Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The hallmark of non-alcoholic fatty liver disease (NAFLD) is aberrant buildup of triglycerides (TGs) in hepatocytes. Many genes promote NAFLD development. Using bioinformatics tools, we investigated the possible effect of statins on genes involved in NAFLD progression.

Methods

Protein interactions of statins and NAFLD were searched in gene-drug and gene-disease databases. A Protein-Protein interaction (PPI) network was constructed to find hub genes and Molecular Complex Detection (MCODE) of NAFLD-related genes. Shared protein targets between protein targets of statins and NAFLD-associated genes were identified. Next, targets of each statin were assayed with all modular clusters in the MCODEs related to NAFLD. Biological process and pathway enrichment analysis for shared proteins was performed.

Results

Screening protein targets for conventional statins and curated NAFLD-related genes identified 343 protein targets and 70 genes, respectively. A Venn diagram of NAFLD-related genes and protein targets of statins showed 24 shared proteins. The biological pathways on KEGG enrichment associated with the 24 shared protein sets were evaluated and included cytokine-cytokine receptor interaction, adipocytokine, PPAR, TNF and AMPK signaling pathways. Gene Ontology analysis showed major involvement in lipid metabolic process regulation and inflammatory response. PPI network analysis of 70 protein targets indicated 13 hub genes (PPARA, IL4, CAT, LEP, SREBF1, PRKCA, CYP2E1, NFE2L2, PTEN, NR1H4, ADIPOQ, GSTP1 and TGFB1). Comparing all seven statins with the three MCODE clusterings and 13 hub genes revealed that simvastatin as the most associated statin with NAFLD.

Conclusion

Simvastatin has the most impact on NAFLD-related genes versus other statins.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230829164832
2023-10-12
2025-04-06
Loading full text...

Full text loading...

References

  1. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.2843126707365
    [Google Scholar]
  2. MahmoudiA. ButlerA.E. JamialahmadiT. SahebkarA. The role of exosomal miRNA in nonalcoholic fatty liver disease.J. Cell. Physiol.202223742078209410.1002/jcp.3069935137416
    [Google Scholar]
  3. ZhouF. ZhouJ. WangW. ZhangX.J. JiY.X. ZhangP. SheZ.G. ZhuL. CaiJ. LiH. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis.Hepatology20197041119113310.1002/hep.3070231070259
    [Google Scholar]
  4. AllenA.M. TherneauT.M. LarsonJ.J. CowardA. SomersV.K. KamathP.S. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: A 20 year-community study.Hepatology20186751726173610.1002/hep.2954628941364
    [Google Scholar]
  5. MahmoudiA. MoallemS.A. JohnstonT.P. SahebkarA. Liver protective effect of fenofibrate in NASH/NAFLD animal models.PPAR Res.2022202211210.1155/2022/580539835754743
    [Google Scholar]
  6. FougeratA. MontagnerA. LoiseauN. GuillouH. WahliW. Peroxisome proliferator-activated receptors and their novel ligands as candidates for the treatment of non-alcoholic fatty liver disease.Cells202097163810.3390/cells907163832650421
    [Google Scholar]
  7. Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and its management. Nutr. Clin. Pract., 2020, 35(1), 72-84.10.1002/ncp.1044931840865
  8. BagherniyaM. NobiliV. BlessoC.N. SahebkarA. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review.Pharmacol. Res.201813021324010.1016/j.phrs.2017.12.02029287685
    [Google Scholar]
  9. Mahjoubin-TehranM. De VincentisA. MikhailidisD.P. AtkinS.L. MantzorosC.S. JamialahmadiT. SahebkarA. Non-alcoholic fatty liver disease and steatohepatitis: State of the art on effective therapeutics based on the gold standard method for diagnosis.Mol. Metab.20215010104910.1016/j.molmet.2020.10104932673798
    [Google Scholar]
