Skip to content
2000
Volume 31, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity.

Methods

This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed.

Conclusion

NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230818110812
2023-10-04
2025-01-15
Loading full text...

Full text loading...

References

  1. KroemerG. PouyssegurJ. Tumor cell metabolism: Cancer’s Achilles’ heel.Cancer Cell200813647248210.1016/j.ccr.2008.05.00518538731
    [Google Scholar]
  2. RevathideviS. MunirajanA.K. Akt in cancer: Mediator and more.Semin. Cancer Biol.201959809110.1016/j.semcancer.2019.06.00231173856
    [Google Scholar]
  3. NirmaladeviR. PaitalB. JayachandranP. PadmaP.R. NirmaladeviR. Epigenetic alterations in cancer.Front. Biosci.20202561058110910.2741/484732114424
    [Google Scholar]
  4. GPCRDatabase.Available from: https://gpcrdb.org/protein/nk1r_human (Accessed on: 22 December 2022). 2022
    [Google Scholar]
  5. VenkatakrishnanA.J. FlockT. PradoD.E. OatesM.E. GoughJ. Madan BabuM. Structured and disordered facets of the GPCR fold.Curr. Opin. Struct. Biol.20142712913710.1016/j.sbi.2014.08.00225198166
    [Google Scholar]
  6. WoottenD. ChristopoulosA. SextonP.M. Emerging paradigms in GPCR allostery: Implications for drug discovery.Nat. Rev. Drug Discov.201312863064410.1038/nrd405223903222
    [Google Scholar]
  7. JiangH. GaltesD. WangJ. RockmanH.A. G protein-coupled receptor signaling: Transducers and effectors.Am. J. Physiol. Cell Physiol.20223233C731C74810.1152/ajpcell.00210.202235816644
    [Google Scholar]
  8. EngelmanD.M. Xiao ZhouF. CoccoM.J. RussW.P. BrungerA.T. Interhelical hydrogen bonding drives strong interactions in membrane proteins.Nat. Struct. Biol.20007215416010.1038/7243010655619
    [Google Scholar]
  9. DeWireS.M. AhnS. LefkowitzR.J. ShenoyS.K. Beta-arrestins and cell signaling.Annu. Rev. Physiol.200769148351010.1146/annurev.physiol.69.022405.15474917305471
    [Google Scholar]
  10. RajagopalS. RajagopalK. LefkowitzR.J. Teaching old receptors new tricks: Biasing seven-transmembrane receptors.Nat. Rev. Drug Discov.20109537338610.1038/nrd302420431569
    [Google Scholar]
  11. WeisW.I. KobilkaB.K. The molecular basis of G protein-coupled receptor activation.Annu. Rev. Biochem.201887189791910.1146/annurev‑biochem‑060614‑03391029925258
    [Google Scholar]
  12. SmithJ.S. PackT.F. InoueA. LeeC. ZhengK. ChoiI. EigerD.S. WarmanA. XiongX. MaZ. ViswanathanG. LevitanI.M. RochelleL.K. StausD.P. SnyderJ.C. KahsaiA.W. CaronM.G. RajagopalS. Noncanonical scaffolding of G αi and β-arrestin by G protein–coupled receptors.Science.20213716534eaay183310.1126/science.aay183333479120
    [Google Scholar]
  13. DeVreeB.T. MahoneyJ.P. Vélez-RuizG.A. RasmussenS.G.F. KuszakA.J. EdwaldE. FungJ.J. ManglikA. MasureelM. DuY. MattR.A. PardonE. SteyaertJ. KobilkaB.K. SunaharaR.K. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs.Nature2016535761018218610.1038/nature1832427362234
    [Google Scholar]
  14. LiuY. AnS. WardR. YangY. GuoX.X. LiW. XuT.R. G protein-coupled receptors as promising cancer targets.Cancer Lett.2016376222623910.1016/j.canlet.2016.03.03127000991
    [Google Scholar]
  15. ChaudharyP.K. KimS. An insight into GPCR and G-proteins as cancer drivers.Cells20211012328810.3390/cells1012328834943797
    [Google Scholar]
  16. LuoJ. YuF.X. GPCR-hippo signaling in cancer.Cells20198542610.3390/cells805042631072060
    [Google Scholar]
  17. KageR. LeemanS.E. BoydN.D. Biochemical characterization of two different forms of the substance P receptor in rat submaxillary gland.J. Neurochem.199360134735110.1111/j.1471‑4159.1993.tb05857.x8380195
    [Google Scholar]
  18. HolstB. NygaardR. Valentin-HansenL. BachA. EngelstoftM.S. PetersenP.S. FrimurerT.M. SchwartzT.W. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors.J. Biol. Chem.201028563973398510.1074/jbc.M109.06472519920139
    [Google Scholar]
  19. UniProt DatabaseAvailable from: https://www.uniprot.org/uniprot/P25103 (Accessed on: 22 December 2022).2022
  20. GayenA. GoswamiS.K. MukhopadhyayC. NMR evidence of GM1-induced conformational change of Substance P using isotropic bicelles.Biochim. Biophys. Acta Biomembr.20111808112713910.1016/j.bbamem.2010.09.02320937248
    [Google Scholar]
  21. V EulerU.S. GaddumJ.H. An unidentified depressor substance in certain tissue extracts.J. Physiol.1931721748710.1113/jphysiol.1931.sp00276316994201
    [Google Scholar]
  22. SeveriniC. ImprotaG. Falconieri-ErspamerG. SalvadoriS. ErspamerV. The tachykinin peptide family.Pharmacol. Rev.200254228532210.1124/pr.54.2.28512037144
    [Google Scholar]
  23. AlmeidaT.A. RojoJ. NietoP.M. PintoF.M. HernandezM. MartínJ.D. CandenasM.L. Tachykinins and tachykinin receptors: Structure and activity relationships.Curr. Med. Chem.200411152045208110.2174/092986704336474815279567
    [Google Scholar]
  24. ZhangY. LuL. FurlongerC. WuG.E. PaigeC.J. Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis.Nat. Immunol.20001539239710.1038/8082611062498
    [Google Scholar]
  25. BorbélyÉ. HelyesZ. Role of hemokinin-1 in health and disease.Neuropeptides20176491710.1016/j.npep.2016.12.00327993375
    [Google Scholar]
  26. MussapC.J. GeraghtyD.P. BurcherE. Tachykinin receptors: A radioligand binding perspective.J. Neurochem.19936061987200910.1111/j.1471‑4159.1993.tb03484.x8388031
    [Google Scholar]
  27. PennefatherJ.N. LecciA. CandenasM.L. PatakE. PintoF.M. MaggiC.A. Tachykinins and tachykinin receptors: A growing family.Life Sci.200474121445146310.1016/j.lfs.2003.09.03914729395
    [Google Scholar]
  28. PreiningerA.M. MeilerJ. HammH.E. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: A perspective.J. Mol. Biol.2013425132288229810.1016/j.jmb.2013.04.01123602809
    [Google Scholar]
  29. Pándy-SzekeresG. EsguerraM. HauserA.S. CaroliJ. MunkC. PilgerS. KeserűG.M. KooistraA.J. GloriamD.E. The G protein database, GproteinDb.Nucleic Acids Res.202250D1D518D52510.1093/nar/gkab85234570219
    [Google Scholar]
  30. DengX.T. TangS.M. WuP.Y. LiQ.P. GeX.X. XuB.M. WangH.S. MiaoL. SP/NK-1R promotes gallbladder cancer cell proliferation and migration.J. Cell. Mol. Med.201923127961797310.1111/jcmm.1423030903649
