- Home
- A-Z Publications
- Current Medicinal Chemistry
- Previous Issues
- Volume 15, Issue 29, 2008
Current Medicinal Chemistry - Volume 15, Issue 29, 2008
Volume 15, Issue 29, 2008
-
-
Proteasome Inhibition: A Promising Strategy for Treating Cancer, but What About Neurotoxicity?
Authors: A. Gilardini, P. Marmiroli and G. CavalettiThe inhibition of protein degradation through the ubiquitin-proteasome pathway is a recently developed approach to cancer treatment which extends the range of cellular targets for chemotherapy. This therapeutic strategy is very interesting since the proteasomes carry out the regulated degradation of unnecessary or damaged cellular proteins, a process that is dysregulated in many cancer cells. Based on this hypothesis, the proteasome complex inhibitor bortezomib was approved for use in multiple myeloma patients by the US Food and Drug Administration (FDA) in 2003 and by the European Medicines Agency (EMEA) in 2004, and several new drugs with the same target and, sometimes, mechanism of action are currently under development. Interestingly, proteasome inhibitors have now also been tested in combination chemotherapy for the treatment of several solid tumors and it is likely that there will be more generalized use of these compounds in the near future. Despite its remarkable effectiveness, which led to it being rapidly approved for clinical use, some concern has been raised regarding the safety of bortezomib (and in general of proteasome inhibitors) since reduced degradation of damaged proteins has been postulated as being the basic mechanism of severe neurological diseases affecting the central nervous system. While this concern has not been confirmed by the clinical course of treated patients, from the first Phase I studies, it emerged that peripheral sensory neurotoxicity was one of the major dose-limiting toxicities. The main results from the use of proteasome inhibition in cancer chemotherapy and the implications for treatment on the nervous system will be reviewed.
-
-
-
Targeted Drugs in Chronic Myeloid Leukemia
Authors: Joanna Gora-Tybor and Tadeusz RobakChronic myeloid leukemia (CML) is characterized by the presence of the Philadelphia (Ph) chromosome, which results from a reciprocal translocation between the long arms of the chromosomes 9 and 22 t(9;22)(q34;q11). This translocation creates two new genes, BCR-ABL on the 22q- (Ph chromosome) and the reciprocal ABL-BCR on 9q-. The BCR-ABL gene encodes for a 210-kD protein with deregulated tyrosine kinase (TK) activity, which is crucial for malignant transformation in CML. The recognition of the BCR-ABL gene and corresponding protein led to the synthesis of small-molecule drugs, designed to interfere with BCR-ABL tyrosine kinase activation by competitive binding at the ATP-binding site. The first tyrosine kinase inhibitor (TKI), introduced into clinical practice in 1998, was imatinib mesylate. Imatinib became the first choice drug in chronic phase CML, because of its high efficacy, low toxicity and ability to maintain durable hematological and cytogenetic responses. However, approximately 20-25% of patients initially treated with imatinib will need alternative therapy, due to drug resistance, which is often caused by the appearance of clones expressing mutant forms of BCR-ABL. Second-generation TKIs have provided new therapeutic option for the patients resistant to imatinib. Dasatinib is the first, second-generation TKI, approved in the US and European Union for the treatment of CML patients with imatinib resistance or intolerance. This drug is a dual SRC-ABL kinase inhibitor, active in most clinically relevant BCR-ABL mutations, except highly resistant T315I. Other second-generation TKIs include nilotinib, bosutinib and INNO 406. Apart from TKIs, the promising group of molecules is inhibitors of Aurora family of serine-threonine kinases. One of these molecules, MK0457, has entered clinical trials, and initial reports indicate that this compound could be active in disease associated with T315I mutation. Thus, wide spectrum of new agents, with different mode of action, is currently in clinical development for CML. It is likely that combination therapy will be the best therapeutic strategy in the future.
-
-
-
“Cancer Antigen WT1 Protein-Derived Peptide”-Based Treatment of Cancer -Toward the Further Development
Cancer immunotherapy targeting tumor-associated antigens is now being developed. Wilms' tumor gene WT1-encoding protein is one of the promising target antigens for cancer immunotherapy, because the gene has an oncogenic function and is expressed in many kinds of malignancies. Furthermore, a series of investigations indicated that WT1 protein was highly immunogenic in cancer patients. Based on the analysis of anchor residues that were important for the interaction between peptides and HLA class I molecules, WT1 cytotoxic T lymphocyte (CTL) epitopes with the restriction of HLA-A*0201 and HLA-A*2402 were identified, and clinical trials of WT1 peptide vaccination for cancer patients with these HLA class I types were started. The vaccination-driven immunological and/or clinical responses were reported in patients with myeloid malignancies, multiple myeloma, and several solid cancers. Pediatric malignancies also may be target diseases for WT1 peptide vaccination in the future. Addition of HLA class II-restricted WT1 helper epitope peptide, chemotherapy, or molecular- target-based drug to WT1 CTL epitope peptide-based vaccination may enhance the power and usefulness of WT1 peptide vaccine. Other modalities, including gene therapy using genes encoding WT1-specific T cell receptor or DNA vaccination, are also expected to be developed.