  10. MoosavianS.A. SathyapalanT. JamialahmadiT. SahebkarA. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: a state-of-the-art review.Bioinorg. Chem. Appl.202120211310.1155/2021/4041415
    [Google Scholar]
  11. RanjbarG. MikhailidisD.P. SahebkarA. Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: Think out of the box!Metabolism201910115400110.1016/j.metabol.2019.15400131672448
    [Google Scholar]
  12. RezaeiS. TabriziR. Nowrouzi-SohrabiP. JalaliM. AtkinS.L. Al-RasadiK. GLP-1 receptor agonist effects on lipid and liver profiles in patients with nonalcoholic fatty liver disease: Systematic review and meta-analysis.Can. J. Gastroenterol. Hepatol.20212021
    [Google Scholar]
  13. ManneV. HandaP. KowdleyK.V. Pathophysiology of nonalcoholic fatty liver disease/Nonalcoholic steatohepatitis.Clin. Liver Dis.2018221233710.1016/j.cld.2017.08.00729128059
    [Google Scholar]
  14. MahmoudiA. ButlerA.E. MajeedM. BanachM. SahebkarA. Investigation of the effect of curcumin on protein targets in NAFLD using bioinformatic analysis.Nutrients2022147133110.3390/nu1407133135405942
    [Google Scholar]
  15. MahmoudiA. ButlerA.E. JamialahmadiT. SahebkarA. Target deconvolution of fenofibrate in nonalcoholic fatty liver disease using bioinformatics analysis.BioMed Res. Int.2021202111410.1155/2021/365466034988225
    [Google Scholar]
  16. MahmoudiA. JamialahmadiT. JohnstonT.P. SahebkarA. Impact of fenofibrate on NAFLD/NASH: A genetic perspective.Drug Discov. Today20222782363237210.1016/j.drudis.2022.05.00735569762
    [Google Scholar]
  17. SookoianS. PirolaC.J. Precision medicine in nonalcoholic fatty liver disease: New therapeutic insights from genetics and systems biology.Clin. Mol. Hepatol.202026446147510.3350/cmh.2020.013632906228
    [Google Scholar]
  18. NobiliV AlisiA. NAFLD in children: new genes, new diagnostic modalities and new drugs.201916951753010.1038/s41575‑019‑0169‑z
    [Google Scholar]
  19. MisraV.L. KhashabM. ChalasaniN. Nonalcoholic fatty liver disease and cardiovascular risk.Curr. Gastroenterol. Rep.2009111505510.1007/s11894‑009‑0008‑419166659
    [Google Scholar]
  20. PoseE. TrebickaJ. MookerjeeR.P. AngeliP. GinèsP. Statins: Old drugs as new therapy for liver diseases?J. Hepatol.201970119420210.1016/j.jhep.2018.07.01930075229
    [Google Scholar]
  21. Martin-RuizE. Olry-de-Labry-LimaA. Ocaña-RiolaR. EpsteinD. Systematic review of the effect of adherence to statin treatment on critical cardiovascular events and mortality in primary prevention.J. Cardiovasc. Pharmacol. Ther.201823320021510.1177/107424841774535729343082
    [Google Scholar]
  22. PasinL. LandoniG. CastroM.L. CabriniL. BellettiA. FeltraccoP. FincoG. CarozzoA. ChiesaR. ZangrilloA. The effect of statins on mortality in septic patients: A meta-analysis of randomized controlled trials.PLoS One2013812e8277510.1371/journal.pone.008277524391721
    [Google Scholar]
  23. SahebkarA. WattsG.F. New LDL-cholesterol lowering therapies: Pharmacology, clinical trials, and relevance to acute coronary syndromes.Clin. Ther.20133581082109810.1016/j.clinthera.2013.06.01923932550
    [Google Scholar]
  24. SahebkarA. WattsG.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect?Cardiovasc. Drugs Ther.201327655956710.1007/s10557‑013‑6479‑423913122
    [Google Scholar]
  25. NurmohamedN.S. NavarA.M. KasteleinJ.J.P. New and emerging therapies for reduction of LDL-Cholesterol and apolipoprotein B.J. Am. Coll. Cardiol.202177121564157510.1016/j.jacc.2020.11.07933766264
    [Google Scholar]
  26. Cholesterol treatment trialists’ collaboration. Effect of statin therapy on muscle symptoms: An individual participant data meta-analysis of large-scale, randomised, double-blind trials.Lancet20224001035583284510.1016/S0140‑6736(22)01545‑836049498
    [Google Scholar]
  27. WardN.C. WattsG.F. EckelR.H. Statin toxicity.Circ. Res.2019124232835010.1161/CIRCRESAHA.118.31278230653440