    [Google Scholar]
  31. MuñozM. RossoM. CoveñasR. Neurokinin-1 receptor antagonists against hepatoblastoma.Cancers.2019119125810.3390/cancers1109125831466222
    [Google Scholar]
  32. MuñozM. CoveñasR. Coveñas, R. The neurokinin-1 receptor antagonist aprepitant: An intelligent bullet against cancer?Cancers.2020129268210.3390/cancers1209268232962202
    [Google Scholar]
  33. IsornaI. EstebanF. SolanellasJ. CoveñasR. MuñozM. The substance P and neurokinin-1 receptor system in human thyroid cancer: An immunohistochemical study.Eur. J. Histochem.2020642311710.4081/ejh.2020.311732363847
    [Google Scholar]
  34. EstebanF. Ramos-GarcíaP. MuñozM. González-MolesM.Á. Substance P and neurokinin 1 receptor in chronic inflammation and cancer of the head and neck: A Review of the literature.Int. J. Environ. Res. Public Health202119137510.3390/ijerph1901037535010633
    [Google Scholar]
  35. CoveñasR. MuñozM. Involvement of the substance P/neurokinin-1 receptor system in cancer.Cancers.20221414353910.3390/cancers1414353935884599
    [Google Scholar]
  36. García-ArandaM. TéllezT. McKennaL. RedondoM. Neurokinin-1 receptor (NK-1R) antagonists as a new strategy to overcome cancer resistance.Cancers.2022149225510.3390/cancers1409225535565383
    [Google Scholar]
  37. JiT. MaK. WuH. CaoT. SubstanceP. (SP)/neurokinin-1 receptor axis promotes perineural invasion of pancreatic cancer and is affected by lncRNA LOC389641.J. Immunol. Res.2022202211710.1155/2022/558281135600049
    [Google Scholar]
  38. MuñozM. RossoM. CoveñasR. Triple negative breast cancer: How neurokinin-1 receptor antagonists could be used as a new therapeutic approach.Mini Rev. Med. Chem.202020540841710.2174/138955751966619111215264231721701
    [Google Scholar]
  39. EbrahimiS. MirzaviF. Aghaee-BakhtiariS.H. HashemyS.I. SP/NK1R system regulates carcinogenesis in prostate cancer: Shedding light on the antitumoral function of aprepitant.Biochim. Biophys. Acta Mol. Cell Res.20221869511922110.1016/j.bbamcr.2022.11922135134443
    [Google Scholar]
  40. RodriguezE. PeiG. ZhaoZ. KimS. GermanA. RobinsonP. Substance P antagonism as a novel therapeutic option to enhance efficacy of cisplatin in triple negative breast cancer and protect PC12 cells against cisplatin-induced oxidative stress and apoptosis.Cancers.20211315387110.3390/cancers1315387134359773
    [Google Scholar]
  41. ZhangX.W. LiL. HuW.Q. HuM.N. TaoY. HuH. MiaoX.K. YangW.L. ZhuQ. MouL.Y. Neurokinin-1 receptor promotes non-small cell lung cancer progression through transactivation of EGFR.Cell Death Dis.20221314110.1038/s41419‑021‑04485‑y35013118
    [Google Scholar]
  42. DeFeaK.A. VaughnZ.D. O’BryanE.M. NishijimaD. DéryO. BunnettN.W. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex.Proc. Natl. Acad. Sci.20009720110861109110.1073/pnas.19027669710995467
    [Google Scholar]
  43. PalK. MathurM. KumarP. DeFeaK. Divergent β-arrestin-dependent signaling events are dependent upon sequences within G-protein-coupled receptor C termini.J. Biol. Chem.201328853265327410.1074/jbc.M112.40023423235155
    [Google Scholar]
  44. GuoS. ZhaoT. YunY. XieX. Recent progress in assays for GPCR drug discovery.Am. J. Physiol. Cell Physiol.20223232C583C59410.1152/ajpcell.00464.202135816640
    [Google Scholar]
  45. StammS. GruberS.B. RabchevskyA.G. EmesonR.B. The activity of the serotonin receptor 2C is regulated by alternative splicing.Hum. Genet.201713691079109110.1007/s00439‑017‑1826‑328664341
    [Google Scholar]
  46. Valentin-HansenL. FrimurerT.M. MokrosinskiJ. HollidayN.D. SchwartzT.W. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network.J. Biol. Chem.201529040244952450810.1074/jbc.M115.64194426269596
    [Google Scholar]
  47. SmithJ.S. LefkowitzR.J. RajagopalS. Biased signalling: From simple switches to allosteric microprocessors.Nat. Rev. Drug Discov.201817424326010.1038/nrd.2017.22929302067
    [Google Scholar]
  48. WoottenD. ChristopoulosA. Marti-SolanoM. BabuM.M. SextonP.M. Mechanisms of signalling and biased agonism in G protein-coupled receptors.Nat. Rev. Mol. Cell Biol.2018191063865310.1038/s41580‑018‑0049‑330104700
    [Google Scholar]
  49. Alvarez-CurtoE. InoueA. JenkinsL. RaihanS.Z. PrihandokoR. TobinA.B. MilliganG. Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signaling.J. Biol. Chem.201629153271472715910.1074/jbc.M116.75488727852822
    [Google Scholar]
  50. LiggettS.B. Phosphorylation barcoding as a mechanism of directing GPCR signaling.Sci. Signal.20114185pe3610.1126/scisignal.200233121868354
    [Google Scholar]
  51. SteinhoffM.S. von MentzerB. GeppettiP. PothoulakisC. BunnettN.W. Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease.Physiol. Rev.201494126530110.1152/physrev.00031.201324382888
    [Google Scholar]
  52. Valentin-HansenL. ParkM. HuberT. GrunbeckA. NaganathanS. SchwartzT.W. SakmarT.P. Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid.J. Biol. Chem.201428926180451805410.1074/jbc.M113.52708524831006
    [Google Scholar]
  53. Garcia-RecioS. GascónP. Biological and pharmacological aspects of the NK1-receptor.BioMed Res. Int.2015201511410.1155/2015/49570426421291
    [Google Scholar]
  54. SpitsinS. PappaV. DouglasS.D. Truncation of neurokinin-1 receptor—Negative regulation of substance P signaling.J. Leukoc. Biol.201810361043105110.1002/JLB.3MIR0817‑348R29345372
    [Google Scholar]
  55. JavidH. AsadiJ. Zahedi AvvalF. AfshariA.R. HashemyS.I. The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways.Mol. Biol. Rep.20204732253226310.1007/s11033‑020‑05330‑932072401
    [Google Scholar]
  56. EbrahimiS. JavidH. AlaeiA. HashemyS.I. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs.Clin. Genet.202098432233010.1111/cge.1375032266968
    [Google Scholar]
  57. BallesterosJ.A. WeinsteinH. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors.J. Neurosci. Methods19952536642810.1016/S1043‑9471(05)80049‑7
    [Google Scholar]
  58. HarrisJ.A. FaustB. GondinA.B. DämgenM.A. SuomivuoriC.M. VeldhuisN.A. ChengY. DrorR.O. ThalD.M. ManglikA. Selective G protein signaling driven by substance P–neurokinin receptor dynamics.Nat. Chem. Biol.202218110911510.1038/s41589‑021‑00890‑834711980
