Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Although the essential components of pain pathways have been identified, a thorough comprehension of the interactions necessary for creating focused treatments is still lacking. Such include more standardised methods for measuring pain in clinical and preclinical studies and more representative study populations.

Objective

This review describes the essential neuroanatomy and neurophysiology of pain nociception and its relation with currently available neuroimaging methods focused on health professionals responsible for treating pain.

Methods

Conduct a PubMed search of pain pathways using pain-related search terms, selecting the most relevant and updated information.

Results

Current reviews of pain highlight the importance of their study in different areas from the cellular level, pain types, neuronal plasticity, ascending, descending, and integration pathways to their clinical evaluation and neuroimaging. Advanced neuroimaging techniques such as fMRI, PET, and MEG are used to better understand the neural mechanisms underlying pain processing and identify potential targets for pain therapy.

Conclusion

The study of pain pathways and neuroimaging methods allows physicians to evaluate and facilitate decision-making related to the pathologies that cause chronic pain. Some identifiable issues include a better understanding of the relationship between pain and mental health, developing more effective interventions for chronic pain's psychological and emotional aspects, and better integrating data from different neuroimaging modalities for the clinical efficacy of new pain therapies.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230519144112
2023-07-13
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E190523217114.html?itemId=/content/journals/cmir/10.2174/1573405620666230519144112&mimeType=html&fmt=ahah

