Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Aim

To investigate the performance of a novel radiological-metabolic scoring (RM-S) system to predict mortality and intensive care unit (ICU) requirements among COVID-19 patients and to compare performance with the chest computed-tomography severity-scoring (C-CT-SS). The RM-S was created from scoring systems such as visual coronary-artery-calcification scoring (V-CAC-S), hepatic-steatosis scoring (HS-S) and pancreatic-steatosis scoring (PS-S).

Methods

Between May 2021 and January 2022, 397 patients with COVID-19 were included in this retrospective cohort study. All demographic, clinical and laboratory data and chest CT images of patients were retrospectively reviewed. RM-S, V-CAC-S, HS-S, PS-S and C-CT-SS scores were calculated, and their performance in predicting mortality and ICU requirement were evaluated by univariate and multivariable analyses.

Results

A total of 32 (8.1%) patients died, and 77 (19.4%) patients required ICU admission. Mortality and ICU admission were both associated with older age ( < 0.001). Sex distribution was similar in the deceased survivor and ICU non-ICU comparisons ( = 0.974 and = 0.626, respectively). Multiple logistic regression revealed that mortality was independently associated with having a C-CT-SS score of ≥ 14 ( < 0.001) and severe RM-S category ( = 0.010), while ICU requirement was independently associated with having a C-CT-SS score of ≥ 14 ( < 0.001) and severe V-CAC-S category ( = 0.010).

Conclusion

RM-S, C-CT-SS, and V-CAC-S are useful tools that can be used to predict patients with poor prognoses for COVID-19. Long-term prospective follow-up of patients with high RM-S scores can be useful for predicting long COVID.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230511093259
2023-05-24
2025-01-30
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E110523216780.html?itemId=/content/journals/cmir/10.2174/1573405620666230511093259&mimeType=html&fmt=ahah