    [Google Scholar]
  59. RodriguezF.D CoveñasR. The neurokinin-1 receptor: Structure dynamics and signaling.Receptors.202211547110.3390/receptors1010004
    [Google Scholar]
  60. PDB. Protein Data Bank. 2022. Available from: https://pdb101.rcsb.org
  61. SehnalD. BittrichS. DeshpandeM. SvobodováR. BerkaK. BazgierV. VelankarS. BurleyS.K. KočaJ. RoseA.S. Mol* Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures.Nucleic Acids Res.202149W1W431W43710.1093/nar/gkab31433956157
    [Google Scholar]
  62. Jean-CharlesP.Y. KaurS. ShenoyS.K. Protein-coupled receptor signaling through β-Arrestin-dependent mechanisms.J. Cardiovasc. Pharmacol.201770314215810.1097/FJC.000000000000048228328745
    [Google Scholar]
  63. ShuklaA.K. Dwivedi-AgnihotriH. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation.Adv. Cancer Res.202014513915610.1016/bs.acr.2020.01.00132089163
    [Google Scholar]
  64. Perry-HauserN.A. HopkinsJ.B. ZhuoY. ZhengC. PerezI. SchultzK.M. VishnivetskiyS.A. KayaA.I. SharmaP. DalbyK.N. ChungK.Y. KlugC.S. GurevichV.V. IversonT.M. The two non-visual arrestins engage ERK2 differently.J. Mol. Biol.2022434716746510.1016/j.jmb.2022.16746535077767
    [Google Scholar]
  65. XiaoK. McClatchyD.B. ShuklaA.K. ZhaoY. ChenM. ShenoyS.K. YatesJ.R.III LefkowitzR.J. Functional specialization of β-arrestin interactions revealed by proteomic analysis.Proc. Natl. Acad. Sci.200710429120111201610.1073/pnas.070484910417620599
    [Google Scholar]
  66. PetersonY.K. LuttrellL.M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling.Pharmacol. Rev.201769325629710.1124/pr.116.01336728626043
    [Google Scholar]
  67. GhoshE. DwivediH. BaidyaM. SrivastavaA. KumariP. StepniewskiT. KimH.R. LeeM.H. van GastelJ. ChaturvediM. RoyD. PandeyS. MaharanaJ. Guixà-GonzálezR. LuttrellL.M. ChungK.Y. DuttaS. SelentJ. ShuklaA.K. Conformational sensors and domain swapping reveal structural and functional differences between β-Arrestin isoforms.Cell Rep.2019281332873299.e610.1016/j.celrep.2019.08.05331553900
    [Google Scholar]
  68. WessJ. The two β-arrestins regulate distinct metabolic processes: Studies with novel mutant mouse models.Int. J. Mol. Sci.202223149510.3390/ijms2301049535008921
    [Google Scholar]
  69. HanM. GurevichV.V. VishnivetskiyS.A. SiglerP.B. SchubertC. Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation.Structure20019986988010.1016/S0969‑2126(01)00644‑X11566136
    [Google Scholar]
  70. MilanoS.K. PaceH.C. KimY.M. BrennerC. BenovicJ.L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis.Biochemistry200241103321332810.1021/bi015905j11876640
    [Google Scholar]
  71. ShenoyS.K. LefkowitzR.J. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination.J. Biol. Chem.200327816144981450610.1074/jbc.M20962620012574160
    [Google Scholar]
  72. ShenoyS.K. LefkowitzR.J. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes.J. Biol. Chem.200528015153151532410.1074/jbc.M41241820015699045
    [Google Scholar]
  73. KimK. HanY. DuanL. ChungK.Y. Scaffolding of mitogen-activated protein kinase signaling by β-arrestins.Int. J. Mol. Sci.2022232100010.3390/ijms2302100035055186
    [Google Scholar]
  74. CahillT.J.III ThomsenA.R.B. TarraschJ.T. PlouffeB. NguyenA.H. YangF. HuangL.Y. KahsaiA.W. BassoniD.L. GavinoB.J. LamerdinJ.E. TriestS. ShuklaA.K. BergerB. LittleJ.IV AntarA. BlancA. QuC.X. ChenX. KawakamiK. InoueA. AokiJ. SteyaertJ. SunJ.P. BouvierM. SkiniotisG. LefkowitzR.J. Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis.Proc. Natl. Acad. Sci.2017114102562256710.1073/pnas.170152911428223524
    [Google Scholar]
  75. SecklerJ.M. RobinsonE.N. LewisS.J. GrossfieldA. Surveying nonvisual arrestins reveals allosteric interactions between functional sites.Proteins20239119910710.1002/prot.2641335988049
    [Google Scholar]
  76. YangZ. YangF. ZhangD. LiuZ. LinA. LiuC. XiaoP. YuX. SunJ.P. Phosphorylation of G protein-coupled receptors: From the barcode hypothesis to the flute model.Mol. Pharmacol.201792320121010.1124/mol.116.10783928246190
    [Google Scholar]
  77. Jean-CharlesP.Y. RajivV. SarkerS. HanS. BaiY. MasoudiA. ShenoyS.K. A single phenylalanine residue in β-arrestin2 critically regulates its binding to G protein–coupled receptors.J. Biol. Chem.2022298510183710.1016/j.jbc.2022.10183735307348
    [Google Scholar]
  78. KawakamiK. YanagawaM. HiratsukaS. YoshidaM. OnoY. HiroshimaM. UedaM. AokiJ. SakoY. InoueA. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias.Nat. Commun.202213148710.1038/s41467‑022‑28056‑735078997
    [Google Scholar]
  79. SarmaP. SahaS. ShuklaA.K. Making the switch: The role of Gq in driving GRK selectivity at GPCRs.Sci. Signal.202215726eabo494910.1126/scisignal.abo494935316098
    [Google Scholar]
  80. GrundmannM. MertenN. MalfaciniD. InoueA. PreisP. SimonK. RüttigerN. ZieglerN. BenkelT. SchmittN.K. IshidaS. MüllerI. ReherR. KawakamiK. InoueA. RickU. KühlT. ImhofD. AokiJ. KönigG.M. HoffmannC. GomezaJ. WessJ. KostenisE. Lack of beta-arrestin signaling in the absence of active G proteins.Nat. Commun.20189134134310.1038/s41467‑017‑02661‑329362459
    [Google Scholar]
  81. ZhuL. AlmaçaJ. DadiP.K. HongH. SakamotoW. RossiM. LeeR.J. VierraN.C. LuH. CuiY. McMillinS.M. PerryN.A. GurevichV.V. LeeA. KuoB. LeapmanR.D. MatschinskyF.M. DolibaN.M. UrsN.M. CaronM.G. JacobsonD.A. CaicedoA. WessJ. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions.Nat. Commun.20178114295, 8, 1429510.1038/ncomms1429528145434
    [Google Scholar]
  82. ZhangY.X. LiX.F. YuanG.Q. HuH. SongX.Y. LiJ.Y. MiaoX.K. ZhouT.X. YangW.L. ZhangX.W. MouL.Y. WangR. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.J. Biol. Chem.2017292218933894710.1074/jbc.M116.77042028341744
    [Google Scholar]
  83. JafriF. El-ShewyH.M. LeeM.H. KellyM. LuttrellD.K. LuttrellL.M. Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor “signalsome”.J. Biol. Chem.200628128193461935710.1074/jbc.M51264320016670094
    [Google Scholar]
  84. SchmidlinF. RoostermanD. BunnettN.W. The third intracellular loop and carboxyl tail of neurokinin 1 and 3 receptors determine interactions with β-arrestins.Am. J. Physiol. Cell Physiol.20032854C945C95810.1152/ajpcell.00541.200212958028