References

  1. BourneS. MachadoA.G. NagelS.J. Basic anatomy and physiology of pain pathways.Neurosurg. Clin. N. Am.201425462963810.1016/j.nec.2014.06.00125240653
    [Google Scholar]
  2. ZuurmondW.W. de LangeJ.J. Neuroanatomy and anaesthesiology.Ned. Tijdschr. Tandheelkd.1996103516716911921928
    [Google Scholar]
  3. RentonT EgbuniweO Pain. Part 2a: Trigeminal anatomy related to pain.Dent Update201542323824010.12968/denu.2015.42.3.23826076542
    [Google Scholar]
  4. KinneyM. SeiderJ. BeatyA.F. CoughlinK. DyalM. ClewleyD. The impact of therapeutic alliance in physical therapy for chronic musculoskeletal pain: A systematic review of the literature.Physiother. Theory Pract.201810.1080/09593985.2018.1516015:1‑1330265840
    [Google Scholar]
  5. Mosquera PanL. Luces LagoA.M. Onandia GarateM. Tizón BouzaE. Transcutaneous Electrical Nerve Stimulation (TENS) for Pain Management During Labor.Rev. Enferm.20163911-12273230256499
    [Google Scholar]
  6. PiovesanA. MiramsL. PooleH. MooreD. OgdenR. The relationship between pain-induced autonomic arousal and perceived duration.Emotion20181971148116110.1037/emo000051230265080
    [Google Scholar]
  7. MagelJ. HansenP. MeierW. CoheeK. ThackerayA. HiushM. FritzJ.M. Implementation of an alternative pathway for patients seeking care for low back pain: A prospective observational cohort study.Phys. Ther.201898121000100910.1093/ptj/pzy10530257004
    [Google Scholar]
  8. HadiM.A. McHughG.A. ClossS.J. Impact of chronic pain on patients’ quality of life: A comparative mixed-methods study.J. Patient Exp.20196213314110.1177/237437351878601331218259
    [Google Scholar]
  9. HaverfieldM.C. GiannitrapaniK. TimkoC. LorenzK. Patient-centered pain management communication from the patient perspective.J. Gen. Intern. Med.20183381374138010.1007/s11606‑018‑4490‑y29845465
    [Google Scholar]
  10. SwansonN. SwansonL.W. Histology of the nervous system of man and vertebrates.History of Neuroscience. SwansonN. SwansonL.W. New York, NY, USAOxford University Press1995805806
    [Google Scholar]
  11. WillisW.D.Jr The somatosensory system, with emphasis on structures important for pain.Brain Res. Brain Res. Rev.200755229731310.1016/j.brainresrev.2007.05.01017604109
    [Google Scholar]
  12. TreedeR.D. Gain control mechanisms in the nociceptive system.Pain201615761199120410.1097/j.pain.000000000000049926817644
    [Google Scholar]
  13. MelzackR. WallP.D. Pain mechanisms: A new theory.Science1965150369997197910.1126/science.150.3699.9715320816
    [Google Scholar]
  14. ToddA.J. Neuronal circuitry for pain processing in the dorsal horn.Nat. Rev. Neurosci.2010111282383610.1038/nrn294721068766
    [Google Scholar]
  15. KwonM. AltinM. DuenasH. AlevL. The role of descending inhibitory pathways on chronic pain modulation and clinical implications.Pain Pract.201414765666710.1111/papr.1214524256177
    [Google Scholar]
  16. LauB.K. VaughanC.W. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia.Curr. Opin. Neurobiol.20142915916410.1016/j.conb.2014.07.01025064178
    [Google Scholar]
  17. DinakarP. StillmanA.M. Pathogenesis of pain.Semin. Pediatr. Neurol.201623320120810.1016/j.spen.2016.10.00327989327
    [Google Scholar]
  18. Al-ChalabiM. AlsalmanI. Neuroanatomy, Posterior Column (Dorsal Column).Treasure Island, FLStatPearls. StatPearls Publishing StatPearls Publishing LLC2018
    [Google Scholar]
  19. Wahren Sa Atlas for Stereotaxis of the Human Brain.StuttgartThieme1969
    [Google Scholar]
  20. GarlandE.L. Pain processing in the human nervous system: A selective review of nociceptive and biobehavioral pathways.Prim. Care201239356157110.1016/j.pop.2012.06.01322958566
    [Google Scholar]
  21. ClarkeC.F.M. LawrenceK.S. Functional imaging for interpretation of pain pathways: Current clinical application/relevance and future initiatives.Curr. Pain Headache Rep.201317231110.1007/s11916‑012‑0311‑x23315051
    [Google Scholar]
  22. LeeG.I. NeumeisterM.W. Pain.Clin. Plast. Surg.202047217318010.1016/j.cps.2019.11.00132115044
    [Google Scholar]
  23. VanderahT.W. Pathophysiology of pain.Med. Clin. North Am.200791111210.1016/j.mcna.2006.10.00617164100
    [Google Scholar]
  24. YarnitskyD. Role of endogenous pain modulation in chronic pain mechanisms and treatment.Pain2015156Suppl. 1S24S3110.1097/01.j.pain.0000460343.46847.5825789433
    [Google Scholar]
  25. TaylorB.K. WestlundK.N. The noradrenergic locus coeruleus as a chronic pain generator.J. Neurosci. Res.20179561336134610.1002/jnr.2395627685982
    [Google Scholar]
