- Home
- A-Z Publications
- Current Medicinal Chemistry
- Previous Issues
- Volume 17, Issue 32, 2010
Current Medicinal Chemistry - Volume 17, Issue 32, 2010
Volume 17, Issue 32, 2010
-
-
Selective COX-1 Inhibition: A Therapeutic Target to be Reconsidered
Authors: M. G. Perrone, A. Scilimati, L. Simone and P. VitaleSince cyclooxygenase (COX) isozymes discovery, many papers and reviews have been published to describe the structural bases of COX inhibition, and to debate on the therapeutic and adverse effects of worldwide clinically used nonsteroidal anti-inflammatory drugs (NSAIDs), included COX-2 selective inhibitors (well known as Coxibs). COX-2 inhibition has been widely investigated, whereas the role of COX-1 in human pathophysiology is mostly not yet well ascertained. As time goes on, the cliche that the constitutively expressed isoform COX-1 is only involved in normal physiological functions, such as platelet aggregation, gastric mucosa protection and renal electrolyte homeostasis is going to be shattered. Low-dose aspirin, behaving as a preferential inhibitor of platelet COX-1, allowed to enlighten the role exerted by this isoenzyme in many mammalian cell types. This review would elucidate the most recent findings on selective COX-1 inhibition and their relevance to human pathology such as cancer, neuro-inflammation, cardioprotection, fever and pain. It would also focus on the design and development of new highly selective COX-1 inhibitors, useful tools in pharmacological studies aimed at gaining a deeper insight of the role of COX-1 in human health and disease. Among the traditional NSAIDs, other then aspirin and indomethacin, only few examples of selective COX-1 inhibitors (SC-560, FR122047, mofezolac, P6 and TFAP) have been so far identified. This review has also the scope to stimulate the development of novel drugs, which activity is COX-1 mediated.
-
-
-
NS5B RNA Dependent RNA Polymerase Inhibitors: The Promising Approach to Treat Hepatitis C Virus Infections
Authors: R R. Deore and J. W. ChernHepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ∼50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.
-
-
-
Oxidative Stress and Endothelial Dysfunction in Cardiovascular Disease: Mitochondria-Targeted Therapeutics
Authors: M. Rocha, N. Apostolova, A. Hernandez-Mijares, R. Herance and V. M. VictorFunctional impairment of endothelial activity (endothelial dysfunction) precedes the development of cardiovascular diseases (CVD). This condition is a result of a reduced bioavailability of nitric oxide (NO), a well known vasodilator, which is mainly due to increased NO degradation caused by its reaction with reactive oxygen species (ROS). Although there are several conditions that contribute independently to endothelial dysfunction, such as hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia, increased oxidative stress seems to play a key role. In addition to their original pharmacological properties, drugs used clinically at present, including anti-hypertension reagents, angiotensin receptor blockers and anti-hyperlipidemic reagents such as statins, protect various organs via anti-oxidative stress mechanims. Moreover, some substances with antioxidant properties, such as vitamin C or vitamin E, have been used to erradicate the oxidative stress associated with CVD. The results of the clinical trials employing anti-oxidative stress reagents in patients with CVD are contradictory, which could be a result of inadequate study design or selected targets. This review considers the process of endothelial dysfunction and CVD from a mitochondrial perspective and evaluates strategies currently under development for the targeted delivery of antioxidants or NO to mitochondria. It endorses the idea that selectively targeting specific antioxidants and NO donors to mitochondria is an effective strategy for modulating mitochondrial respiration and ROS production and protecting mitochondria against oxidative stress.