    [Google Scholar]
  28. BanachM. SerbanC. UrsoniuS. RyszJ. MuntnerP. TothP.P. JonesS.R. RizzoM. GlasserS.P. WattsG.F. BlumenthalR.S. LipG.Y.H. MikhailidisD.P. SahebkarA. Statin therapy and plasma coenzyme Q10 concentrations-A systematic review and meta-analysis of placebo-controlled trials.Pharmacol. Res.20159932933610.1016/j.phrs.2015.07.00826192349
    [Google Scholar]
  29. FongC.W. Statins in therapy: Understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies.Eur. J. Med. Chem.20148566167410.1016/j.ejmech.2014.08.03725128668
    [Google Scholar]
  30. MahmoudiA. HeydariS. MarkinaY.V. BarretoG.E. SahebkarA. Role of statins in regulating molecular pathways following traumatic brain injury: A system pharmacology study.Biomed. Pharmacother.202215311330410.1016/j.biopha.2022.11330435724514
    [Google Scholar]
  31. BahramiA. BoS. JamialahmadiT. SahebkarA. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms.Ageing Res. Rev.20205810102410.1016/j.arr.2020.10102432006687
    [Google Scholar]
  32. DehnaviS. KianiA. SadeghiM. BireganiA.F. BanachM. AtkinS.L. JamialahmadiT. SahebkarA. Targeting AMPK by statins: A potential therapeutic approach.Drugs202181892393310.1007/s40265‑021‑01510‑433939118
    [Google Scholar]
  33. SohrevardiS. NasabF. MirjaliliM. BagherniyaM. TaftiA. JarrahzadehM. AzarpazhoohM. SaeidmaneshM. BanachM. JamialahmadiT. SahebkarA. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial.Arch. Med. Sci.20191751423142810.5114/aoms.2019.8933034522273
    [Google Scholar]
  34. MahmoudiA. AtkinS.L. JamialahmadiT. SahebkarA. Identification of key upregulated genes involved in foam cell formation and the modulatory role of statin therapy.Int. Immunopharmacol.202311911020910.1016/j.intimp.2023.11020937130442
    [Google Scholar]
  35. BlandA.R. PayneF.M. AshtonJ.C. JamialahmadiT. SahebkarA. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury.Pharmacol. Res.202217510598610.1016/j.phrs.2021.10598634800627
    [Google Scholar]
  36. ParizadehS.M.R. AzarpazhoohM.R. MoohebatiM. NematyM. Ghayour-MobarhanM. TavallaieS. RahseparA.A. AminiM. SahebkarA. MohammadiM. FernsG.A.A. Simvastatin therapy reduces prooxidant-antioxidant balance: results of a placebo-controlled cross-over trial.Lipids201146433334010.1007/s11745‑010‑3517‑x21207250
    [Google Scholar]
  37. SahebkarA. SerbanC. MikhailidisD.P. UndasA. LipG.Y.H. MuntnerP. BittnerV. RayK.K. WattsG.F. HovinghG.K. RyszJ. KasteleinJ.J. BanachM. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials.Thromb. Haemost.2015114354655726017749
    [Google Scholar]
  38. FerrettiG. BacchettiT. SahebkarA. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials.Prog. Lipid Res.201560507310.1016/j.plipres.2015.08.00326416579
    [Google Scholar]
  39. KhalifehM. PensonP. BanachM. SahebkarA. Statins as anti-pyroptotic agents.Arch. Med. Sci.20211751414141710.5114/aoms/14115534522271
    [Google Scholar]
  40. SahebkarA. KotaniK. SerbanC. UrsoniuS. MikhailidisD.P. JonesS.R. RayK.K. BlahaM.J. RyszJ. TothP.P. MuntnerP. LipG.Y.H. BanachM. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials.Atherosclerosis2015241243344210.1016/j.atherosclerosis.2015.05.02226074317
    [Google Scholar]
  41. LeeJ.I. LeeH.W. LeeK.S. LeeH.S. ParkJ.Y. Effects of statin use on the development and progression of nonalcoholic fatty liver disease: A nationwide nested case-control study.Am. J. Gastroenterol.2021116111612410.14309/ajg.000000000000084533027082
    [Google Scholar]
  42. NascimbeniF. Aron-WisnewskyJ. PaisR. TordjmanJ. PoitouC. CharlotteF. BedossaP. PoynardT. ClémentK. RatziuV. Statins, antidiabetic medications and liver histology in patients with diabetes with non-alcoholic fatty liver disease.BMJ Open Gastroenterol.201631e00007510.1136/bmjgast‑2015‑00007527110380
    [Google Scholar]
