Skip to content
2000
image of Fetal Diagnostics using Vision Transformer for Enhanced Health and Severity Prediction in Ultrasound Imaging

Abstract

Aim:

This research aims to develop and evaluate a novel health classification and severity detection system based on Vision Transformers (ViTs) for fetal ultrasound imagery. This contributes to improved precision in fetal health status detection and abnormalities with more accurate results than other traditional models.

Background:

Amidst the other imperatives of resource-deficient developing nations, mitigating neonatal mortality rates is a challenge that demands precision-based solutions in the era of artificial intelligence. Though the advent of machine learning models has added an optimal dimension to deal with emerging complexity in fetal ultrasound imagery, there is a call to address the huge gap in the demanded precision for prediction than the existing interpretation.

Objective:

This research strives to formulate and access a novel health classification and severity detection system based on the implementation of the Vision Transformers frameworks. This pioneering investigation represents an unparalleled exploration into the efficacy of ViTs for discerning intricate patterns within fetal ultrasonographic imagery, facilitating precise categorization of fetal well-being and prognosticating the magnitude of potential anomalies.

Methodology:

A private and confidential dataset of 500 fetal ultrasound images has been collected from diverse hospitals. Each image has been annotated by radiologists according to two main labels: the health status of the fetus, which includes healthy, mild, moderate, or severe, and the severity of abnormalities as a continuous measure. At different levels, the dataset underwent pre-processing via distinct techniques. Then, the composite loss function Cross-Entropy has been deployed to train the optimized VIT model using the Adam algorithm.

Results:

The classification accuracy of the proposed model is 90% for detecting the severity with an F1-score of 0.87 and MAE of 0.30. The research ascertained that the model ViT evinced a superlative efficacy for the capturing of fine-grained spatial relations in ultrasound images to produce revolutionary predictions.

Conclusion:

These results emphasize that ViTs have the potential to revolutionize fetal health monitoring and will contribute significantly to reducing neonatal mortality by supplying clinicians with accurate and reliable predictions for early interventions. This work stands as a yardstick for further diagnostic applications using AI in fetal health care.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056360199250227053012
2025-03-17
2025-04-02
The full text of this item is not currently available.