    [Google Scholar]
  85. BagnatoA. RosanòL. Rosanò, L. New routes in GPCR/β-arrestin-driven signaling in cancer progression and metastasis.Front. Pharmacol.20191011410.3389/fphar.2019.0011430837880
    [Google Scholar]
  86. FoordS.M. BonnerT.I. NeubigR.R. RosserE.M. PinJ.P. DavenportA.P. SpeddingM. HarmarA.J. International Union of Pharmacology. XLVI. G protein-coupled receptor list.Pharmacol. Rev.200557227928810.1124/pr.57.2.515914470
    [Google Scholar]
  87. CampbellA.P. SmrckaA.V. Targeting G protein-coupled receptor signalling by blocking G proteins.Nat. Rev. Drug Discov.2018171178980310.1038/nrd.2018.13530262890
    [Google Scholar]
  88. KhanS.M. SlenoR. GoraS. ZylbergoldP. LaverdureJ.P. LabbéJ.C. MillerG.J. HébertT.E. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action.Pharmacol. Rev.201365254557710.1124/pr.111.00560323406670
    [Google Scholar]
  89. TennakoonM. SenarathK. KankanamgeD. RatnayakeK. WijayaratnaD. OlupothageK. UbeysingheS. Martins-CannavinoK. HébertT.E. KarunarathneA. Subtype-dependent regulation of Gβγ signalling.Cell. Signal.20218210994710.1016/j.cellsig.2021.10994733582184
    [Google Scholar]
  90. HarrisG.C. Aston-JonesG. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome.Nature1994371649315515710.1038/371155a07915401
    [Google Scholar]
  91. ThomC. EhrenmannJ. VaccaS. WaltenspühlY. SchöppeJ. MedaliaO. PlückthunA. Structures of neurokinin 1 receptor in complex with G q and G s proteins reveal substance P binding mode and unique activation features.Sci. Adv.2021750eabk287210.1126/sciadv.abk287234878828
    [Google Scholar]
  92. InoueA. RaimondiF. KadjiF.M.N. SinghG. KishiT. UwamizuA. OnoY. ShinjoY. IshidaS. ArangN. KawakamiK. GutkindJ.S. AokiJ. RussellR.B. Illuminating G-protein-coupling selectivity of GPCRs.Cell2019177719331947.e2510.1016/j.cell.2019.04.04431160049
    [Google Scholar]
  93. SenarathK. KankanamgeD. SamaradivakaraS. RatnayakeK. TennakoonM. KarunarathneA. regulation of G protein βγ signaling.Int. Rev. Cell Mol. Biol.201833913319110.1016/bs.ircmb.2018.02.00829776603
    [Google Scholar]
  94. KhanS.M. SungJ.Y. HébertT.E. Gβγ subunits-different spaces, different faces.Pharmacol. Res.201611143444110.1016/j.phrs.2016.06.02627378564
    [Google Scholar]
  95. KhaterM. BryantC.N. WuG. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein–coupled receptor signaling to MAPK.J. Biol. Chem.202129610080510.1016/j.jbc.2021.10080534022220
    [Google Scholar]
  96. SmrckaA.V. G protein βγ subunits: Central mediators of G protein-coupled receptor signaling.Cell. Mol. Life Sci.200865142191221410.1007/s00018‑008‑8006‑518488142
    [Google Scholar]
  97. KlaymanL.M. WedegaertnerP.B. Wedegaertner, P. B. Inducible inhibition of Gβγ reveals localization-dependent functions at the plasma membrane and Golgi.J. Biol. Chem.201729251773178410.1074/jbc.M116.75043027994056
    [Google Scholar]
  98. RajanalaK. KlaymanL.M. WedegaertnerP.B. Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression.Mol. Biol. Cell20213220br210.1091/mbc.E21‑04‑017534260268
    [Google Scholar]
  99. MadukweJ.C. Garland-KuntzE.E. LyonA.M. SmrckaA.V. G protein βγ subunits directly interact with and activate phospholipase CΕ.J. Biol. Chem.2018293176387639710.1074/jbc.RA118.00235429535186
    [Google Scholar]
  100. GontA. DaneshmandM. WoulfeJ. LavictoireS.J. LorimerI.A.J. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion.Oncotarget2017858559857310.18632/oncotarget.1434828051998
    [Google Scholar]
  101. PfeilE.M. BrandsJ. MertenN. VögtleT. VescovoM. RickU. AlbrechtI.M. HeyckeN. KawakamiK. OnoY. Ngako KadjiF.M. HiratsukaS. AokiJ. HäberleinF. MattheyM. GargJ. HennenS. JobinM.L. SeierK. CalebiroD. PfeiferA. HeinemannA. WenzelD. KönigG.M. NieswandtB. FleischmannB.K. InoueA. SimonK. KostenisE. Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs.Mol. Cell2020806940954.e610.1016/j.molcel.2020.10.02733202251
    [Google Scholar]
  102. BirnbaumerL. Expansion of signal transduction by G proteins.Biochim. Biophys. Acta Biomembr.20071768477279310.1016/j.bbamem.2006.12.00217258171
    [Google Scholar]
  103. DavisT.L. BonacciT.M. SprangS.R. SmrckaA.V. Structural and molecular characterization of a preferred protein interaction surface on G protein beta gamma subunits.Biochemistry20054431105931060410.1021/bi050655i16060668
    [Google Scholar]
  104. DownwardJ. Targeting RAS signalling pathways in cancer therapy.Nat. Rev. Cancer200331112210.1038/nrc96912509763
    [Google Scholar]
  105. ZhangW. LiuH.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells.Cell Res.200212191810.1038/sj.cr.729010511942415
    [Google Scholar]
  106. BarbosaR. AcevedoL.A. MarmorsteinR. The MEK/ERK network as a therapeutic target in human cancer.Mol. Cancer Res.202119336137410.1158/1541‑7786.MCR‑20‑068733139506
    [Google Scholar]
  107. ChenQ. KongL. XuZ. CaoN. TangX. GaoR. ZhangJ. DengS. TanC. ZhangM. WangY. ZhangL. MaK. LiL. SiJ. The role of TMEM16A/ERK/NK-1 signaling in dorsal root ganglia neurons in the development of neuropathic pain induced by spared nerve injury (SNI).Mol. Neurobiol.202158115772578910.1007/s12035‑021‑02520‑934406600
    [Google Scholar]
  108. MazeinA. RougnyA. KarrJ.R. Saez-RodriguezJ. OstaszewskiM. SchneiderR. Reusability and composability in process description maps: RAS–RAF–MEK–ERK signalling.Brief. Bioinform.2021225bbab10310.1093/bib/bbab10333834185
    [Google Scholar]
  109. RobertsP.J. DerC.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.Oncogene200726223291331010.1038/sj.onc.121042217496923
    [Google Scholar]
  110. AveryT.Y. KöhlerN. ZeiserR. BrummerT. RuessD.A. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation.Front. Oncol.20221293177410.3389/fonc.2022.93177435965494
    [Google Scholar]
  111. WanW. XiaoW. PanW. ChenL. LiuZ. XuJ. Isoprenylcysteine carboxyl methyltransferase is critical for glioblastoma growth and survival by activating Ras/Raf/Mek/Erk.Cancer Chemother. Pharmacol.202289340141110.1007/s00280‑022‑04401‑x35171349
    [Google Scholar]
