768068510.1097/GIM.0b013e3182217a3a21681106
    [Google Scholar]
  23. RiggsE.R. AndersenE.F. CherryA.M. KantarciS. KearneyH. PatelA. RacaG. RitterD.I. SouthS.T. ThorlandE.C. Pineda-AlvarezD. AradhyaS. MartinC.L. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen).Genet. Med.202022224525710.1038/s41436‑019‑0686‑831690835
    [Google Scholar]
  24. DeLongE.R. DeLongD.M. Clarke-PearsonD.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.Biometrics198844383784510.2307/25315953203132
    [Google Scholar]
  25. Alijotas-ReigJ. Garrido-GimenezC. Current concepts and new trends in the diagnosis and management of recurrent miscarriage.Obstet. Gynecol. Surv.201368644546610.1097/OGX.0b013e31828aca1923942472
    [Google Scholar]
  26. GómezO. FiguerasF. FernándezS. BennasarM. MartínezJ.M. PuertoB. GratacósE. Reference ranges for uterine artery mean pulsatility index at 11-41 weeks of gestation.Ultrasound Obstet. Gynecol.200832212813210.1002/uog.531518457355
    [Google Scholar]
  27. GómezO. FiguerasF. MartínezJ.M. del RíoM. PalacioM. EixarchE. PuertoB. CollO. CararachV. VanrellJ.A. Sequential changes in uterine artery blood flow pattern between the first and second trimesters of gestation in relation to pregnancy outcome.Ultrasound Obstet. Gynecol.200628680280810.1002/uog.281417063456
    [Google Scholar]
  28. CnossenJ.S. MorrisR.K. ter RietG. MolB.W.J. van der PostJ.A.M. CoomarasamyA. ZwindermanA.H. RobsonS.C. BindelsP.J.E. KleijnenJ. KhanK.S. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis.CMAJ2008178670171110.1503/cmaj.07043018332385
    [Google Scholar]
  29. BakalisS. PeevaG. GonzalezR. PoonL.C. NicolaidesK.H. Prediction of small-for-gestational-age neonates: screening by biophysical and biochemical markers at 30-34 weeks.Ultrasound Obstet. Gynecol.201546444645110.1002/uog.1486325826154
    [Google Scholar]
  30. PoonL.C. LesmesC. GalloD.M. AkolekarR. NicolaidesK.H. Prediction of small-for-gestational-age neonates: screening by biophysical and biochemical markers at 19-24 weeks.Ultrasound Obstet. Gynecol.201546443744510.1002/uog.1490425988293
    [Google Scholar]
  31. ValiñoN. GiuntaG. GalloD.M. AkolekarR. NicolaidesK.H. Uterine artery pulsatility index at 30-34 weeks’ gestation in the prediction of adverse perinatal outcome.Ultrasound Obstet. Gynecol.201647330831510.1002/uog.1489825970847
    [Google Scholar]
  32. KhongS.L. KaneS.C. BrenneckeS.P. da Silva CostaF. First-trimester uterine artery Doppler analysis in the prediction of later pregnancy complications.Dis. Markers2015201511010.1155/2015/67973025972623
    [Google Scholar]
  33. TaylorT.J. QuintonA.E. de VriesB.S. HyettJ.A. Uterine Artery Pulsatility Index Assessment at <11 Weeks’ Gestation: A Prospective Study.Fetal Diagn. Ther.202047212913710.1159/00050077631280268
    [Google Scholar]
  34. WangT. KangX. ZhaoA. HeL. LiuZ. LiuF. Low‐dose aspirin improves endometrial receptivity in the midluteal phase in unexplained recurrent pregnancy loss.Int. J. Gynaecol. Obstet.20201501778210.1002/ijgo.1316032293031
    [Google Scholar]
  35. OgasawaraM. AokiK. OkadaS. SuzumoriK. Embryonic karyotype of abortuses in relation to the number of previous miscarriages.Fertil. Steril.200073230030410.1016/S0015‑0282(99)00495‑110685533
    [Google Scholar]
  36. MarquardK. WestphalL.M. MilkiA.A. LathiR.B. Etiology of recurrent pregnancy loss in women over the age of 35 years.Fertil. Steril.20109441473147710.1016/j.fertnstert.2009.06.04119643401
    [Google Scholar]
  37. OzawaN. OgawaK. SasakiA. MitsuiM. WadaS. SagoH. Maternal age, history of miscarriage, and embryonic/fetal size are associated with cytogenetic results of spontaneous early miscarriages.J. Assist. Reprod. Genet.201936474975710.1007/s10815‑019‑01415‑y30739229
    [Google Scholar]
  38. PapaioannouG.K.I. SyngelakiA. MaizN. RossJ.A. NicolaidesK.H. Sonographic markers of aneuploidies at 6–10weeks of gestation.Early Hum. Dev.201187745345610.1016/j.earlhumdev.2011.01.04521592687
    [Google Scholar]
  39. AngiolucciM. MurruR. MelisG. CarcassiC. MaisV. Association between different morphological types and abnormal karyotypes in early pregnancy loss.Ultrasound Obstet. Gynecol.201137221922510.1002/uog.768120503243
    [Google Scholar]
  40. OuyangY. TanY. YiY. GongF. LinG. LiX. LuG. Correlation between chromosomal distribution and embryonic findings on ultrasound in early pregnancy loss after IVF-embryo transfer.Hum. Reprod.201631102212221810.1093/humrep/dew20127614356
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230714122732
Loading
/content/journals/cmir/10.2174/1573405620666230714122732
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test