  43. DongiovanniP. PettaS. MannistoV. MancinaR.M. PipitoneR. KarjaV. MaggioniM. KakelaP. WiklundO. MozziE. GrimaudoS. KaminskaD. RamettaR. CraxiA. FargionS. NobiliV. RomeoS. PihlajamakiJ. ValentiL. Statin use and non-alcoholic steatohepatitis in at risk individuals.J. Hepatol.201563370571210.1016/j.jhep.2015.05.00625980762
    [Google Scholar]
  44. MahmoudiA. AtkinS.L. NikiforovN.G. SahebkarA. Therapeutic role of curcumin in diabetes: An analysis based on bioinformatic findings.Nutrients20221415324410.3390/nu1415324435956419
    [Google Scholar]
  45. MahmoudiA. ButlerA.E. BanachM. JamialahmadiT. SahebkarA. Identification of potent small-molecule pcsk9 inhibitors based on quantitative structure-activity relationship, pharmacophore modeling, and molecular docking procedure.Curr. Probl. Cardiol.202348610166010.1016/j.cpcardiol.2023.10166036841313
    [Google Scholar]
  46. FreshourS.L. KiwalaS. CottoK.C. CoffmanA.C. McMichaelJ.F. SongJ.J. GriffithM. GriffithO.L. WagnerA.H. Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts.Nucleic Acids Res.202149D1D1144D115110.1093/nar/gkaa108433237278
    [Google Scholar]
  47. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D85531680165
    [Google Scholar]
  48. XieZ. BaileyA. KuleshovM.V. ClarkeD.J.B. EvangelistaJ.E. JenkinsS.L. LachmannA. WojciechowiczM.L. KropiwnickiE. JagodnikK.M. JeonM. Ma’ayanA. Gene set knowledge discovery with enrichr.Curr. Protoc.202113e9010.1002/cpz1.9033780170
    [Google Scholar]
  49. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  50. Sharma, P.K.; Yadav, I.S. Biological databases and their application. In: Bioinformatics: Methods and Applications. Elsevier, 2022; pp. 17-31.10.1016/B978‑0‑323‑89775‑4.00021‑3
  51. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx. Chemical biology.Springer2015243250
    [Google Scholar]
  52. FranzM. RodriguezH. LopesC. ZuberiK. MontojoJ. BaderG.D. MorrisQ. GeneMANIA update 2018.Nucleic Acids Res.201846W1W60W6410.1093/nar/gky31129912392
    [Google Scholar]
  53. KasperP. MartinA. LangS. KüttingF. GoeserT. DemirM. SteffenH.M. NAFLD and cardiovascular diseases: A clinical review.Clin. Res. Cardiol.2021110792193710.1007/s00392‑020‑01709‑732696080
    [Google Scholar]
  54. Medina-SantillánR. López-VelázquezJ.A. Chávez-TapiaN. Torres-VillalobosG. UribeM. Méndez-SánchezN. Hepatic manifestations of metabolic syndrome.Diabetes Metab. Res. Rev.2013dmrr.241010.1002/dmrr.241023471889
    [Google Scholar]
  55. MantovaniA. DalbeniA. Treatments for NAFLD: State of art.Int. J. Mol. Sci.2021225235010.3390/ijms2205235033652942
    [Google Scholar]
  56. Torres-PeñaJ.D. Martín-PiedraL. Fuentes-JiménezF. Statins in non-alcoholic steatohepatitis.Front. Cardiovasc. Med.2021877713110.3389/fcvm.2021.77713134901236
    [Google Scholar]
  57. ParkH.S. JangJ.E. KoM.S. WooS.H. KimB.J. KimH.S. Statins increase mitochondrial and peroxisomal fatty acid oxidation in the liver and prevent non-alcoholic steatohepatitis in mice. Diabetes Metab. J.201640537638510.4093/dmj.2016.40.5.37627098507
    [Google Scholar]
  58. AhsanF. OliveriF. GoudH.K. MehkariZ. MohammedL. JavedM. AlthwanayA. RutkofskyI.H. Pleiotropic effects of statins in the light of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.Cureus2020129e1044610.7759/cureus.1044633072455
    [Google Scholar]
  59. AlGhamdiT.S. Statins for patients with non-alcoholic fatty liver disease.J. Clin. Endocrinol. Metab.2020106162166
    [Google Scholar]
  60. PastoriD. PaniA. Di RoccoA. MenichelliD. GazzanigaG. FarcomeniA. D’ErasmoL. AngelicoF. Del BenM. BarattaF. Statin liver safety in non-alcoholic fatty liver disease: A systematic review and metanalysis.Br. J. Clin. Pharmacol.202288244145110.1111/bcp.1494334133035
    [Google Scholar]