  26. BaoY. HouW. HuaB. Protease-activated receptor 2 signalling pathways: A role in pain processing.Expert Opin. Ther. Targets2014181152710.1517/14728222.2014.84479224147628
    [Google Scholar]
  27. JakabL. Physiological, pathophysiological and clinical significance of chromogranins/secretogranins.Orv. Hetil.2017158281092109910.1556/650.2017.3077428691876
    [Google Scholar]
  28. SasaguriT. TaguchiT. MurataY. Interleukin-27 controls basal pain threshold in physiological and pathological conditions.Sci. Rep.2018811102210.1038/s41598‑018‑29398‑330038376
    [Google Scholar]
  29. BannisterK. DickensonA.H. What do monoamines do in pain modulation?Curr. Opin. Support. Palliat. Care201610214314810.1097/SPC.000000000000020727043287
    [Google Scholar]
  30. OssipovM.H. MorimuraK. PorrecaF. Descending pain modulation and chronification of pain.Curr. Opin. Support. Palliat. Care20148214315110.1097/SPC.000000000000005524752199
    [Google Scholar]
  31. ElyS. StynesS. OgollahR. FosterN.E. KonstantinouK. Factors associated with physiotherapists’ preference for MRI in primary care patients with low back and leg pain.Musculoskelet. Sci. Pract.201838465210.1016/j.msksp.2018.09.00330265991
    [Google Scholar]
  32. ZarghamiN. KhrapitchevA.A. Perez-BalderasF. Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles.Int. J. Nanomedicine2018134345435910.2147/IJN.S15807130100719
    [Google Scholar]
  33. ShiH. YuanC. DaiZ. MaH. ShengL. Gray matter abnormalities associated with fibromyalgia: A meta-analysis of voxel-based morphometric studies.Semin. Arthritis Rheum.201646333033710.1016/j.semarthrit.2016.06.00227989500
    [Google Scholar]
  34. PomaresF.B. FunckT. FeierN.A. Histological underpinnings of grey matter changes in fibromyalgia investigated using multimodal brain imaging.J Neurosci20173751090110110.1523/JNEUROSCI.2619‑16.201627986927
    [Google Scholar]
  35. WuG.R. MarinazzoD. Point-process deconvolution of fmri bold signal reveals effective connectivity alterations in chronic pain patients.Brain Topogr.201528454154710.1007/s10548‑014‑0404‑425281022
    [Google Scholar]
  36. BriggsR.G. ConnerA.K. BakerC.M. A connectomic atlas of the human cerebrum.Oper Neurosurg (Hagerstown)201815suppl_1S470S48010.1093/ons/opy27230260432
    [Google Scholar]
  37. LiJ. HuangX. SangK. BodnerM. MaK. DongX.W. Modulation of prefrontal connectivity in postherpetic neuralgia patients with chronic pain: A resting-state functional magnetic resonance-imaging study.J. Pain Res.2018112131214410.2147/JPR.S16657130323648
    [Google Scholar]
  38. BakerC.M. BurksJ.D. BriggsR.G. A connectomic atlas of the human cerebrum-chapter 3: The motor, premotor, and sensory cortices.Oper Neurosurg (Hagerstown)201815suppl_1S75S12110.1093/ons/opy25630260446
    [Google Scholar]
  39. FarrarJ.T. YoungJ.P.Jr LaMoreauxL. WerthJ.L. PooleM.R. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale.Pain200194214915810.1016/S0304‑3959(01)00349‑911690728
    [Google Scholar]
  40. WagerT.D. AtlasL.Y. LindquistM.A. RoyM. WooC.W. KrossE. An fMRI-based neurologic signature of physical pain.N. Engl. J. Med.2013368151388139710.1056/NEJMoa120447123574118
    [Google Scholar]
  41. WooC.W. SchmidtL. KrishnanA. Quantifying cerebral contributions to pain beyond nociception.Nat. Commun.2017811421110.1038/ncomms1421128195170
    [Google Scholar]
  42. MoayediM. DavisK.D. Theories of pain: from specificity to gate control.J. Neurophysiol.2013109151210.1152/jn.00457.201223034364
    [Google Scholar]
  43. ChenJ. History of pain theories.Neurosci. Bull.201127534335010.1007/s12264‑011‑0139‑021934730
    [Google Scholar]
  44. TaylorV.A. RoyM. ChangL. GillL.N. MuellerC. RainvilleP. Reduced fear-conditioned pain modulation in experienced meditators: A preliminary study.Psychosom. Med.201880979980610.1097/PSY.000000000000063430134359
    [Google Scholar]
  45. HartmannG.C. GeorgeS.Z. Can a power law improve prediction of pain recovery trajectory?Pain Rep.201834e65710.1097/PR9.000000000000065730123854
    [Google Scholar]
  46. AdhikaryS.D. GrayK. JanickiP. Pharmacogenomics of analgesics in anesthesia practice: A current update of literature.J. Anaesthesiol. Clin. Pharmacol.201834215516010.4103/joacp.JOACP_319_1730104820
    [Google Scholar]
  47. KhalidS. TubbsR.S. Neuroanatomy and neuropsychology of pain.Cureus2017910e175429226044
    [Google Scholar]
  48. WoolfC.J. SalterM.W. Neuronal plasticity: Increasing the gain in pain.Science200028854721765176810.1126/science.288.5472.176510846153
    [Google Scholar]