References

  1. Gribbin C. James D. Assessing fetal health. Curr. Obstet. Gynaecol. 2005 15 4 221 227 10.1016/j.curobgyn.2005.05.001
    [Google Scholar]
  2. Salini Y. Mohanty S.N. Ramesh J.V.N. Yang M. Chalapathi M.M.V. Cardiotocography data analysis for fetal health classification using machine learning models. IEEE Access 2024 12 26005 26022 10.1109/ACCESS.2024.3364755
    [Google Scholar]
  3. Xie H.N. Wang N. He M. Zhang L.H. Cai H.M. Xian J.B. Lin M.F. Zheng J. Yang Y.Z. Using deep‐learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet. Gynecol. 2020 56 4 579 587 10.1002/uog.21967 31909548
    [Google Scholar]
  4. Farley D. Dudley D.J. Fetal assessment during pregnancy. Pediatr. Clin. North Am. 2009 56 3 489 504 10.1016/j.pcl.2009.03.001 19501688
    [Google Scholar]
  5. Mehbodniya A. Lazar A.J.P. Webber J. Sharma D.K. Jayagopalan S. K K. Singh P. Rajan R. Pandya S. Sengan S. Fetal health classification from cardiotocographic data using machine learning. Expert Syst. 2022 39 6 e12899 10.1111/exsy.12899
    [Google Scholar]
  6. Alzubaidi M. Agus M. Alyafei K. Althelaya K.A. Shah U. Abd-Alrazaq A. Anbar M. Makhlouf M. Househ M. Toward deep observation: A systematic survey on artificial intelligence techniques to monitor fetus via ultrasound images. iScience 2022 25 8 104713 10.1016/j.isci.2022.104713 35856024
    [Google Scholar]
  7. Sivari E. Civelek Z. Sahin S. Determination and classification of fetal sex on ultrasound images with deep learning. Expert Syst. Appl. 2024 240 122508 10.1016/j.eswa.2023.122508
    [Google Scholar]
  8. Sridar P. Kumar A. Quinton A. Nanan R. Kim J. Krishnakumar R. Decision fusion-based fetal ultrasound image plane classification using convolutional neural networks. Ultrasound Med. Biol. 2019 45 5 1259 1273 10.1016/j.ultrasmedbio.2018.11.016 30826153
    [Google Scholar]
  9. Santoso A.P. Sigit R. Health monitoring of fetal ultrasound image using active contour models. 2017 International Seminar on Application for Technology of Information and Communication (iSemantic) Semarang, Indonesia, 07-08 October 2017, pp. 192-197. 10.1109/ISEMANTIC.2017.8251868
    [Google Scholar]
  10. Avazov K. Abdusalomov A. Mukhiddinov M. Baratov N. Makhmudov F. Cho Y.I. An improvement for the automatic classification method for ultrasound images used on CNN. Int. J. Wavelets Multiresolution Inf. Process. 2022 20 2 2150054 10.1142/S0219691321500545
    [Google Scholar]
  11. Carneiro G. Georgescu B. Good S. Comaniciu D. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans. Med. Imaging 2008 27 9 1342 1355 10.1109/TMI.2008.928917 18753047
    [Google Scholar]
  12. Ryou H. Yaqub M. Cavallaro A. Papageorghiou A.T. Alison Noble J. Automated 3D ultrasound image analysis for first trimester assessment of fetal health. Phys. Med. Biol. 2019 64 18 185010 10.1088/1361‑6560/ab3ad1 31408850
    [Google Scholar]
  13. Lin B. Quality assessment of fetal head ultrasound images based on faster R-CNN. Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation Springer, Cham, 15 September 2018, pp 38–46. 10.1007/978‑3‑030‑01045‑4_5
    [Google Scholar]
  14. Park N. Kim S. How do vision transformers work? ICLR 2022 - 10th Int. Conf. Learn. Represent 2022
    [Google Scholar]
  15. Katharopoulos A. Vyas A. Pappas N. Fleuret F. Transformers are {RNN}s: Fast autoregressive transformers with linear attention. Proceedings of the 37th International Conference on Machine Learning 13 July 2020, pp. 5156 - 5165.
    [Google Scholar]
  16. Liu Y. Wang C. Lu M. Yang J. Gui J. Zhang S. From simple to complex scenes: Learning robust feature representations for accurate human parsing. IEEE Trans. Pattern Anal. Mach. Intell. 2024 46 8 5449 5462 10.1109/TPAMI.2024.3366769 38363663
    [Google Scholar]
  17. Al-hammuri K. Gebali F. Kanan A. Chelvan I.T. Vision transformer architecture and applications in digital health: A tutorial and survey. Vis. Comput. Ind. Biomed. Art 2023 6 1 14 10.1186/s42492‑023‑00140‑9 37428360
