Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Selective Cyclin-Dependent Kinase 4/6 inhibitors (CDK4/6i) have revolutionized the treatment of breast cancer and have potential in other cancers, being manageable drugs yet with some bone marrow toxicity. Selective CDK9 inhibitors (CDK9i) never advanced into clinical use, partly due to side effects, including gastrointestinal toxicity, and a small window between activity and cytotoxicity, which results in a narrow therapeutic index (TI).

Methods

To overcome the drawbacks of CDK4/6 and CDK9 inhibitors, we have developed myrtleciclib, a selective CDK4/6/9 inhibitor with few non-critical molecular off-targets.

Results

Myrtleciclib appears to bind to an allosteric site, unlike all other CDK4/6i and CDK9i acting by an ATP-competitive mechanism, which supports target specificity. Myrtleciclib's anti-proliferative effects are greater and its Therapeutic Index (TI) is broader than CDK9 and CDK4/6-only inhibitors. This can be explained by a moderate target inhibition, resulting in limited cytotoxicity. Moreover, we documented a synergy between CDK9 and CDK4/6 pathways inhibition, justifying increased drug efficacy, yet such synergy can only be achieved when the inhibition of both CDK9 and CDK4/6 is embedded within the same molecule and balanced within a certain ratio, as it is the case with myrtleciclib. Unlike CDK4/6i, myrtleciclib also induces cell death and apoptosis selectively on cancer cell lines, not on bystander cells. Synergy between myrtleciclib and other drugs with complementary Mechanism of Action (MoA) has also been documented.

Conclusion

CDK4/6/9i might represent a new frontier in cancer treatment to overcome the limitations of CDK4/6i and CDK9i for the treatment of cancers, including aggressive cancers with high unmet needs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673298434240821101457
2024-09-02
2025-04-04
Loading full text...

Full text loading...