  49. PengY.B. LinQ. WillisW.D. Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons.Brain Res.19967361-218920110.1016/0006‑8993(96)00668‑38930324
    [Google Scholar]
  50. TotahN.K. NevesR.M. PanzeriS. LogothetisN.K. EschenkoO. The locus coeruleus is a complex and differentiated neuromodulatory system.Neuron201899510551068.e610.1016/j.neuron.2018.07.03730122373
    [Google Scholar]
  51. PomorskaD. GachK. JaneckaA. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.Mini Rev. Med. Chem.201514141148115510.2174/138955751566615010109523725553430
    [Google Scholar]
  52. WiderströmE.G. ÅslundP.G. GustafssonL.E. MannheimerC. CarlssonS.G. AnderssonS.A. Relations between experimentally induced tooth pain threshold changes, psychometrics and clinical pain relief following TENS. A retrospective study in patients with long-lasting pain.Pain199251328128710.1016/0304‑3959(92)90211‑S1491855
    [Google Scholar]
  53. García-LarreaL. PeyronR. MertensP. GregoireC.M. LavenneF. Le BarsD. ConversP. MauguièreF. SindouM. LaurentB. Electrical stimulation of motor cortex for pain control: A combined PET-scan and electrophysiological study.Pain199983225927310.1016/S0304‑3959(99)00114‑110534598
    [Google Scholar]
  54. NguyenJ.P. PollinB. FèveA. GenyC. CesaroP. Improvement of action tremor by chronic cortical stimulation.Mov. Disord.1998131848810.1002/mds.8701301189452331
    [Google Scholar]
  55. FletcherD. MartinezV. Opioid-induced hyperalgesia in patients after surgery: A systematic review and a meta-analysis.Br. J. Anaesth.20141126991100410.1093/bja/aeu13724829420
    [Google Scholar]
  56. AngstM.S. ClarkJ.D. Opioid-induced Hyperalgesia: A qualitative systematic review.Anesthesiology2006104357058710.1097/00000542‑200603000‑0002516508405
    [Google Scholar]
  57. BannisterK. Opioid-induced hyperalgesia: Where are we now?Curr. Opin. Support. Palliat. Care20159211612110.1097/SPC.000000000000013725872113
    [Google Scholar]
  58. TognoliE. ProtoP.L. MottaG. GaleoneC. MarianiL. ValenzaF. Methadone for postoperative analgesia: Contribution of N-methyl-d-aspartate receptor antagonism.Eur. J. Anaesthesiol.2020371093494310.1097/EJA.000000000000121732516227
    [Google Scholar]
  59. MalflietA. CoppietersI. Van WilgenP. Brain changes associated with cognitive and emotional factors in chronic pain: A systematic review.Eur. J. Pain201721576978610.1002/ejp.100328146315
    [Google Scholar]
  60. DavisK.D. MoayediM. Central mechanisms of pain revealed through functional and structural MRI.J. Neuroimmune Pharmacol.20138351853410.1007/s11481‑012‑9386‑822825710
    [Google Scholar]
  61. KaptchukT.J. FriedlanderE. KelleyJ.M. Placebos without deception: A randomized controlled trial in irritable bowel syndrome.PLoS One2010512e1559110.1371/journal.pone.001559121203519
    [Google Scholar]
  62. GatzinskyK. BerghC. LiljegrenA. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: A systematic review.Scand. J. Pain202121182110.1515/sjpain‑2020‑005432892189
    [Google Scholar]
  63. ZengY. RenH. WanJ. LuJ. ZhongF. DengS. Cervical disc herniation causing Brown-Sequard syndrome.Medicine (Baltimore)20189737e1237710.1097/MD.000000000001237730213001
    [Google Scholar]
  64. LiZ.Z. HouS.X. ShangW.L. SongK.R. WuW.W. Evaluation of endoscopic dorsal ramus rhizotomy in managing facetogenic chronic low back pain.Clin. Neurol. Neurosurg.2014126111710.1016/j.clineuro.2014.08.01425194305
    [Google Scholar]
  65. GadgilN. ViswanathanA. DREZotomy in the treatment of cancer pain: A review.Stereotact. Funct. Neurosurg.201290635636010.1159/00034107222922361
    [Google Scholar]
  66. JavedS. ViswanathanA. AbdiS. Cordotomy for intractable cancer pain: A narrative review.Pain Physician202023328329232517394
    [Google Scholar]
  67. HongD. Andrén-SandbergÅ. Punctate midline myelotomy: A minimally invasive procedure for the treatment of pain in inextirpable abdominal and pelvic cancer.J. Pain Symptom Manage.20073319910910.1016/j.jpainsymman.2006.06.01217196911
    [Google Scholar]
  68. FranziniA. RossiniZ. MoosaS. Medial thalamotomy using stereotactic radiosurgery for intractable pain: a systematic review.Neurosurg. Rev.2022451718010.1007/s10143‑021‑01561‑x33978923
    [Google Scholar]
  69. SharimJ. PouratianN. Anterior cingulotomy for the treatment of chronic intractable pain: A systematic review.Pain Physician201619853755027906933
    [Google Scholar]
  70. LarkinM.B. KarasP.J. McGinnisJ.P. McCutcheonI.E. ViswanathanA. Stereotactic radiosurgery hypophysectomy for palliative treatment of refractory cancer pain: A historical review and update.Front. Oncol.20201057255710.3389/fonc.2020.57255733392075