-
-
-
Regulation of Tumor-Stromal Fibroblast Interactions: Implications in Anticancer Therapy
Authors: Hippokratis Kiaris, George Trimis and Athanasios G. PapavassiliouRecent advances in tumor biology have identified the stroma as an important regulator of carcinogenesis and potentially a valuable therapeutic target. While however the fact that by targeting the stromal component of a tumor represents a potential therapeutic strategy has been established, the knowledge for specific regulators for such interactions remains poor. The latter is largely due to the fact that appropriate methodological approaches that permit the screening for such regulators are lacking. In the present review we will summarize some of the literature underlining the central role of stromal factors, and essentially that of the fibroblasts in tumorigenesis. Furthermore, we will review the experimental evidence that suggest that by interfering with tumor-stroma interactions may represent a therapeutic approach. Finally, based on various experimental evidence and theoretical considerations we will suggest a biological experimental system which might facilitate the screening of such regulators.
-
-
-
Antioxidants and Neuroprotection in the Adult and Developing Central Nervous System
Authors: Charanjit Kaur and Eng-Ang LingOxidative stress is implicated in the pathogenesis of a number of neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis and stroke in the adult as well as in conditions such as periventricular white matter damage in the neonatal brain. It has also been linked to the disruption of blood brain barrier (BBB) in hypoxic-ischemic injury. Both experimental and clinical results have shown that antioxidants such as melatonin, a neurohormone synthesized and secreted by the pineal gland and edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a newly developed drug, are effective in reducing oxidative stress and are promising neuroprotectants in reducing brain damage. Indeed, the neuroprotective effects of melatonin in many central nervous system (CNS) disease conditions such as amyotrophic lateral sclerosis, PD, AD, ischemic injury, neuropsychiatric disorders and head injury are well documented. Melatonin affords protection to the BBB in hypoxic conditions by suppressing the production of vascular endothelial growth factor and nitric oxide which are known to increase vascular permeability. The protective effects of melatonin against hypoxic damage have also been demonstrated in newborn animals whereby it attenuated damage in different areas of the brain. Furthermore, exogenous administration of melatonin in newborn animals effectively enhanced the surface receptors and antigens on the macrophages/microglia in the CNS indicating its immunoregulatory actions. Edaravone has been shown to reduce oxidative stress, edema, infarct volume, inflammation and apoptosis following ischemic injury of the brain in the adult as well as decrease free radical production in the neonatal brain following hypoxic-ischemic insult. It can counteract toxicity from activated microglia. This review summarizes the clinical and experimental data highlighting the therapeutic potential of melatonin and edaravone in neuroprotection in various disorders of the CNS.
-
-
-
Mechanisms Underlying Chemotherapy-Induced Neurotoxicity and the Potential for Neuroprotective Strategies
Authors: S. B. Park, A. V. Krishnan, C. S-Y. Lin, D. Goldstein, M. Friedlander and M. C. KiernanChemotherapy-induced neurotoxicity is a significant complication in the successful treatment of many cancers. Neurotoxicity may develop as a consequence of treatment with platinum analogues (cisplatin, oxaliplatin, carboplatin), taxanes (paclitaxel, docetaxel), vinca alkaloids (vincristine) and more recently, thalidomide and bortezomib. Typically, the clinical presentation reflects an axonal peripheral neuropathy with glove-and-stocking distribution sensory loss, combined with features suggestive of nerve hyperexcitability including paresthesia, dysesthesia, and pain. These symptoms may be disabling, adversely affecting activities of daily living and thereby quality of life. The incidence of chemotherapy-induced neurotoxicity appears critically related to cumulative dose and infusion duration, while individual risk factors may also influence the development and severity of neurotoxicity. Differences in structural properties between chemotherapies further contribute to variations in clinical presentation. The mechanisms underlying chemotherapy-induced neurotoxicity are diverse and include damage to neuronal cell bodies in the dorsal root ganglion and axonal toxicity via transport deficits or energy failure. More recently, axonal membrane ion channel dysfunction has been identified, including studies in patients treated with oxaliplatin which have revealed alterations in axonal Na+ channels, suggesting that prophylactic pharmacological therapies aimed at modulating ion channel activity may prove useful in reducing neurotoxicity. As such, improved understanding of the pathophysiology of chemotherapy-induced neurotoxicity will inevitably assist in the development of future neuroprotective strategies and in the design of novel chemotherapies with improved toxicity profiles.