    [Google Scholar]
  18. Ghabri H. Alqahtani M.S. Ben Othman S. Al-Rasheed A. Abbas M. Almubarak H.A. Sakli H. Abdelkarim M.N. Transfer learning for accurate fetal organ classification from ultrasound images: A potential tool for maternal healthcare providers. Sci. Rep. 2023 13 1 17904 10.1038/s41598‑023‑44689‑0 37863944
    [Google Scholar]
  19. Das S. Mukherjee H. Roy K. Saha C.K. Fetal health classification from cardiotocograph for both stages of labor—a soft-computing-based approach. Diagnostics 2023 13 5 858 10.3390/diagnostics13050858 36900002
    [Google Scholar]
  20. Khedr O.S. Wahed M.E. Al-Attar A.S.R. Abdel-Rehim E.A. The classification of the bladder cancer based on vision transformers (ViT). Sci. Rep. 2023 13 1 20639 10.1038/s41598‑023‑47992‑y 38001352
    [Google Scholar]
  21. Harikumar A. Surendran S. Gargi S. Explainable AI in deep learning based classification of fetal ultrasound image planes. Procedia Comput. Sci. 2024 233 1023 1033 10.1016/j.procs.2024.03.291
    [Google Scholar]
  22. Li J. Liu X. Fetal health classification based on machine learning. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) Nanchang, China, 26-28 March 2021, pp. 899-902. 10.1109/ICBAIE52039.2021.9389902
    [Google Scholar]
  23. Noor N.F.M. Ahmad N. Noor N.M. Fetal health classification using supervised learning approach. 2021 IEEE National Biomedical Engineering Conference (NBEC) Kuala Lumpur, Malaysia, 09-10 November 2021, pp. 36-41. 10.1109/NBEC53282.2021.9618748
    [Google Scholar]
  24. KASIM Ö. Multi-classification of fetal health status using extreme learning machine. Icontech Int. J. 2021 5 2 62 70
    [Google Scholar]
  25. Qu R. Xu G. Ding C. Jia W. Sun M. Deep learning-based methodology for recognition of fetal brain standard scan planes in 2D ultrasound images. IEEE Access 2020 8 44443 44451 10.1109/ACCESS.2019.2950387
    [Google Scholar]
  26. Fiorentino M.C. Villani F.P. Di Cosmo M. Frontoni E. Moccia S. A review on deep-learning algorithms for fetal ultrasound-image analysis. Med. Image Anal. 2023 83 102629 10.1016/j.media.2022.102629 36308861
    [Google Scholar]
  27. Dosovitskiy A. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv 2020
    [Google Scholar]
  28. Joice C.S. Srinivasan C. Sridhar P. Feature selection and classification to detect fetal abnormalities. Soft Computing: Theories and Applications. Kumar R. Verma A.K. Verma O.P. Wadehra T. Singapore Springer Nature Singapore 2024 239 251 10.1007/978‑981‑97‑2089‑7_22
    [Google Scholar]
  29. Ovadia O. Kahana A. Stinis P. Turkel E. Givoli D. Karniadakis G.E. ViTO: Vision transformer-operator. Comput. Methods Appl. Mech. Eng. 2024 428 117109 10.1016/j.cma.2024.117109
    [Google Scholar]
  30. Mulita F. Verras G.I. Anagnostopoulos C.N. Kotis K. A smarter health through the internet of surgical things. Sensors 2022 22 12 4577 10.3390/s22124577 35746359
    [Google Scholar]
  31. Meng Q. Rueckert D. Unsupervised cross-domain image classification by distance metric guided feature alignment. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis: First International Workshop, ASMUS 2020, and 5th International Workshop, PIPPI 2020, Held in Conjunction with MICCAI 2020 Lima, Peru, 04 October 2020, pp. 146–157.
    [Google Scholar]
  32. Montero A. Bonet-Carne E. Burgos-Artizzu X.P. Generative adversarial networks to improve fetal brain fine-grained plane classification. Sensors 2021 21 23 7975 10.3390/s21237975 34883977
    [Google Scholar]
  33. Chen H. Ultrasound standard plane detection using a composite neural network framework. IEEE Trans Cybern 2017 47 6 1576 1586 10.1109/TCYB.2017.2685080
    [Google Scholar]
  34. Pu B. Li K. Li S. Zhu N. Automatic fetal ultrasound standard plane recognition based on deep learning and IIoT. IEEE Trans. Industr. Inform. 2021 17 11 7771 7780 10.1109/TII.2021.3069470
    [Google Scholar]