References

  1. YuZ RazzaqA RehmanA ShahA JameelK MorRS Disruption in global supply chain and socio-economic shocks: A lesson from COVID-19 for sustainable production and consumption.Oper. Manag. Res.202115233248
    [Google Scholar]
  2. World Health OrganizationCoronavirus (COVID-19) DashboardAvailable at https://covid19.who.int/. Accessed October 5, 2022.2022
    [Google Scholar]
  3. LieveldA.W.E. AzijliK. TeunissenB.P. van HaaftenR.M. KootteR.S. van den BerkI.A.H. van der HorstS.F.B. de GansC. van de VenP.M. NanayakkaraP.W.B. Chest CT in COVID-19 at the ED: Validation of the COVID-19 reporting and data system (CO-RADS) and CT severity score.Chest202115931126113510.1016/j.chest.2020.11.02633271157
    [Google Scholar]
  4. WuC. ChenX. CaiY. XiaJ. ZhouX. XuS. HuangH. ZhangL. ZhouX. DuC. ZhangY. SongJ. WangS. ChaoY. YangZ. XuJ. ZhouX. ChenD. XiongW. XuL. ZhouF. JiangJ. BaiC. ZhengJ. SongY. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China.JAMA Intern. Med.2020180793494310.1001/jamainternmed.2020.099432167524
    [Google Scholar]
  5. HalmaciuI. ArbănașiE.M. KallerR. MureșanA.V. ArbănașiE.M. BacalbasaN. Chest CT severity score and systemic inflammatory biomarkers as predictors of the need for invasive mechanical ventilation and of COVID-19 patients' mortality.Diagnostics202212(9).
    [Google Scholar]
  6. Wendel GarciaP.D. FumeauxT. GuerciP. HeubergerD.M. MontomoliJ. Roche-CampoF. SchuepbachR.A. HiltyM.P. Alfaro FariasM. MargaritA. Vizmanos-LamotteG. TschoellitschT. MeierJ. CardonaF.S. SkolaJ. HorakovaL. Aguirre-BermeoH. ApoloJ. NovyE. LosserM-R. JurkolowG. DelahayeG. DavidS. WelteT. WengenmayerT. StaudacherD.L. AslanidisT. BabikB. KorsosA. GalJ. CsabaH. DonatiA. CarsettiA. TurriniF. SimoniniM.S. CerianiR. MurroneM. RezoagliE. VitaleG. FogagnoloA. SpadaroS. WuM.A. CogliatiC. ColomboR. CatenaE. FacondiniF. PotalivoA. GangitanoG. PerinT. BocciM.G. AntonelliM. GommersD. InceC. Mayor-VázquezE. CruzM. DelgadoM. GarciaR.R. Gamez ZapataJ. Zalba-EtayoB. Lozano-GomezH. CastroP. TellezA. JacasA. MuñozG. AndreaR. OrtizJ. QuintanaE. RoviraI. ReverterE. FernandezJ. FerrerM. BadiaJ.R. Lander AzconaA. OrtaJ.E. BühlerP. BruggerS. HofmaennerD. UnseldS. RuschitzkaF. Moret-BochatayM. YuenB. HillermannT. KsouriH. SridharanG.O. RisticA. SepulcriM. FilipovicM. PietschU. SalomonP. DrvaricI. SchottP. UrechS. LambertA. MerkiL. LaubeM. HillgaertnerF. SieberM. DullenkopfA. PetersenL. GrazioliS. RimensbergerP.C. FleischI. LavanchyJ. MarquardtK. ShaikhK. RedeckerH. StephanM. BremJ. RogdoB. BirkenmaierA. Meyer zu BentrupF. FodorP. LocherP. CamenG. SiegemundM. ZellwegerN. JeitzinerM-M. Jenni-MoserB. BürkleC. KlegerG-R. Franchitti LaurentM. LaurentJ-C. GaspertT. JovicM. StudhalterM. HaberthuerC. LussmanR.F. SelzD. NaonD. MauriR. CerutiS. MarrelJ. BrenniM. EnsnerR. GehringN. HeiseA. HuebnerT. NeffT.A. CereghettiS. BoroliF. PuginJ. MarczinN. WongJ. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort.EClinicalMedicine20202510044910.1016/j.eclinm.2020.10044932838231
    [Google Scholar]
  7. GuneyliS. DoganH. EsengurO.T. HassoyH. Computed tomography evaluation of pancreatic steatosis: Correlation with COVID-19 prognosis.Future Virol.202217423123710.2217/fvl‑2021‑025735173796
    [Google Scholar]
  8. YousefimoghaddamF. GoudarziE. RamandiA. KhaheshiI. Coronary artery calcium score as a prognostic factor of adverse outcomes in patients with COVID-19: A comprehensive review.Curr. Probl. Cardiol.202210117510.1016/j.cpcardiol.2022.10117535339532