-
-
-
Emerging Roles for Riboflavin in Functional Rescue of Mitochondrial β-Oxidation Flavoenzymes
Authors: Barbara J. Henriques, Rikke K. Olsen, Peter Bross and Claudio M. GomesRiboflavin, commonly known as vitamin B2, is the precursor of flavin cofactors. It is present in our typical diet, and inside the cells it is metabolized to FMN and FAD. As a result of their rather unique and flexible chemical properties these flavins are among the most important redox cofactors present in a large series of different enzymes. A problem in riboflavin metabolism or a low intake of this vitamin will have consequences on the level of FAD and FMN in the cell, resulting in disorders associated with riboflavin deficiency. In a few number of cases, riboflavin deficiency is associated with impaired oxidative folding, cell damage and impaired heme biosynthesis. More relevant are several studies referring reduced activity of enzymes such as dehydrogenases involved in oxidative reactions, respiratory complexes and enzymes from the fatty acid β-oxidation pathway. The role of this vitamin in mitochondrial metabolism, and in particular in fatty acid oxidation, will be discussed in this review. The basic aspects concerning riboflavin and flavin metabolism and deficiency will be addressed, as well as an overview of the role of the different flavoenzymes and flavin chemistry in fatty acid β-oxidation, merging clinical, cellular and biochemical perspectives. A number of recent studies shedding new light on the cellular processes and biological effects of riboflavin supplementation in metabolic disease will also be overviewed. Overall, a deeper understanding of these emerging roles of riboflavin intake is essential to design better therapies.
-
-
-
Use of Enzymes in the Production of Semi-Synthetic Penicillins and Cephalosporins: Drawbacks and Perspectives
Authors: G. Volpato, R. C. Rodrigues and R. Fernandez-LafuenteSemi-synthetic β-lactamic antibiotics are the most used anti-bacteria agents, produced in hundreds tons/year scale. It may be assumed that this situation will even increase during the next years, with new β-lactamic antibiotics under development. They are usually produced by the hydrolysis of natural antibiotics (penicillin G or cephalosporin C) and the further amidation of natural or modified antibiotic nuclei with different carboxylic acyl donor chains. Due to the contaminant reagents used in conventional chemical route, as well as the high energetic consumption, biocatalytic approaches have been studied for both steps in the production of these very interesting medicaments during the last decades. Recent successes in some of these methodologies may produce some significant advances in the antibiotics industry. In fact, the hydrolysis of penicillin G to produce 6-APA catalyzed by penicillin G acylase is one of the most successful historical examples of the enzymatic biocatalysis, and much effort has been devoted to find enzymatic routes to hydrolyze cephalosporin C. Initially this could be accomplished in a quite complex system, using a two enzyme system (D-amino acid oxidase plus glutaryl acylase), but very recently an efficient cephalosporin acylase has been designed by genetic tools. Other strategies, including metabolic engineering to produce other antibiotic nuclei, have been also reported. Regarding the amidation step, much effort has been devoted to the improvement of penicillin acylases for these reactions since 1960. New reaction strategies, continuous product extraction or new penicillin acylases with better properties have proven to be the key to have competitive biocatalytic processes. In this review, a critical discussion of these very interesting advances in the application of enzymes for the industrial synthesis of semi-synthetic antibiotics will be presented.
-
-
-
Prodrug Design to Improve Pharmacokinetic and Drug Delivery Properties: Challenges to the Discovery Scientists
Authors: S. Jana, S. Mandlekar and P. MaratheThe prodrug design is a versatile, powerful method that can be applied to a wide range of parent drug molecules, administration routes, and formulations. Clinically, the majority of prodrugs are used with the aim of enhancing drug permeation by increasing lipophilicity, or by improving aqueous solubility. Prodrug design may improve the bioavailability of parent molecule, and thus can be integrated into the iterative process of lead optimization, rather than employing it as a post-hoc approach. The purpose of this review is to provide an update of advances and progress in the knowledge of current strategic approaches of prodrug design, along with their real-world utility in drug discovery and development. The review covers the type of prodrugs and functional groups that are amenable to prodrug design. Various prodrug approaches for improving oral drug delivery are discussed, with numerous examples of marketed prodrugs, including improved aqueous solubility, improved lipophilicity, transporter-mediated absorption, and prodrug design to achieve site-specific delivery. Tools employed for prodrug screening, and specific challenges in prodrug research and development are also elaborated. This article is intended to encourage discovery scientists to be creative and consider a rationally designed prodrug approach during the lead optimization phase of drug discovery programs, when the structure activity relationship (SAR) for the drug target is incompatible with pharmacokinetic or biopharmaceutical objectives.