  112. GaoZ. ChenJ.F. LiX.G. ShiY.H. TangZ. LiuW.R. ZhangX. HuangA. LuoX.M. GaoQ. ShiG.M. KeA.W. ZhouJ. FanJ. FuX.T. DingZ.B. KRAS acting through ERK signaling stabilizes PD-L1 via inhibiting autophagy pathway in intrahepatic cholangiocarcinoma.Cancer Cell Int.202222112810.1186/s12935‑022‑02550‑w35305624
    [Google Scholar]
  113. YadavD.K. Editorial: Kinase inhibitors in cancer therapy.Front. Cell Dev. Biol.202210102029710.3389/fcell.2022.102029736393866
    [Google Scholar]
  114. VendraminiE. BombenR. PozzoF. BittoloT. TissinoE. GatteiV. ZucchettoA. KRAS and RAS-MAPK pathway deregulation in mature B cell lymphoproliferative disorders.Cancers.202214366610.3390/cancers1403066635158933
    [Google Scholar]
  115. AtifM. MustaanM.A. FalakS. GhaffarA. MunirB. Targeting the effect of sofosbuvir on selective oncogenes expression level of hepatocellular carcinoma Ras/Raf/MEK/ERK pathway in Huh7 cell line.Saudi J. Biol. Sci.202229810333210.1016/j.sjbs.2022.10333235813116
    [Google Scholar]
  116. AsatiV. MahapatraD.K. BhartiS.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives.Eur. J. Med. Chem.201610931434110.1016/j.ejmech.2016.01.01226807863
    [Google Scholar]
  117. YamaguchiK. RichardsonM.D. BignerD.D. KwatraM.M. Signal transduction through substance P receptor in human glioblastoma cells: roles for Src and PKCδ.Cancer Chemother. Pharmacol.200556658559310.1007/s00280‑005‑1030‑316012865
    [Google Scholar]
  118. DegirmenciU. WangM. HuJ. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy.Cells20209119810.3390/cells901019831941155
    [Google Scholar]
  119. WilliamsR. ZouX. HoyleG.W. Tachykinin-1 receptor stimulates proinflammatory gene expression in lung epithelial cells through activation of NF-κB via a G q -dependent pathway.Am. J. Physiol. Lung Cell. Mol. Physiol.20072922L430L43710.1152/ajplung.00475.200517041011
    [Google Scholar]
  120. AslE.R. AminiM. NajafiS. MansooriB. MokhtarzadehA. MohammadiA. LotfinejadP. BagheriM. ShirjangS. LotfiZ. RasmiY. BaradaranB. Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression.Life Sci.202127811949910.1016/j.lfs.2021.11949933865878
    [Google Scholar]
  121. MuñozM. González-OrtegaA. Salinas-MartínM.V. CarranzaA. Garcia-RecioS. AlmendroV. CoveñasR. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer.Int. J. Oncol.20144541658167210.3892/ijo.2014.256525175857
    [Google Scholar]
  122. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms2107234632231094
    [Google Scholar]
  123. TangchirakhaphanS. InnajakS. NilwarangkoonS. TanjapatkulN. MahabusrakumW. WatanapokasinR. Mechanism of apoptosis induction associated with ERK1/2 upregulation via goniothalamin in melanoma cells.Exp. Ther. Med.20181533052305810.3892/etm.2018.576229456710
    [Google Scholar]
  124. GolestanehM. FiroozraiM. JavidH. HashemyS.I. The substance P/ neurokinin-1 receptor signaling pathway mediates metastasis in human colorectal SW480 cancer cells.Mol. Biol. Rep.20224964893490010.1007/s11033‑022‑07348‑735429316
    [Google Scholar]
  125. MaJ. YuanS. ChengJ. KangS. ZhaoW. ZhangJ. Substance P promotes the progression of endometrial adenocarcinoma.Int. J. Gynecol. Cancer201626584585010.1097/IGC.000000000000068327051050
    [Google Scholar]
  126. GenerschE. HayeßK. NeuenfeldY. HallerH. Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and-independent pathways.J. Cell Sci.2000113234319433010.1242/jcs.113.23.431911069776
    [Google Scholar]
  127. KoonH.W. ZhaoD. NaX. MoyerM.P. PothoulakisC. Metalloproteinases and transforming growth factor-alpha mediate substance P-induced mitogen-activated protein kinase activation and proliferation in human colonocytes.J. Biol. Chem.200427944455194552710.1074/jbc.M40852320015319441
    [Google Scholar]
  128. WillertK. NusseR. Wnt proteins.Cold Spring Harb. Perspect. Biol.201249a00786410.1101/cshperspect.a00786422952392
    [Google Scholar]
  129. PolakisP. Wnt signaling and cancer.Genes Dev.200014151837185110.1101/gad.14.15.183710921899
    [Google Scholar]
  130. BarkerN. CleversH. Catenins, Wnt signaling and cancer.BioEssays2000221196196510.1002/1521‑1878(200011)22:11<961::AID‑BIES1>3.0.CO;2‑T11056471
    [Google Scholar]
  131. BienzM. beta-Catenin: a pivot between cell adhesion and Wnt signalling.Curr. Biol.2005152R64R6710.1016/j.cub.2004.12.05815668160
    [Google Scholar]
  132. DeBruineZ.J. KeJ. HarikumarK.G. GuX. BorowskyP. WilliamsB.O. XuW. MillerL.J. XuH.E. MelcherK. Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization.Genes Dev.201731991692610.1101/gad.298331.11728546512
    [Google Scholar]
  133. VoronkovA. KraussS. Wnt/beta-catenin signaling and small molecule inhibitors.Curr. Pharm. Des.201319463466410.2174/13816121380458183723016862
    [Google Scholar]
  134. MehtaS. HingoleS. ChaudharyV. The emerging mechanisms of Wnt secretion and signaling in development.Front. Cell Dev. Biol.2021971474610.3389/fcell.2021.71474634485301
    [Google Scholar]
  135. CordaG. SalaA. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage.Oncogenesis201767e36410.1038/oncsis.2017.6928737757
    [Google Scholar]
  136. JandaC.Y. WaghrayD. LevinA.M. ThomasC. GarciaK.C. Structural basis of Wnt recognition by Frizzled.Science20123376090596410.1126/science.122287922653731
    [Google Scholar]
  137. AhnV.E. ChuM.L.H. ChoiH.J. TranD. AboA. WeisW.I. Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6.Dev. Cell201121586287310.1016/j.devcel.2011.09.00322000856
    [Google Scholar]
  138. HuangX. WangG. WuY. DuZ. The structure of full-length human CTNNBL1 reveals a distinct member of the armadillo-repeat protein family.Acta Crystallogr. D Biol. Crystallogr.20136981598160810.1107/S090744491301136023897482
    [Google Scholar]
  139. BrembeckF.H. Schwarz-RomondT. BakkersJ. WilhelmS. HammerschmidtM. BirchmeierW. Essential role of BCL9-2 in the switch between β-catenin’s adhesive and transcriptional functions.Genes Dev.200418182225223010.1101/gad.31760415371335
    [Google Scholar]
  140. KatohM. KatohM. WNT signaling and cancer stemness.Essays Biochem.202266431933110.1042/EBC2022001635837811
    [Google Scholar]
  141. PaiS.G. CarneiroB.A. MotaJ.M. CostaR. LeiteC.A. Barroso-SousaR. KaplanJ.B. ChaeY.K. GilesF.J. Wnt/beta-catenin pathway: Modulating anticancer immune response.J. Hematol. Oncol.201710110110610.1186/s13045‑017‑0471‑628476164