  61. BoutariC. PappasP.D. AnastasilakisD. MantzorosC.S. Statins’ efficacy in non-alcoholic fatty liver disease: A systematic review and meta-analysis.Clin. Nutr.202241102195220610.1016/j.clnu.2022.08.00136081293
    [Google Scholar]
  62. LiuL. LiuC. ZhaoM. ZhangQ. LuY. LiuP. The pharmacodynamic and differential gene expression analysis of PPAR α/δ agonist GFT505 in CDAHFD-induced NASH model.PloS One.202015120243911
    [Google Scholar]
  63. XiaJ. YuanJ. XinL. ZhangY. KongS. ChenY. Transcriptome analysis on the inflammatory cell infiltration of nonalcoholic steatohepatitis in bama minipigs induced by a long-term high-fat, high-sucrose diet.PloS one201491111372410.1371/journal.pone.0113724
    [Google Scholar]
  64. HuaC. LiY. LiuY. LiuH. LiN. WuY. XuL. HuangY. Rapid response to lipids profile and leukocyte gene expression after rosuvastatin administration in Chinese healthy volunteers.Chin. Med. J.2008121131215121910.1097/00029330‑200807010‑0001318710642
    [Google Scholar]
  65. NakamuraK. MasudaH. KariyazonoH. ArimaJ. IguroY. YamadaK. SakataR. Effects of atorvastatin and aspirin combined therapy on inflammatory responses in patients undergoing coronary artery bypass grafting.Cytokine2006365-620121010.1016/j.cyto.2006.11.00117300951
    [Google Scholar]
  66. BahramiA. ParsamaneshN. AtkinS.L. BanachM. SahebkarA. Effect of statins on toll-like receptors: A new insight to pleiotropic effects.Pharmacol. Res.201813523023810.1016/j.phrs.2018.08.01430120976
    [Google Scholar]
  67. KoushkiK. ShahbazS.K. MashayekhiK. SadeghiM. ZayeriZ.D. TabaM.Y. BanachM. Al-RasadiK. JohnstonT.P. SahebkarA. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways.Clin. Rev. Allergy Immunol.202160217519910.1007/s12016‑020‑08791‑932378144
    [Google Scholar]
  68. WangB.F. WangY. AoR. TongJ. WangB.Y. AdipoQ T45 G and G276 T polymorphisms and susceptibility to nonalcoholic fatty liver disease among Asian populations: A meta-analysis and meta-regression.J. Clin. Lab. Anal.2016301475710.1002/jcla.2181425385252
    [Google Scholar]
  69. LiuM. LiuS. ShangM. LiuX. WangY. LiQ. Association between ADIPOQ G276T and C11377G polymorphisms and the risk of non-alcoholic fatty liver disease: An updated meta-analysis.201975624
    [Google Scholar]
  70. Mantovani, A.; Zusi, C.; Csermely, A.; Salvagno, G.L.; Colecchia, A.; Lippi, G.; Maffeis, C.; Targher, G. Association between lower plasma adiponectin levels and higher liver stiffness in type 2 diabetic individuals with nonalcoholic fatty liver disease: An observational cross-sectional study. Hormones (Athens), 2022, 21(3), 477-486. 10.1007/s42000‑022‑00387‑635831700
  71. GasbarrinoK. HafianeA. ZhengH. DaskalopoulouS.S. Intensive statin therapy compromises the adiponectin-adipor pathway in the human monocyte-macrophage lineage.Stroke201950123609361710.1161/STROKEAHA.119.02628031648632
    [Google Scholar]
  72. KurogiK. SugiyamaS. SakamotoK. TayamaS. NakamuraS. BiwaT. MatsuiK. OgawaH. Comparison of pitavastatin with atorvastatin in increasing HDL-cholesterol and adiponectin in patients with dyslipidemia and coronary artery disease: The COMPACT-CAD study.J. Cardiol.2013622879410.1016/j.jjcc.2013.03.00823672789
    [Google Scholar]
  73. DuboisV. EeckhouteJ. LefebvreP. StaelsB. Distinct but complementary contributions of PPAR isotypes to energy homeostasis.J. Clin. Invest.201712741202121410.1172/JCI8889428368286
    [Google Scholar]
  74. MirzaA.Z. AlthagafiI.I. ShamshadH. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications.Eur. J. Med. Chem.201916650251310.1016/j.ejmech.2019.01.06730739829
    [Google Scholar]
  75. KumarD.P. CaffreyR. MarioneauxJ. SanthekadurP.K. BhatM. AlonsoC. KoduruS.V. PhilipB. JainM.R. GiriS.R. BedossaP. SanyalA.J. The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease.Sci. Rep.2020101933010.1038/s41598‑020‑66458‑z32518275
    [Google Scholar]