  35. Lee L.H. Gao Y. Noble J.A. Principled ultrasound data augmentation for classification of standard planes. International Conference on Information Processing in Medical Imaging Springer, Cham, 14 June 2021, pp 729–741. 10.1007/978‑3‑030‑78191‑0_56
    [Google Scholar]
  36. Dong J. Liu S. Liao Y. Wen H. Lei B. Li S. Wang T. A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J. Biomed. Health Inform. 2020 24 4 931 942 10.1109/JBHI.2019.2948316 31634851
    [Google Scholar]
  37. Baumgartner C.F. Kamnitsas K. Matthew J. Fletcher T.P. Smith S. Koch L.M. Kainz B. Rueckert D. SonoNet: Real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 2017 36 11 2204 2215 10.1109/TMI.2017.2712367 28708546
    [Google Scholar]
  38. Yaqub M. Kelly B. Papageorghiou A.T. Noble J.A. A deep learning solution for automatic fetal neurosonographic diagnostic plane verification using clinical standard constraints. Ultrasound Med. Biol. 2017 43 12 2925 2933 10.1016/j.ultrasmedbio.2017.07.013 28958729
    [Google Scholar]
  39. Schlemper J. Oktay O. Schaap M. Heinrich M. Kainz B. Glocker B. Rueckert D. Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 2019 53 197 207 10.1016/j.media.2019.01.012 30802813
    [Google Scholar]
  40. Burgos-Artizzu X.P. Coronado-Gutiérrez D. Valenzuela-Alcaraz B. Bonet-Carne E. Eixarch E. Crispi F. Gratacós E. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci. Rep. 2020 10 1 10200 10.1038/s41598‑020‑67076‑5 32576905
    [Google Scholar]
  41. Sundaresan J.A. Automated characterization of the fetal heart in ultrasound images using fully convolutional neural networks. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) Melbourne, VIC, Australia, 18-21 April 2017, pp. 671-674. 10.1109/ISBI.2017.7950609
    [Google Scholar]
  42. Tan B. Semi-supervised learning of fetal anatomy from ultrasound. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data Springer, Cham, 13 October 2019, pp 157–164. 10.1007/978‑3‑030‑33391‑1_18
    [Google Scholar]
  43. Cai Y. Sharma H. Chatelain P. Noble J.A. Multi-task sonoeyenet: Detection of fetal standardized planes assisted by generated sonographer attention maps. International Conference on Medical Image Computing and Computer-Assisted Intervention Springer, Cham, 26 September 2018, pp 871–879. 10.1007/978‑3‑030‑00928‑1_98
    [Google Scholar]
  44. Qu R. Xu G. Ding C. Jia W. Sun M. Standard plane identification in fetal brain ultrasound scans using a differential convolutional neural network. IEEE Access 2020 8 83821 83830 10.1109/ACCESS.2020.2991845
    [Google Scholar]
  45. Dou D. Agent with warm start and active termination for plane localization in 3D ultrasound. International Conference on Medical Image Computing and Computer-Assisted Intervention Springer, Cham, 10 October 2019, pp 290–298. 10.1007/978‑3‑030‑32254‑0_33
    [Google Scholar]
  46. Liang B. SPRNet: Automatic fetal standard plane recognition network for ultrasound images. Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis. Springer, Cham, 08 October 2019, pp 38–46. 10.1007/978‑3‑030‑32875‑7_5
    [Google Scholar]
  47. Gao Y. Beriwal S. Craik R. Papageorghiou A.T. Noble J.A. Label efficient localization of fetal brain biometry planes in ultrasound through metric learning. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. Springer, Cham, 01 October 2020, pp 126–135. 10.1007/978‑3‑030‑60334‑2_13
    [Google Scholar]
  48. Komatsu M. Sakai A. Komatsu R. Matsuoka R. Yasutomi S. Shozu K. Dozen A. Machino H. Hidaka H. Arakaki T. Asada K. Kaneko S. Sekizawa A. Hamamoto R. Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning. Appl. Sci. 2021 11 1 371 10.3390/app11010371
    [Google Scholar]
  49. Zhang B. Liu H. Luo H. Li K. Automatic quality assessment for 2D fetal sonographic standard plane based on multitask learning. Medicine 2021 100 4 e24427 10.1097/MD.0000000000024427
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056360199250227053012
Loading
/content/journals/cmir/10.2174/0115734056360199250227053012
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test