-
-
-
Promotion of Insulin-Like Growth Factor-I Production by Sensory Neuron Stimulation; Molecular Mechanism(s) and Therapeutic Implications
Authors: Kenji Okajima and Naoaki HaradaInsulin-like growth factor-I (IGF-I) plays various important roles in cellular proliferation, differentiation, survival and functions of the cell, thereby contributing to the maintenance of tissue integrity. Although it is well known that growth hormone (GH) increases serum IGF-I levels by stimulating the hepatic production, little is known about the mechanism by which local production of IGF-I in individual tissues is regulated. Stimulation of sensory neurons by capsaicin increases tissue levels of IGF-I and IGF-I mRNA in various organs via increased calcitonin gene-related peptide (CGRP) release in mice. This sensory neuronmediated IGF-I production contributes to reducing reperfusion-induced liver injury through prevention of apoptosis in mice. Isoflavone, a phytoestrogen, increases CGRP production by increasing its transcription in sensory neurons. Administration of capsaicin and isoflavone increases IGF-I production in hair follicles, thereby promoting hair growth in mice and in volunteers with alopecia. Topical application of capsaicin increases dermal levels of IGF-I by stimulating sensory neurons in mice and increases facial skin elasticity in humans. Plasma and tissue levels of CGRP and IGF-I in spontaneously hypertensive rats (SHR) are lower than those in normotensive Wistar Kyoto rats (WKY), contributing to the development of hypertension, heart failure and insulin resistance in SHR. Administration of capsaicin increases CGRP and IGF-I levels in plasma, kidneys and the heart in SHR to WKY levels, and normalizes mean arterial blood pressure in SHR. Since administration of GH or IGF-I has some deleterious effects, pharmacological stimulation of sensory neurons leading to increased tissue IGF-I levels might be a novel therapeutic strategy for various pathologic conditions.
-
-
-
Small Molecules ATP-Competitive Inhibitors of FLT3: A Chemical Overview
Authors: S. Schenone, C. Brullo and M. BottaFLT3 is a tyrosine kinase (TK), member of the class III TK receptor family, normally expressed in hematopoietic, immune and neural systems, also playing an important role in the pathogenesis of acute leukemias, particularly acute myeloid leukemia (AML), where it is present in constitutively activated mutated forms, correlated with poor prognosis, in a notable percentage of patients. For these reasons FLT3 soon appeared as a promising target for the therapeutic intervention for this severe and aggressive malignancy; the recent determination of the crystal structure of the autoinhibited form of FLT3 gave new trend for the design and the synthesis of potent inhibitors. Small molecules tyrosine kinase inhibitors represent one of the largest drug family currently targeted by pharmaceutical companies for the treatment of cancer. Exciting examples of such molecules have reached advanced clinical trials and have been recently approved by FDA for the treatment of different solid or haematological tumors. Usually TK inhibitors share common features, namely two hydrophobic/aromatic regions bearing one or more hydrogen bonding substituents. These two regions can be connected by different spacers and almost all the molecules contain a component resembling the ATP purine structure. This review will deal with FLT3 synthetic inhibitors, reporting not only the most important molecules that are in clinical trials, but also the new compounds that have appeared in literature in the last few years. Our attention will be focused on chemical structures, mechanisms of action and structure-activity relationships.
-
-
-
Regeneration of the Gastric Mucosa and its Glands from Stem Cells
More LessMucous epithelia and their glands represent vital surfaces of the body which are topologically in direct contact and communicate with the environment. These highly specialized epithelia are protected by several lines of defence, such as mucous gels, regeneration and repair mechanisms, and acute inflammatory processes. Pathologically, chronic inflammation is associated with cancer. There are two different regeneration and repair mechanisms of mucous epithelia known which also cover different time scales. First, rapid repair of superficial lesions via cell migration - a process called restitution - starts within minutes. Second, continuous regeneration via differentiation and proliferation of stem and progenitor cells is responsible for self-renewal within days to months. This article reviews molecular mechanisms responsible for the regeneration of various mucous epithelia with a special emphasis on the complex situation in the gastric mucosa and its glands. For example, the two gross types of gastric units, i.e., the fundic and the antral types, respectively, differ largely by their histology, regeneration rates and regeneration profiles. Currently, a rough picture is emerging on the molecular mechanisms behind including the characterization of different somatic stem cell types and stem cell signaling pathways. Furthermore, dysregulated regeneration is well known now as a cause of various metaplasias (reversible remodeling of epithelia) and cancer, with chronic inflammation playing a key role. Understanding the molecular mechanisms of regeneration and their dysregulation is essential for the development of new strategies for cancer prevention and therapy and it will also promote the emerging field of regenerative medicine and tissue engineering.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)