    [Google Scholar]
  142. TaciakB. PruszynskaI. KiragaL. BialasekM. KrolM. Wnt signaling pathway in development and cancer.J. Physiol. Pharmacol.201869210.26402/jpp.2018.2.0729980141
    [Google Scholar]
  143. ShaY.L. LiuS. YanW.W. DongB. Wnt/β-catenin signaling as a useful therapeutic target in hepatoblastoma.Biosci. Rep.2019399BSR2019246610.1042/BSR2019246631511432
    [Google Scholar]
  144. KrishnamurthyN. KurzrockR. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.Cancer Treat. Rev.201862506010.1016/j.ctrv.2017.11.00229169144
    [Google Scholar]
  145. JavidH. MohammadiF. ZahiriE. HashemyS.I. The emerging role of substance P/neurokinin-1 receptor signaling pathways in growth and development of tumor cells.J. Physiol. Biochem.201975441542110.1007/s13105‑019‑00697‑131372898
    [Google Scholar]
  146. HongH.S. LeeJ. LeeE. KwonY.S. LeeE. AhnW. JiangM.H. KimJ.C. SonY. A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells.Nat. Med.200915442543510.1038/nm.190919270709
    [Google Scholar]
  147. GarnierA. VykoukalJ. HubertusJ. AltE. Von SchweinitzD. KapplerR. BergerM. IlmerM. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells.Int. J. Oncol.201547115116010.3892/ijo.2015.301625998227
    [Google Scholar]
  148. NiuX.L. HouJ.F. LiJ.X. The NK1 receptor antagonist NKP608 inhibits proliferation of human colorectal cancer cells via Wnt signaling pathway.Biol. Res.201851114x10.1186/s40659‑018‑0163‑x29843798
    [Google Scholar]
  149. IlmerM. GarnierA. VykoukalJ. AltE. von SchweinitzD. KapplerR. BergerM. Targeting the neurokinin-1 receptor compromises canonical Wnt signaling in hepatoblastoma.Mol. Cancer Ther.201514122712272110.1158/1535‑7163.MCT‑15‑020626516161
    [Google Scholar]
  150. MeiG. ZouZ. FuS. XiaL. ZhouJ. ZhangY. TuoY. WangZ. JinD. Substance P activates the Wnt signal transduction pathway and enhances the differentiation of mouse preosteoblastic MC3T3-E1 cells.Int. J. Mol. Sci.20141546224624010.3390/ijms1504622424733069
    [Google Scholar]
  151. ZhouJ. LingJ. SongH. LvB. WangL. ShangJ. WangY. ChangC. PingF. QianJ. Neurokinin-1 receptor is a novel positive regulator of Wnt/β-catenin signaling in melanogenesis.Oncotarget2016749812688128010.18632/oncotarget.1322227835606
    [Google Scholar]
  152. ManningB.D. TokerA. Toker, A. AKT/PKB signaling: Navigating the network.Cell2017169338140510.1016/j.cell.2017.04.00128431241
    [Google Scholar]
  153. XieY. ShiX. ShengK. HanG. LiW. ZhaoQ. JiangB. FengJ. LiJ. GuY. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review).Mol. Med. Rep.201819278379110.3892/mmr.2018.971330535469
    [Google Scholar]
  154. AkbarzadehM. MihanfarA. AkbarzadehS. YousefiB. MajidiniaM. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer.Life Sci.202128511998410.1016/j.lfs.2021.11998434592229
    [Google Scholar]
  155. NussinovR. ZhangM. TsaiC.J. JangH. Phosphorylation and driver mutations in PI3Kα and PTEN autoinhibition.Mol. Cancer Res.202119454354810.1158/1541‑7786.MCR‑20‑081833288731
    [Google Scholar]
  156. LienE.C. DibbleC.C. TokerA. PI3K signaling in cancer: Beyond AKT.Curr. Opin. Cell Biol.201745627110.1016/j.ceb.2017.02.00728343126
    [Google Scholar]
  157. CarneroA. The PKB/AKT pathway in cancer.Curr. Pharm. Des.2010161344410.2174/13816121078994186520214616
    [Google Scholar]
  158. PengY. WangY. ZhouC. MeiW. ZengC. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway?Front. Oncol.20221281912810.3389/fonc.2022.81912835402264
    [Google Scholar]
  159. HuangR. DaiQ. YangR. DuanY. ZhaoQ. HaybaeckJ. YangZ. Review: PI3K/AKT/mTOR signaling pathway and its regulated eukaryotic translation initiation factors may be a potential therapeutic target in esophageal squamous cell carcinoma.Front. Oncol.20221281791610.3389/fonc.2022.81791635574327
    [Google Scholar]
  160. McKennaM. BalasuriyaN. ZhongS. LiS.S.C. O’DonoghueP. Phospho-form specific substrates of protein kinase B (AKT1).Front. Bioeng. Biotechnol.2021861925210.3389/fbioe.2020.61925233614606
    [Google Scholar]
  161. EdiriweeraM.K. TennekoonK.H. SamarakoonS.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance.Semin. Cancer Biol.20195914716010.1016/j.semcancer.2019.05.01231128298
    [Google Scholar]
  162. FattahiS. Amjadi-MohebF. TabaripourR. AshrafiG.H. Akhavan-NiakiH. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond.Life Sci.202026211851310.1016/j.lfs.2020.11851333011222
    [Google Scholar]
  163. NepstadI. HatfieldK.J. GrønningsæterI.S. ReikvamH. The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells.Int. J. Mol. Sci.2020218290710.3390/ijms2108290732326335
    [Google Scholar]
  164. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑132175074
    [Google Scholar]
  165. Iksen PothongsrisitS. PongrakhananonV. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: An update regarding potential drugs and natural products.Molecules20212613410010.3390/molecules2613410034279440
    [Google Scholar]
  166. StefaniC. MiricescuD. Stanescu-SpinuI.I. NicaR.I. GreabuM. TotanA.R. JingaM. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now?Int. J. Mol. Sci.202122191026010.3390/ijms22191026034638601
    [Google Scholar]
  167. MiricescuD. TotanA. Stanescu-SpinuI.I. BadoiuS.C. StefaniC. GreabuM. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects.Int. J. Mol. Sci.202022117310.3390/ijms2201017333375317
    [Google Scholar]
  168. SunK. LuoJ. GuoJ. YaoX. JingX. GuoF. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review.Osteoarthritis Cartilage202028440040910.1016/j.joca.2020.02.02732081707
    [Google Scholar]
  169. YangL. ZhangZ. WangD. JiangY. LiuY. Targeting mTOR signaling in type 2 diabetes mellitus and diabetes complications.Curr. Drug Targets202223769271010.2174/138945012366622011111552835021971
    [Google Scholar]
  170. RamasubbuK. Devi Rajeswari, V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: A perspective review.Mol. Cell Biochem.202347861307132410.1007/s11010‑022‑04587‑x36308670
    [Google Scholar]