    [Google Scholar]
  9. TrivediH.D. WilechanskyR. GoyesD. Vieira BarbosaJ. CanakisA. LaiM. LongM.T. FrickerZ. Radiographic hepatic steatosis is not associated with key clinical outcomes among patients hospitalized with COVID-19.Gastroenterol. Res.202114317918310.14740/gr138934267833
    [Google Scholar]
  10. RollasK. Köse GüldoganI. PekçevikY. GezerN.S. ZincircioğluÇ. Saharİ. Chest computed tomography severity score in patients admitted to intensive care unit with COVID-19 pneumonia.Eurasian J. Pulmonology20222414010.14744/ejop_56_21
    [Google Scholar]
  11. Puhr-WesterheideD. ReichJ. SabelB.O. KunzW.G. FabritiusM.P. ReidlerP. Sequential organ failure assessment outperforms quantitative chest CT imaging parameters for mortality prediction in COVID-19 ARDS.Diagnostics202112(1)
    [Google Scholar]
  12. Aquino-MatusJ. UribeM. Chavez-TapiaN. COVID-19: Current status in gastrointestinal, hepatic, and pancreatic diseases—a concise review.Trop. Med. Infect. Dis.20227818710.3390/tropicalmed708018736006279
    [Google Scholar]
  13. ScocciaA. GalloneG. CeredaA. PalmisanoA. VignaleD. LeoneR. NicolettiV. GnassoC. MonelloA. KhokharA. SticchiA. BiagiA. TacchettiC. CampoG. RapezziC. PonticelliF. DanziG.B. LoffiM. PontoneG. AndreiniD. CasellaG. IannopolloG. IppolitoD. BellaniG. PatelliG. BesanaF. CostaC. VignaliL. BenattiG. IannacconeM. VaudanoP.G. PacielliA. De CarliniC.C. MaggioliniS. BonaffiniP.A. SenniM. ScarnecchiaE. AnastasioF. ColomboA. FerrariR. EspositoA. GianniniF. ToselliM. Impact of clinical and subclinical coronary artery disease as assessed by coronary artery calcium in COVID-19.Atherosclerosis202132813614310.1016/j.atherosclerosis.2021.03.04133883086
    [Google Scholar]
  14. LuoS QiuXM ZengXJ ZhangDY WanB LiX Coronary artery calcification and risk of mortality and adverse outcomes in patients with COVID-19: A Chinese multicenter retrospective cohort study.Chin J Acad Radiol.2022512028
    [Google Scholar]
  15. PanL HuangP XieX XuJ GuoD JiangY Metabolic associated fatty liver disease increases the severity of COVID-19: A meta-analysis.Dig Liver Dis.2021532153157
    [Google Scholar]
  16. JiD. QinE. XuJ. ZhangD. ChengG. WangY. LauG. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study.J. Hepatol.202073245145310.1016/j.jhep.2020.03.04432278005
    [Google Scholar]
  17. TahtabasiM. HosbulT. KaramanE. AkinY. KilicaslanN. GezerM. SahinerF. Frequency of hepatic steatosis and its association with the pneumonia severity score on chest computed tomography in adult COVID-19 patients.World J. Crit. Care Med.2021103475710.5492/wjccm.v10.i3.4734046310
    [Google Scholar]
  18. DoğanH UzerE EsengürÖ T HassoyH GüneyliS. Relationship between hepatic and pancreatic steatosis and the COVID-19 pneumonia total severity score and prognosis with an emphasis on prognostic strength.Diagn Interv Radiol2022
    [Google Scholar]
  19. Use of chest imaging in COVID-19.World Health Organization2022
    [Google Scholar]
  20. Infection guideline for COVID19/SARS COV2Turkish ministry of Health2020
    [Google Scholar]
  21. KilicA.U. KaraF. AlpE. DoganayM. New threat: 2019 novel Coronavirus infection and infection control perspective in Turkey.North. Clin. Istanb.202072959832259028
    [Google Scholar]
  22. SharmaS. AggarwalA. SharmaR.K. PatrasE. SinghalA. Correlation of chest CT severity score with clinical parameters in COVID-19 pulmonary disease in a tertiary care hospital in Delhi during the pandemic period.Egypt. J. Radiol. Nucl. Med.202253118