  76. BoeckmansJ. NataleA. RombautM. BuylK. RogiersV. De KockJ. Anti-NASH drug development hitches a lift on PPAR agonism.Cells2020913710.3390/cells9010037
    [Google Scholar]
  77. Westerouen Van MeeterenM.J. DrenthJ.P.H. TjwaE.T.T.L. Elafibranor: A potential drug for the treatment of nonalcoholic steatohepatitis (NASH).Expert Opin. Investig. Drugs202029211712310.1080/13543784.2020.166837531523999
    [Google Scholar]
  78. HuN. ChenC. WangJ. HuangJ. YaoD. LiC. Atorvastatin ester regulates lipid metabolism in hyperlipidemia rats via the PPAR-signaling pathway and HMGCR expression in the liver.Int. J. Mol. Sci.202122201110710.3390/ijms22201110734681767
    [Google Scholar]
  79. JiangY. ZhangY. ZhangH. ZhuB. LiP. LuC. XuY. ChenW. LinN. Pravastatin prevents steroid-induced osteonecrosis in rats by suppressing PPARγ expression and activating Wnt signaling pathway.Exp. Biol. Med.2014239334735510.1177/153537021351921524510055
    [Google Scholar]
  80. WangC. TangT. WangY. NieX. LiK. Simvastatin affects the PPARα signaling pathway and causes oxidative stress and embryonic development interference in mugilogobius abei.Aquat. Toxicol.202123910595110.1016/j.aquatox.2021.10595134467877
    [Google Scholar]
  81. MotojimaK. PassillyP. PetersJ.M. GonzalezF.J. LatruffeN. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner.J. Biol. Chem.199827327167101671410.1074/jbc.273.27.167109642225
    [Google Scholar]
  82. PettinelliP. VidelaL.A. Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction.J. Clin. Endocrinol. Metab.20119651424143010.1210/jc.2010‑212921325464
    [Google Scholar]
  83. NakamutaM. KohjimaM. MorizonoS. KotohK. YoshimotoT. MiyagiI. EnjojiM. Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.Int. J. Mol. Med.200516463163516142397
    [Google Scholar]
  84. Skat-RørdamJ. Højland IpsenD. LykkesfeldtJ. Tveden-NyborgP. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease.Basic Clin. Pharmacol. Toxicol.2019124552853710.1111/bcpt.1319030561132
    [Google Scholar]
  85. LissK.H.H. FinckB.N. PPARs and nonalcoholic fatty liver disease.Biochimie2017136657410.1016/j.biochi.2016.11.00927916647
    [Google Scholar]
  86. LuS WangY LiuJ. Tumor necrosis factor-α signaling in nonalcoholic steatohepatitis and targeted therapies.J. Genet. Genomics2021494269278
    [Google Scholar]
  87. ParameswaranN. PatialS. Tumor necrosis factor-α signaling in macrophages.Crit. Rev. Eukaryot. Gene Expr.20102028710310.1615/CritRevEukarGeneExpr.v20.i2.1021133840
    [Google Scholar]
  88. HolbrookJ. Lara-ReynaS. Jarosz-GriffithsH. Tumour necrosis factor signalling in health and disease.F1000Res.2019811110.12688/f1000research.17023.1
    [Google Scholar]
  89. WandrerF. LiebigS. MarhenkeS. VogelA. JohnK. MannsM.P. TeufelA. ItzelT. LongerichT. MaierO. FischerR. KontermannR.E. PfizenmaierK. Schulze-OsthoffK. BantelH. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice.Cell Death Dis.202011321210.1038/s41419‑020‑2411‑632235829
    [Google Scholar]
  90. HuiJ.M. HodgeA. FarrellG.C. KenchJ.G. KriketosA. GeorgeJ. Beyond insulin resistance in NASH: TNF-? or adiponectin?Hepatology2004401465410.1002/hep.2028015239085
    [Google Scholar]
  91. WellenK.E. HotamisligilG.S. Inflammation, stress, and diabetes.J. Clin. Invest.200511551111111910.1172/JCI2510215864338
    [Google Scholar]
  92. UysalK.T. WiesbrockS.M. MarinoM.W. HotamisligilG.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function.Nature1997389665161061410.1038/393359335502
    [Google Scholar]
  93. CrespoJ. CayónA. Fernández-GilP. Hernández-GuerraM. MayorgaM. Domínguez-DíezA. Fernández-EscalanteJ.C. Pons-RomeroF. Gene expression of tumor necrosis factor [alpha] and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients.Hepatology20013461158116310.1053/jhep.2001.2962811732005
    [Google Scholar]