  171. XuQ. FitzsimmonsB. SteinauerJ. NeillA.O. NewtonA.C. HuaX.Y. YakshT.L. Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia.J. Neurosci.20113162113212410.1523/JNEUROSCI.2139‑10.201121307248
    [Google Scholar]
  172. Lasagni VitarR. TrianiF. BarbarigaM. FonteyneP. RamaP. FerrariG. Substance P/neurokinin-1 receptor pathway blockade ameliorates limbal stem cell deficiency by modulating mTOR pathway and preventing cell senescence.Stem Cell Rep.202217484986310.1016/j.stemcr.2022.02.01235334220
    [Google Scholar]
  173. LimJ.E. ChungE. SonY. A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ.Sci. Rep.201771941710.1038/s41598‑017‑09639‑728842601
    [Google Scholar]
  174. WangJ.G. YuJ. HuJ.L. YangW.L. RenH. DingD. ZhangL. LiuX.P. Neurokinin-1 activation affects EGFR related signal transduction in triple negative breast cancer.Cell. Signal.20152771315132410.1016/j.cellsig.2015.03.01525817575
    [Google Scholar]
  175. AkazawaT. KwatraS.G. GoldsmithL.E. RichardsonM.D. CoxE.A. SampsonJ.H. KwatraM.M. A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated apoptosis in glioblastomas.J. Neurochem.200910941079108610.1111/j.1471‑4159.2009.06032.x19519779
    [Google Scholar]
  176. KolorzJ. DemirS. GottschlichA. BeirithI. IlmerM. LüthyD. WalzC. DorostkarM.M. MaggT. HauckF. von SchweinitzD. KoboldS. KapplerR. BergerM. The neurokinin-1 receptor is a target in pediatric rhabdoid tumors.Curr. Oncol.20212919411010.3390/curroncol2901000835049682
    [Google Scholar]
  177. FongT.M. AndersonS.A. YuH. HuangR.R. StraderC.D. Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor.Mol. Pharmacol.199241124301310144
    [Google Scholar]
  178. BakerS.J. MorrisJ.L. GibbinsI.L. Cloning of a C-terminally truncated NK-1 receptor from guinea-pig nervous system.Brain Res. Mol. Brain Res.20031111-213614710.1016/S0169‑328X(03)00002‑012654513
    [Google Scholar]
  179. MantyhP.W. RogersS.D. GhilardiJ.R. MaggioJ.E. MantyhC.R. VignaS.R. Differential expression of two isoforms of the neurokinin-1 (substance P) receptor in vivo.Brain Res.19967191-281310.1016/0006‑8993(96)00050‑98782857
    [Google Scholar]
  180. PageN.M. Characterization of the gene structures, precursor processing and pharmacology of the endokinin peptides.Vascul. Pharmacol.200645420020810.1016/j.vph.2005.08.02816931167
    [Google Scholar]
  181. SatakeH. KawadaT. Overview of the primary structure, tissue-distribution, and functions of tachykinins and their receptors.Curr. Drug Targets20067896397410.2174/13894500677801927316918325
    [Google Scholar]
  182. DouglasS.D. LeemanS.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation.Ann. N. Y. Acad. Sci.201112171839510.1111/j.1749‑6632.2010.05826.x21091716
    [Google Scholar]
  183. TulucF. MeshkiJ. SpitsinS. DouglasS.D. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P.J. Leukoc. Biol.201496114315010.1189/jlb.4AB0813‑434RR24577568
    [Google Scholar]
  184. LiH. LeemanS.E. SlackB.E. HauserG. SaltsmanW.S. KrauseJ.E. BlusztajnJ.K. BoydN.D. A substance P (neurokinin-1) receptor mutant carboxyl-terminally truncated to resemble a naturally occurring receptor isoform displays enhanced responsiveness and resistance to desensitization.Proc. Natl. Acad. Sci. USA199794179475948010.1073/pnas.94.17.94759256507
    [Google Scholar]
  185. RichardsonM.D. BaliusA.M. YamaguchiK. FreilichE.R. BarakL.S. KwatraM.M. Human substance P receptor lacking the C-terminal domain remains competent to desensitize and internalize.J. Neurochem.200384485486310.1046/j.1471‑4159.2003.01577.x12562528
    [Google Scholar]
  186. DéryO. DefeaK.A. BunnettN.W. Protein kinase C-mediated desensitization of the neurokinin 1 receptor.Am. J. Physiol. Cell Physiol.20012805C1097C110610.1152/ajpcell.2001.280.5.C109711287322
    [Google Scholar]
  187. GaoX. FrakichN. FilippiniP. EdwardsL.J. VinkemeierU. GranB. TanasescuR. BayraktutanU. ColomboS. ConstantinescuC.S. Effects of substance P on human cerebral microvascular endothelial cell line hCMEC/D3 are mediated exclusively through a truncated NK-1 receptor and depend on cell confluence.Neuropeptides20229510226510.1016/j.npep.2022.10226535696961
    [Google Scholar]
  188. LaiJ.P. LaiS. TulucF. TanskyM.F. KilpatrickL.E. LeemanS.E. DouglasS.D. Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor.Proc. Natl. Acad. Sci.200810534126051261010.1073/pnas.080663210518713853
    [Google Scholar]
  189. MuñozM.F. ArgüellesS. RossoM. MedinaR. CoveñasR. AyalaA. MuñozM. The neurokinin-1 receptor is essential for the viability of human glioma cells: A possible target for treating glioblastoma.BioMed Res. Int.2022202211310.1155/2022/629150435434136
    [Google Scholar]
  190. Molinos-QuintanaA. Trujillo-HachaP. PiruatJ.I. Bejarano-GarcíaJ.A. García-GuerreroE. Pérez-SimónJ.A. MuñozM. Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of neurokinin-1 receptor antagonists.Invest. New Drugs2019371172610.1007/s10637‑018‑0607‑829721755
    [Google Scholar]
  191. MozafariM. EbrahimiS. DarbanR.A. HashemyS.I. Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer.Mol. Biol. Rep.20224921067107610.1007/s11033‑021‑06928‑334766230
    [Google Scholar]
  192. ZhouY. WangM. TongY. LiuX. ZhangL. DongD. ShaoJ. ZhouY. miR-206 promotes cancer progression by targeting full-length neurokinin-1 receptor in breast cancer.Technol. Cancer Res. Treat.20191810.1177/153303381987516831506061
    [Google Scholar]
  193. LiuX. ZhangL. TongY. YuM. WangM. DongD. ShaoJ. ZhangF. NiuR. ZhouY. MicroRNA-22 inhibits proliferation, invasion and metastasis of breast cancer cells through targeting truncated neurokinin-1 receptor and ERα.Life Sci.2019217576910.1016/j.lfs.2018.11.05730502362
    [Google Scholar]
  194. BergerM. NethO. IlmerM. GarnierA. Salinas-MartínM.V. de Agustín AsencioJ.C. von SchweinitzD. KapplerR. MuñozM. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo.J. Hepatol.201460598599410.1016/j.jhep.2013.12.02424412605
    [Google Scholar]
  195. PohlA. KapplerR. MühlingJ. VON SchweinitzD. BergerM. Expression of truncated neurokinin-1 receptor in childhood neuroblastoma is independent of tumor biology and stage.Anticancer Res.201737116079608529061788
    [Google Scholar]