-
-
-
Squalamine as an Example of a New Potent Antimicrobial Agents Class: A Critical Review
Authors: K. Alhanout, J. M. Rolain and J. M. BrunelAn important strategy to circumvent the problem of antimicrobial resistance is to search for new compounds with antimicrobial activity. In this context, aminosterols, which include squalamine-like compounds and ceragenins, have gained interest due to their wide spectrum of antibacterial and antifungal properties. In light of recently reported data, we decided to analyze the mechanism of action of these compounds as well as their antimicrobial properties. Aminosterols are active against both bacterial reference strains and multidrug-resistant antibiotics as they disrupt the integrity of the bacterial membrane. Thus, these compounds could be useful in the development of new topical decontaminants or disinfecting agents.
-
-
-
Effects of the Novel Non-Peptidyl Low Molecular Weight Radical Scavenger IAC in Different Models of Inflammation: A New Perspective in Anti-Inflammatory Therapy
By L. CorsiThe bis (1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate called IAC, is a new non-peptidyl low molecular weight radical scavenger able to give a fast reaction with the majority of radical species involved in the oxidative stress. This intrinsic property might be of particular interest in all the processes where it presents an over production of reactive oxygen/nitrogen species (ROS/RNS) such as inflammation. Indeed, it is well known that systemic inflammatory response is associated with the production of ROS, nitric oxide (NO), which in turn deplete the endogenous GSH, mediating cytotoxicity. It has been shown that IAC through its antioxidant activity, exerted a protective effect in vitro in islets isolated from type-2 diabetic patients, and in vivo in a non-obese diabetic mouse model and in DNBS-induced colitis in rats. The ability of IAC to protect brain from ischemia, suggests a possible use of the compound in broad range of inflammatory- related diseases. It is well known that the use of non steroidal anti-inflammatory drugs (NSAIDs) is associated with a broad spectrum of untoward side-effects such as gastrointestinal ulceration. The major pathogenetic element in the development of these effects is the depletion of prostaglandins (PGs) through inhibition of cyclooxygenase. The evidence that IAC protects gastric mucosa in an animal model of indomethacin-induced ulcer, through local increase of PGE2 levels and antioxidant activity, candidates this compound as a novel, promising, anti-inflammatory compound avoiding the major common untoward side-effects elicited by NSAID's.
-
-
-
Modulation of Photosensitization Processes for an Improved Targeted Photodynamic Therapy
Authors: M. Verhille, P. Couleaud, R. Vanderess, D. Brault, M. Barberi-Heyob and C. FrochotPhotodynamic therapy (PDT) is a cancer treatment modality involving the combination of light, a photosensitizer (PS) and molecular oxygen, which results in the production of cytotoxic reactive oxygen species (ROS). Singlet oxygen (1O2) is one of the most important of these ROS. Because the lifetime and diffusion of 1O2 is very limited, a controllable singlet oxygen generation with high selectivity and localization would lead to more efficient and reliable PDT. The lack of selective accumulation of the PS within tumour tissue is a major problem in PDT. Targeted PDT would offer the advantage to enhance photodynamic efficiency by directly targeting diseased cells or tissues. Many attempts have been made to either selectively deliver light to diseased tissues or increase the uptake of the photoactive compounds by the target cells. The review will survey the literature regarding the multi-level control of 1O2 production for PDT applications. The mechanisms of ROS formation are described. The different strategies leading to targeted formation of 1O2 are developed. Some active PDT agents have been based on energy transfer between PS by control of the aggregation/ disaggregation. The concept of molecular beacon based on quenching-dequenching upon protease cleavage is capable of precise control of 1O2 by responding to specific cancer-associated biomarkers.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)