  94. TomitaK. TamiyaG. AndoS. OhsumiK. ChiyoT. MizutaniA. KitamuraN. TodaK. KanekoT. HorieY. HanJ.Y. KatoS. ShimodaM. OikeY. TomizawaM. MakinoS. OhkuraT. SaitoH. KumagaiN. NagataH. IshiiH. HibiT. Tumour necrosis factor signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.Gut200655341542410.1136/gut.2005.07111816174657
    [Google Scholar]
  95. ZhaoG. YuY.M. KanekiM. BonabA.A. TompkinsR.G. FischmanA.J. Simvastatin reduces burn injury-induced splenic apoptosis via downregulation of the TNF-α/NF-κB pathway.Ann. Surg.201526151006101210.1097/SLA.000000000000076424950285
    [Google Scholar]
  96. YounossiZ.M. HenryL. BushH. MishraA. Clinical and economic burden of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.Clin. Liver Dis.201822111010.1016/j.cld.2017.08.00129128049
    [Google Scholar]
  97. BuzzettiE. PinzaniM. TsochatzisE.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).Metabolism20166581038104810.1016/j.metabol.2015.12.01226823198
    [Google Scholar]
  98. LiuL. YinH. HaoX. SongH. ChaiJ. DuanH. ChangY. YangL. WuY. HanS. WangX. YueX. ChiY. LiuW. WangQ. WangH. BaiH. ShiX. LiS. Down-Regulation of miR-301a-3p reduces burn-induced vascular endothelial apoptosis by potentiating hMSC-Secreted IGF-1 and PI3K/Akt/FOXO3a Pathway.iScience202023810138310.1016/j.isci.2020.10138332745988
    [Google Scholar]
  99. GarciaD. HellbergK. ChaixA. WallaceM. HerzigS. BadurM.G. LinT. ShokhirevM.N. PintoA.F.M. RossD.S. SaghatelianA. PandaS. DowL.E. MetalloC.M. ShawR.J. Genetic liver-specific ampk activation protects against diet-induced obesity and NAFLD.Cell Rep.2019261192208.e610.1016/j.celrep.2018.12.03630605676
    [Google Scholar]
  100. LiangW. MenkeA.L. DriessenA. KoekG.H. LindemanJ.H. StoopR. HavekesL.M. KleemannR. van den HoekA.M. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology.PLoS One2014912e11592210.1371/journal.pone.011592225535951
    [Google Scholar]
  101. HerzigS. ShawR.J. AMPK: Guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.201819212113510.1038/nrm.2017.9528974774
    [Google Scholar]
  102. SmithB.K. MarcinkoK. DesjardinsE.M. LallyJ.S. FordR.J. SteinbergG.R. Treatment of nonalcoholic fatty liver disease: Role of AMPK.Am. J. Physiol. Endocrinol. Metab.20163114E730E74010.1152/ajpendo.00225.201627577854
    [Google Scholar]
  103. DinizT.A. de Lima JuniorE.A. TeixeiraA.A. BiondoL.A. da RochaL.A.F. ValadãoI.C. SilveiraL.S. Cabral-SantosC. de SouzaC.O. Rosa NetoJ.C. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice.Life Sci.202126611886810.1016/j.lfs.2020.11886833310034
    [Google Scholar]
  104. LiZ. LiJ. MiaoX. CuiW. MiaoL. CaiL. A minireview: Role of AMP-activated protein kinase (AMPK) signaling in obesity-related renal injury.Life Sci.202126511882810.1016/j.lfs.2020.11882833253722
    [Google Scholar]
  105. ZhangJ. YangZ. XieL. XuL. XuD. LiuX. Statins, autophagy and cancer metastasis.Int. J. Biochem. Cell Biol.201345374575210.1016/j.biocel.2012.11.00123147595
    [Google Scholar]
  106. TimmK.N. TylerD.J. The Role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity.Cardiovasc. Drugs Ther.202034225526910.1007/s10557‑020‑06941‑x32034646
    [Google Scholar]
  107. KimK.Y. JangH.J. YangY.R. ParkK.I. SeoJ. ShinI.W. JeonT.I. AhnS. SuhP.G. OsborneT.F. SeoY.K. SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy.Sci. Rep.2016613573210.1038/srep3573227767079
    [Google Scholar]
  108. Rodrigues, G.; Moreira, A.J.; Bona, S.; Schemitt, E.; Marroni, C.A.; Di Naso, F.C.; Dias, A.S.; Pires, T.R.; Picada, J.N.; Marroni, N.P. Simvastatin reduces hepatic oxidative stress and endoplasmic reticulum stress in nonalcoholic steatohepatitis experimental model. Oxid. Med. Cell Longev., 2019, 3201873.10.1155/2019/320187331316716
  109. AbelT. FehérJ. DinyaE. EldinM.G. KovácsA. Safety and efficacy of combined ezetimibe/simvastatin treatment and simvastatin monotherapy in patients with non-alcoholic fatty liver disease.Med. Sci. Monit.20091512MS6MS1119946244