References

  1. LimS. KaldisP. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation.Development2013140153079309310.1242/dev.09174423861057
    [Google Scholar]
  2. EspinosaJ.M. Transcriptional CDKs in the spotlight.Transcription2019102454610.1080/21541264.2019.159747930946639
    [Google Scholar]
  3. Ghafouri-FardS. KhoshbakhtT. HussenB.M. DongP. GasslerN. TaheriM. BaniahmadA. DilmaghaniN.A. A review on the role of cyclin dependent kinases in cancers.Cancer Cell Int.202222132510.1186/s12935‑022‑02747‑z36266723
    [Google Scholar]
  4. BraalC.L. JongbloedE.M. WiltingS.M. MathijssenR.H.J. KoolenS.L.W. JagerA. Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: Similarities and differences.Drugs202181331733110.1007/s40265‑020‑01461‑233369721
    [Google Scholar]
  5. CejuelaM. Gil-TorralvoA. CastillaM.Á. Domínguez-CejudoM.Á. FalcónA. BenaventM. Molina-PineloS. Ruiz-BorregoM. Salvador BofillJ. Abemaciclib, palbociclib, and ribociclib in real-world data: A direct comparison of first-line treatment for endocrine-receptor-positive metastatic breast cancer.Int. J. Mol. Sci.20232410848810.3390/ijms2410848837239834
    [Google Scholar]
  6. Álvarez-FernándezM. MalumbresM. Mechanisms of sensitivity and resistance to CDK4/6 inhibition.Cancer Cell202037451452910.1016/j.ccell.2020.03.01032289274
    [Google Scholar]
  7. FasslA. GengY. SicinskiP. CDK4 and CDK6 kinases: From basic science to cancer therapy.Science20223756577eabc149510.1126/science.abc149535025636
    [Google Scholar]
  8. StanciuI.M. ParosanuA.I. NitipirC. An overview of the safety profile and clinical impact of CDK4/6 inhibitors in breast cancer-a systematic review of randomized phase II and III clinical trials.Biomolecules2023139142210.3390/biom1309142237759823
    [Google Scholar]
  9. AnshaboA.T. MilneR. WangS. AlbrechtH. CDK9: A comprehensive review of its biology, and its role as a potential target for anti-cancer agents.Front. Oncol.20211167855910.3389/fonc.2021.67855934041038
    [Google Scholar]
  10. ConstantinT.A. GreenlandK.K. Varela-CarverA. BevanC.L. Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer.Oncogene202241243303331510.1038/s41388‑022‑02347‑135568739
    [Google Scholar]
  11. MandalR. BeckerS. StrebhardtK. Targeting CDK9 for anti-cancer therapeutics.Cancers2021139218110.3390/cancers1309218134062779
    [Google Scholar]
  12. BaconC.W. D’OrsoI. CDK9: A signaling hub for transcriptional control.Transcription2019102577510.1080/21541264.2018.152366830227759
    [Google Scholar]
  13. BorowczakJ. SzczerbowskiK. AhmadiN. SzylbergŁ. CDK9 inhibitors in multiple myeloma: A review of progress and perspectives.Med. Oncol.20223943910.1007/s12032‑021‑01636‑135092513
    [Google Scholar]
  14. MorenoV. CordobaR. MorilloD. DiamondJ.R. HamdyA.M. IzumiR. MerzC. BoixO. GenvresseI. NowakowskiG.S. Safety and efficacy of VIP152, a CDK9 inhibitor, in patients with double-hit lymphoma (DHL).J. Clin. Oncol.20213915_suppl7538753810.1200/JCO.2021.39.15_suppl.7538
    [Google Scholar]
  15. StratiP. KimT.M. DanilovA.V. CheahC.Y. YoonD.H. JurczakW. SharmaS. YoonJ.L. ArduiniS. SaehJ. OlssonR.F. GregoryG. Phase 1b/2a study of AZD4573 (CDK9i) and acalabrutinib in patients with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL): Results from dose-escalation.Blood2022140Suppl. 16656665810.1182/blood‑2022‑165979
    [Google Scholar]
  16. ZhaoW. ZhangL. ZhangY. JiangZ. LuH. XieY. HanW. ZhaoW. HeJ. ShiZ. YangH. ChenJ. ChenS. LiZ. MaoJ. ZhouL. GaoX. LiW. TanG. ZhangB. WangZ. The CDK inhibitor AT7519 inhibits human glioblastoma cell growth by inducing apoptosis, pyroptosis and cell cycle arrest.Cell Death Dis.20231411110.1038/s41419‑022‑05528‑836624090
    [Google Scholar]
  17. ByrneM. FrattiniM.G. OttmannO.G. MantzarisI. WermkeM. LeeD.J. MorilloD. ScholzA. InceS. ValenciaR. SouzaF. CordobaR. PhaseI. Phase I study of the PTEFb inhibitor BAY 1251152 in patients with acute myelogenous leukemia.Blood2018132Suppl. 14055405510.1182/blood‑2018‑99‑117257
    [Google Scholar]
  18. ŁukasikP. Baranowska-BosiackaI. KulczyckaK. GutowskaI. Inhibitors of cyclin-dependent kinases: Types and their mechanism of action.Int. J. Mol. Sci.2021226280610.3390/ijms2206280633802080
    [Google Scholar]
  19. ChenP. LeeN.V. HuW. XuM. FerreR.A. LamH. BergqvistS. SolowiejJ. DiehlW. HeY.A. YuX. NagataA. VanArsdaleT. MurrayB.W. Spectrum and degree of CDK drug interactions predicts clinical performance.Mol. Cancer Ther.201615102273228110.1158/1535‑7163.MCT‑16‑030027496135
    [Google Scholar]
  20. LoriF. KériG. ChafouleasJ. De ForniD. SolinasA. VargaZ. GreffZ. Novel 4,6-disubstituted aminopyrimidine derivatives.W.O. Patent 2014031937 A1,2013
  21. DigiacomoG. FumarolaC. CretellaD. AlfieriR. La MonicaS. PetroniniP.G. BonelliM. CavazzoniA. Overcoming palbociclib resistance by combined treatment with PI3K/AKT/mTOR inhibitors in mesothelioma cells.J. Mol. Clin. Med.20181315115610.31083/j.jmcm.2018.03.004
    [Google Scholar]
  22. OpitzI. LardinoisD. ArniS. HillingerS. VogtP. OdermattB. RoussonV. WederW. Local recurrence model of malignant pleural mesothelioma for investigation of intrapleural treatment.Eur. J. Cardiothorac. Surg.200731577277810.1016/j.ejcts.2007.01.04717350855
    [Google Scholar]
  23. PrichardM.N. ShipmanC.Jr. A three-dimensional model to analyze drug-drug interactions.Antiviral Res.1990144-518120510.1016/0166‑3542(90)90001‑N2088205
    [Google Scholar]
  24. CavazzoniA. AlfieriR.R. CarmiC. ZulianiV. GalettiM. FumarolaC. FrazziR. BonelliM. BordiF. LodolaA. MorM. PetroniniP.G. Dual mechanisms of action of the 5-benzylidene-hydantoin UPR1024 on lung cancer cell lines.Mol. Cancer Ther.20087236137010.1158/1535‑7163.MCT‑07‑047718281519
    [Google Scholar]
  25. ChafouleasJ.G. BoltonW.E. MeansA.R. Potentiation of bleomycin lethality by anticalmodulin drugs: A role for calmodulin in DNA repair.Science198422446551346134810.1126/science.62031716203171
    [Google Scholar]
  26. LoriF. MalykhA. CaraA. SunD. WeinsteinJ.N. LisziewiczJ. GalloR.C. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication.Science1994266518680180510.1126/science.79736347973634
    [Google Scholar]
  27. MichelsJ. JohnsonP.W.M. PackhamG. Mcl-1.Int. J. Biochem. Cell Biol.200537226727110.1016/j.biocel.2004.04.00715474972
    [Google Scholar]
  28. LlanosS. MegiasD. Blanco-AparicioC. Hernández-EncinasE. RoviraM. PietrocolaF. SerranoM. Lysosomal trapping of palbociclib and its functional implications.Oncogene201938203886390210.1038/s41388‑019‑0695‑830692638
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673298434240821101457
Loading
/content/journals/cmc/10.2174/0109298673298434240821101457
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): apoptosis; breast cancer; CDK inhibitors; cell cycle; drug resistance; mesothelioma; myc; Myrtleciclib
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test