    [Google Scholar]
  23. ShemeshJ. HenschkeC.I. ShahamD. YipR. FarooqiA.O. ChamM.D. McCauleyD.I. ChenM. SmithJ.P. LibbyD.M. PasmantierM.W. YankelevitzD.F. Ordinal scoring of coronary artery calcifications on low-dose CT scans of the chest is predictive of death from cardiovascular disease.Radiology2010257254154810.1148/radiol.1010038320829542
    [Google Scholar]
  24. NatoriT. KatadaY. Effects of pancrelipase on hepatic steatosis after pancreaticoduodenectomy.HPB201618e458e45910.1016/j.hpb.2016.03.207
    [Google Scholar]
  25. HoogenboomSA BolanCW ChuprinA RaimondoMT van HooftJE WallaceMB Pancreatic steatosis on computed tomography is an early imaging feature of pre-diagnostic pancreatic cancer: A preliminary study in overweight patients.Pancreatology.202121242843310.1016/j.pan.2021.01.003
    [Google Scholar]
  26. MazharSM ShiehmortezaM SirlinCB Noninvasive assessment of hepatic steatosis.Clin Gastroenterol Hepatol20097213514010.1016/j.cgh.2008.11.023
    [Google Scholar]
  27. AkdurG. DaşM. BardakciO. AkmanC. SıddıkoğluD. AkdurO. AkçalıA. ErbaşM. ReşorluM. BeyazitY. Prediction of mortality in COVID-19 through combing CT severity score with NEWS, qSOFA, or peripheral perfusion index.Am. J. Emerg. Med.20215054655210.1016/j.ajem.2021.08.07934547696
    [Google Scholar]
  28. CaiQ. ChenF. WangT. LuoF. LiuX. WuQ. HeQ. WangZ. LiuY. LiuL. ChenJ. XuL. Obesity and COVID-19 severity in a designated Hospital in Shenzhen, China.Diabetes Care20204371392139810.2337/dc20‑057632409502
    [Google Scholar]
  29. WuZ. TangY. ChengQ. Diabetes increases the mortality of patients with COVID-19: A meta-analysis.Acta Diabetol.202158213914410.1007/s00592‑020‑01546‑032583078
    [Google Scholar]
  30. HegyiP.J. VáncsaS. OcskayK. DembrovszkyF. KissS. FarkasN. ErőssB. SzakácsZ. HegyiP. PárG. Metabolic associated fatty liver disease is associated with an increased risk of severe COVID-19: A systematic review with meta-analysis.Front. Med.2021862642510.3389/fmed.2021.62642533777974
    [Google Scholar]
  31. ZhangW. LiC. LiuB. WuR. ZouN. XuY.Z. YangY.Y. ZhangF. ZhouH.M. WanK.Q. XiaoX.Q. ZhangX. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis.Ann. Hepatol.201312689290010.1016/S1665‑2681(19)31294‑324114819
    [Google Scholar]
  32. ChiyanikaC. ChanD.F.Y. HuiS.C.N. SoH. DengM. YeungD.K.W. NelsonE.A.S. ChuW.C.W. The relationship between pancreas steatosis and the risk of metabolic syndrome and insulin resistance in Chinese adolescents with concurrent obesity and non-alcoholic fatty liver disease.Pediatr. Obes.2020159e1265310.1111/ijpo.1265332351030
    [Google Scholar]
  33. ÖzA AkçalarS. Increased incidence of pancreatic steatosis detected using computed tomography at initial diagnosis of coronavirus disease 2019.Turk J Gastroenterol.2023343270277
    [Google Scholar]
  34. RubinG.D. RyersonC.J. HaramatiL.B. SverzellatiN. KanneJ.P. RaoofS. SchlugerN.W. VolpiA. YimJ.J. MartinI.B.K. AndersonD.J. KongC. AltesT. BushA. DesaiS.R. Goldin GooJ.M. HumbertM. InoueY. KauczorH.U. LuoF. MazzoneP.J. ProkopM. Remy-JardinM. RicheldiL. Schaefer-ProkopC.M. TomiyamaN. WellsA.U. LeungA.N. The role of chest imaging in patient management during the COVID-19 Pandemic: A multinational consensus statement from the fleischner society.Radiology2020296117218010.1148/radiol.202020136532255413
    [Google Scholar]
  35. ChangY.C. YuC.J. ChangS.C. GalvinJ.R. LiuH.M. HsiaoC.H. KuoP.H. ChenK.Y. FranksT.J. HuangK.M. YangP.C. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: Evaluation with thin-section CT.Radiology200523631067107510.1148/radiol.236304095816055695