    [Google Scholar]
  110. DerosaG. MugelliniA. PesceR.M. D’AngeloA. MaffioliP. Perindopril and barnidipine alone or combined with simvastatin on hepatic steatosis and inflammatory parameters in hypertensive patients.Eur. J. Pharmacol.2015766313610.1016/j.ejphar.2015.09.03026407654
    [Google Scholar]
  111. SchierwagenR. MaybüchenL. HittatiyaK. KleinS. UschnerF.E. BragaT.T. FranklinB.S. NickenigG. StrassburgC.P. PlatJ. SauerbruchT. LatzE. LütjohannD. ZimmerS. TrebickaJ. Statins improve NASH via inhibition of RhoA and Ras.Am. J. Physiol. Gastrointest. Liver Physiol.20163114G724G73310.1152/ajpgi.00063.201627634010
    [Google Scholar]
  112. WangW. ZhaoC. ZhouJ. ZhenZ. WangY. ShenC. Simvastatin ameliorates liver fibrosis via mediating nitric oxide synthase in rats with non-alcoholic steatohepatitis-related liver fibrosis.PLoS One2013810e7653810.1371/journal.pone.007653824098525
    [Google Scholar]
  113. AlkhatatbehM.J. LinczL.F. ThorneR.F. Low simvastatin concentrations reduce oleic acid-induced steatosis in HepG2 cells: An in vitro model of non-alcoholic fatty liver disease.Exp. Ther. Med.20161141487149210.3892/etm.2016.306927073470
    [Google Scholar]
  114. AthyrosV.G. BoutariC. StavropoulosK. AnagnostisP. ImprialosK.P. DoumasM. KaragiannisA. Statins: An under-appreciated asset for the prevention and the treatment of NAFLD or NASH and the related cardiovascular risk.Curr. Vasc. Pharmacol.201816324625310.2174/157016111566617062108291028676019
    [Google Scholar]
  115. YingL. YanF. ZhaoY. GaoH. WilliamsB.R.G. HuY. LiX. TianR. XuP. WangY. (-)-Epigallocatechin-3-gallate and atorvastatin treatment down-regulates liver fibrosis-related genes in non-alcoholic fatty liver disease.Clin. Exp. Pharmacol. Physiol.201744121180119110.1111/1440‑1681.1284428815679
    [Google Scholar]
  116. FosterT. BudoffM.J. SaabS. AhmadiN. GordonC. GuerciA.D. Atorvastatin and antioxidants for the treatment of nonalcoholic fatty liver disease: the St Francis Heart Study randomized clinical trial.Am. J. Gastroenterol.20111061717710.1038/ajg.2010.29920842109
    [Google Scholar]
  117. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  118. SiddiquiM.T. AminH. GargR. ChadalavadaP. Al-YamanW. LopezR. SinghA. Medications in type-2 diabetics and their association with liver fibrosis.World J. Gastroenterol.202026233249325910.3748/wjg.v26.i23.324932684739
    [Google Scholar]
  119. VilàL. RebolloA. AđalsteissonG.S. AlegretM. MerlosM. RoglansN. LagunaJ.C. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment.Toxicol. Appl. Pharmacol.20112511324010.1016/j.taap.2010.11.01121122807
    [Google Scholar]
  120. JaliliR. SomiM.H. HosseinifardH. SalehniaF. GhojazadehM. MakhdamiN. The evaluation of effective drugs for the treatment of non-alcoholic fatty liver disease: A systematic review and network meta-analysis.Adv. Pharm. Bull.202010454255510.34172/apb.2020.065
    [Google Scholar]
  121. SfikasG. PsallasM. KoumarasC. ImprialosK. PerdikakisE. DoumasM. GioulemeO. KaragiannisA. AthyrosV.G. Prevalence, diagnosis, and treatment with 3 different statins of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis in military personnel. do genetics play a role?Curr. Vasc. Pharmacol.202119557258110.2174/18756212MTEweNjkfy33059580
    [Google Scholar]
  122. MihailaR.G. NedelcuL. FratilaO. ReziE.C. DomnariuC. DeacM. Effects of lovastatin and pentoxyphyllin in nonalcoholic steatohepatitis.Hepatogastroenterology200956931117112119760953
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230829164832
Loading
/content/journals/cmc/10.2174/0929867331666230829164832
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): database; gene ontology; KEGG; NAFLD; Statins; STITCH
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test