    [Google Scholar]
  71. GaulC. Classic trigeminal neuralgia and neurovascular contact: Diagnostic value of magnetic resonance imaging findings.Pain20141558142310.1016/j.pain.2014.05.01224837846
    [Google Scholar]
  72. CruccuG. Trigeminal neuralgia.Continuum (Minneap. Minn.)201723239642010.1212/CON.000000000000045128375911
    [Google Scholar]
  73. MaarbjergS. Di StefanoG. BendtsenL. CruccuG. Trigeminal neuralgia-Diagnosis and treatment.Cephalalgia201737764865710.1177/033310241668728028076964
    [Google Scholar]
  74. HungP.S.P. ChenD.Q. DavisK.D. ZhongJ. HodaieM. Predicting pain relief: Use of pre-surgical trigeminal nerve diffusion metrics in trigeminal neuralgia.Neuroimage Clin.20171571071810.1016/j.nicl.2017.06.01728702348
    [Google Scholar]
  75. NijensohnD.E. GoodrichI. Psychosurgery: Past, present, and future, including prefrontal lobotomy and Connecticut’s contribution.Conn. Med.201478845346325314884
    [Google Scholar]
  76. HouraK. LedićD. KvesićD. PerovićD. RadošI. KapuralL. First guidelines of Croatian interest group in diagnosing and treating pain conditions of cervical and thoracic spine using minimally invasive procedures.Lijec. Vjesn.20141369-1024525225632768
    [Google Scholar]
  77. DubinA.E. PatapoutianA. Nociceptors: The sensors of the pain pathway.J. Clin. Invest.2010120113760377210.1172/JCI4284321041958
    [Google Scholar]
  78. HolmA. HansenS.N. KlitgaardH. KauppinenS. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases.RNA Biol.202219159460810.1080/15476286.2022.206633435482908
    [Google Scholar]
  79. Roldan-ValadezE. RiosC. Suarez-MayM.A. FavilaR. Aguilar-CastañedaE. Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data.Anat. Rec. (Hoboken)2013296121913192210.1002/ar.2281724136790
    [Google Scholar]
  80. Roldan-ValadezE. Suarez-MayM.A. FavilaR. Aguilar-CastañedaE. RiosC. Selected gray matter volumes and gender but not basal ganglia nor cerebellum gyri discriminate left versus right cerebral hemispheres: Multivariate analyses in human brains at 3T.Anat. Rec. (Hoboken)201529871336134610.1002/ar.2316525902919
    [Google Scholar]
  81. TernovoyS. UstyuzhaninD. MorozovaY. ShariyaM. Roldan-ValadezE. SmirnovV. Functional MRI evince the safety and efficacy of umbilical cord blood cells therapy in patients with schizophrenia.Schizophr. Res.202022417517710.1016/j.schres.2020.09.02833046337
    [Google Scholar]
  82. TernovoyS. UstyuzhaninD. ShariyaM. Recognition of facial emotion expressions in patients with depressive disorders: A functional MRI study.Tomography20239252954010.3390/tomography902004336961002
    [Google Scholar]
  83. Velasco-CamposF. Esqueda-LiquidanoM. Roldan-ValadezE. Carrillo-RuizJ.D. Navarro-OlveraJ.L. Aguado-CarrilloG. Prelemniscal radiations as a target for the treatment of parkinson disease – individual variations in the stereotactic location of fiber components: A probabilistic tractography study.World Neurosurg.2022166e345e35210.1016/j.wneu.2022.07.00835817353
    [Google Scholar]
  84. MogilJ.S. Pain genetics: Past, present and future.Trends Genet.201228625826610.1016/j.tig.2012.02.00422464640
    [Google Scholar]
  85. Dib-HajjS.D. YangY. WaxmanS.G. Genetics and molecular pathophysiology of Na(v)1.7-related pain syndromes.Adv. Genet.2008638511010.1016/S0065‑2660(08)01004‑319185186
    [Google Scholar]
  86. ChenQ. ChenE. QianX. A narrative review on perioperative pain management strategies in enhanced recovery pathways—The past, present and future.J. Clin. Med.20211012256810.3390/jcm1012256834200695
    [Google Scholar]
  87. GebhartG.F. SchmidtR.F. Rexed’s Laminae.Encyclopedia of Pain. Springer Berlin Heidelberg, Berlin.Heidelberg201334163417
    [Google Scholar]
  88. BrowneT.J. HughesD.I. DayasC.V. CallisterR.J. GrahamB.A. Projection neuron axon collaterals in the dorsal horn: Placing a new player in spinal cord pain processing.Front. Physiol.20201156080210.3389/fphys.2020.56080233408637
    [Google Scholar]
  89. WangM. ThyagarajanB. Pain pathways and potential new targets for pain relief.Biotechnol. Appl. Biochem.202269111012310.1002/bab.208633316085
    [Google Scholar]
  90. DasV. An introduction to pain pathways and pain “targets”.Prog. Mol. Biol. Transl. Sci.201513113010.1016/bs.pmbts.2015.01.00325744668
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230519144112
Loading
/content/journals/cmir/10.2174/1573405620666230519144112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test