    [Google Scholar]
  36. BellosI. TavernarakiK. StefanidisK. MichalopoulouO. LouridaG. KorompokiE. ThanouI. ThanosL. PefanisA. ArgyrakiA. Chest CT severity score and radiological patterns as predictors of disease severity, ICU admission, and viral positivity in COVID-19 patients.Respir. Investig.202159443644510.1016/j.resinv.2021.02.00833820751
    [Google Scholar]
  37. LiK. WuJ. WuF. GuoD. ChenL. FangZ. LiC. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia.Invest. Radiol.202055632733110.1097/RLI.000000000000067232118615
    [Google Scholar]
  38. LiK. FangY. LiW. PanC. QinP. ZhongY. LiuX. HuangM. LiaoY. LiS. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19).Eur. Radiol.20203084407441610.1007/s00330‑020‑06817‑632215691
    [Google Scholar]
  39. NishigaM. WangD.W. HanY. LewisD.B. WuJ.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives.Nat. Rev. Cardiol.202017954355810.1038/s41569‑020‑0413‑932690910
    [Google Scholar]
  40. GrasselliG. ZangrilloA. ZanellaA. AntonelliM. CabriniL. CastelliA. CeredaD. ColuccelloA. FotiG. FumagalliR. IottiG. LatronicoN. LoriniL. MerlerS. NataliniG. PiattiA. RanieriM.V. ScandroglioA.M. StortiE. CecconiM. PesentiA. AgosteoE. AlaimoV. AlbanoG. AlbertinA. AlborghettiA. AldegheriG. AntoniniB. BarbaraE. BelgiornoN. BelliatoM. BeniniA. BerettaE. BianciardiL. BonazziS. BorelliM. BoselliE. BronziniN. CapraC. CarnevaleL. CasellaG. CastelliG. CatenaE. CattaneoS. ChiumelloD. CirriS. CiterioG. ColomboS. CoppiniD. CoronaA. CortellazziP. CostantiniE. CovelloR.D. De FilippiG. Dei PoliM. Della MuraF. EvasiG. Fernandez-OlmosR. ForastieriM.A. GallettiM. GallioliG. GemmaM. GnesinP. GrazioliL. GrecoS. GrittiP. GrossoP. GuatteriL. GuzzonD. HarizayF. KeimR. LandoniG. LangerT. LombardoA. MalaraA. MalpettiE. MarinoF. MarinoG. MazzoniM.G. MerliG. MicucciA. MojoliF. MuttiniS. NailescuA. PanigadaM. PerazzoP. PeregoG.B. PetrucciN. PezziA. ProttiA. RadrizzaniD. RaimondiM. RanucciM. RasuloF. RiccioM. RonaR. RoscitanoC. RuggeriP. SalaA. SalaG. SalviL. SebastianoP. SevergniniP. SforziniI. SigurtàF.D. SubertM. TagliabueP. TroianoC. ValsecchiR. ViolaU. VitaleG. ZambonM. ZoiaE. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the lombardy region, Italy.JAMA2020323161574158110.1001/jama.2020.539432250385
    [Google Scholar]
  41. DillingerJ.G. BenmessaoudF.A. PezelT. VoicuS. SiderisG. CherguiN. HamziL. ChauvinA. LeroyP. GautierJ.F. SèneD. HenryP. Coronary artery calcification and complications in patients with COVID-19.JACC Cardiovasc. Imaging202013112468247010.1016/j.jcmg.2020.07.00433153535
    [Google Scholar]
  42. Nai FovinoL. CademartiriF. TarantiniG. Subclinical coronary artery disease in COVID-19 patients.Eur. Heart J. Cardiovasc. Imaging20202191055105610.1093/ehjci/jeaa20232671381
    [Google Scholar]
  43. DingS. WangH. LuH. NappiM. WanS. Two path gland segmentation algorithm of colon pathological image based on local semantic guidance.IEEE J. Biomed. Health Inform.20232741701170810.1109/JBHI.2022.320787436126032
    [Google Scholar]
  44. WuY KongQ ZhangL CastiglioneA NappiM WanS. CDT-CAD: Context-aware deformable transformers for end-to-end chest abnormality detection on x-ray images.IEEE/ACM Trans Comput Biol Bioinform.2023
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230511093259
Loading
/content/journals/cmir/10.2174/1573405620666230511093259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test