  196. GaoX. WangZ. Difference in expression of two neurokinin-1 receptors in adenoma and carcinoma from patients that underwent radical surgery for colorectal carcinoma.Oncol. Lett.20171433729373310.3892/ol.2017.658828927139
    [Google Scholar]
  197. GillespieE. LeemanS.E. WattsL.A. CoukosJ.A. O’BrienM.J. CerdaS.R. FarrayeF.A. StucchiA.F. BeckerJ.M. Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer.Proc. Natl. Acad. Sci. USA201110842174201742510.1073/pnas.111427510821969570
    [Google Scholar]
  198. PatelH.J. RamkissoonS.H. PatelP.S. RameshwarP. Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides.Proc. Natl. Acad. Sci. USA200510248174361744110.1073/pnas.050635110216291810
    [Google Scholar]
  199. NahasG.R. MurthyR.G. PatelS.A. GantaT. GrecoS.J. RameshwarP. The RNA-binding protein Musashi 1 stabilizes the oncotachykinin 1 mRNA in breast cancer cells to promote cell growth.FASEB J.201630114915910.1096/fj.15‑27877026373800
    [Google Scholar]
  200. NavarroP. RamkissoonS.H. ShahS. ParkJ.M. MurthyR.G. PatelS.A. GrecoS.J. RameshwarP. An indirect role for the oncomir-519b in the expression of truncated neurokinin-1 in breast cancer cells.Exp. Cell Res.2012318202604261510.1016/j.yexcr.2012.09.00222981979
    [Google Scholar]
  201. RamkissoonS.H. PatelP.S. TaborgaM. RameshwarP. Nuclear factor-kappaB is central to the expression of truncated neurokinin-1 receptor in breast cancer: implication for breast cancer cell quiescence within bone marrow stroma.Cancer Res.20076741653165910.1158/0008‑5472.CAN‑06‑381317308106
    [Google Scholar]
  202. MuñozM. CrespoJ.C. CrespoJ.P. CoveñasR. Neurokinin-1 receptor antagonist aprepitant and radiotherapy, a successful combination therapy in a patient with lung cancer: A case report.Mol. Clin. Oncol.2019111505410.3892/mco.2019.185731289677
    [Google Scholar]
  203. MuñozM. CoveñasR. Neurokinin receptor antagonism: a patent review (2014-present).Expert Opin. Ther. Pat.202030752753910.1080/13543776.2020.176959932401556
    [Google Scholar]
  204. AvetC. ManciniA. BretonB. Le GouillC. HauserA.S. NormandC. KobayashiH. GrossF. HogueM. LukashevaV. St-OngeS. CarrierM. HérouxM. MorissetteS. FaumanE.B. FortinJ.P. SchannS. LeroyX. GloriamD.E. BouvierM. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs.eLife202211e7410110.7554/eLife.7410135302493
    [Google Scholar]
  205. WangF.I. DingG. NgG.S. DixonS.J. ChidiacP. Luciferase-based GloSensor™ cAMP assay: Temperature optimization and application to cell-based kinetic studies.Methods202220324925810.1016/j.ymeth.2021.10.00934737032
    [Google Scholar]
  206. TeiR. BaskinJ.M. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling.J. Biol. Chem.2022298410181010.1016/j.jbc.2022.10181035276134
    [Google Scholar]
  207. LeoK.T. ChouC.L. YangC.R. ParkE. RaghuramV. KnepperM.A. Bayesian analysis of dynamic phosphoproteomic data identifies protein kinases mediating GPCR responses.Cell Commun. Signal.2022201808610.1186/s12964‑022‑00892‑635659261
    [Google Scholar]
  208. HijaziM. SmithR. RajeeveV. BessantC. CutillasP.R. Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring.Nat. Biotechnol.202038449350210.1038/s41587‑019‑0391‑931959955
    [Google Scholar]
  209. MichelM.C. CharltonS.J. Biased agonism in drug discovery-is it too soon to choose a path?Mol. Pharmacol.201893425926510.1124/mol.117.11089029326242
    [Google Scholar]
  210. RecioR. LerenaP. PozoE. Calderón-MontañoJ.M. Burgos-MorónE. López-LázaroM. ValdiviaV. Pernia LealM. MouillacB. OrganeroJ.Á. KhiarN. FernándezI. Carbohydrate-based NK1R antagonists with broad-spectrum anticancer activity.J. Med. Chem.20216414103501037010.1021/acs.jmedchem.1c0079334236855
    [Google Scholar]
  211. ParadisJ.S. FengX. MuratB. JeffersonR.E. SokratB. SzpakowskaM. HogueM. BergkampN.D. HeydenreichF.M. SmitM.J. ChevignéA. BouvierM. BarthP. Computationally designed GPCR quaternary structures bias signaling pathway activation.Nat. Commun.2022131682610.1038/s41467‑022‑34382‑736369272
    [Google Scholar]
  212. Morales-PastorA. Nerín-FonzF. Aranda-GarcíaD. Dieguez-EceolazaM. Medel-LacruzB. Torrens-FontanalsM. Peralta-GarcíaA. SelentJ. In silico study of allosteric communication networks in GPCR signaling bias.Int. J. Mol. Sci.20222314780910.3390/ijms2314780935887157
    [Google Scholar]
  213. EbrahimiS. MirzaviF. HashemyS.I. Khaleghi GhadiriM. StummerW. GorjiA. The in vitro anti-cancer synergy of neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid in glioblastoma.Biofactors2023494900-91110.1002/biof.195337092793
    [Google Scholar]
  214. EbrahimiS. ErfaniB. AlalikhanA. GhorbaniH. FarzadniaM. AfshariA.R. MashkaniB. HashemyS.I. The in vitro pro-inflammatory functions of the SP/NK1R system in prostate cancer: A focus on nuclear factor-kappa B (NF-κB) and its pro-inflammatory target genes.Appl. Biochem. Biotechnol.202310.1007/s12010‑023‑04495‑w37093533
    [Google Scholar]
  215. KrólickiL. KunikowskaJ. BruchertseiferF. KulińskiR. PawlakD. KoziaraH. RolaR. MorgensternA. MerloA. Locoregional treatment of glioblastoma with targeted α therapy: [ 213 Bi]Bi-DOTA-substance P versus [225 Ac]Ac-DOTA-substance P-analysis of influence parameters.Clin. Nucl. Med.202348538739210.1097/RLU.000000000000460836854309
    [Google Scholar]
  216. RobinsonP. RossoM. MuñozM. Neurokinin-1 Receptor antagonists as a potential novel therapeutic option for osteosarcoma patients.J. Clin. Med.2023126213510.3390/jcm1206213536983138
    [Google Scholar]
  217. SuthiramJ. PietersA. Mohamed MoosaZ. ZeevaartJ.R. SathekgeM.M. EbenhanT. AndersonR.C. NewtonC.L. Tachykinin receptor-selectivity of the potential glioblastoma-targeted therapy, DOTA-[Thi8,Met(O2)11]-substance P.Int. J. Mol. Sci.2023243213410.3390/ijms2403213436768456
    [Google Scholar]
  218. GuanL. YuanS. MaJ. LiuH. HuangL. ZhangF. Neurokinin-1 receptor is highly expressed in cervical cancer and its antagonist induces cervical cancer cell apoptosis.Eur. J. Histochem.2023671357010.4081/ejh.2023.357036629320
    [Google Scholar]
  219. KantV. MahapatraP.S. GuptaV. BagS. GopalakrishnanA. KumarD. KumarD. Substance P, a neuropeptide, promotes wound healing via neurokinin-1 receptor.Int. J. Low. Extrem. Wounds202322229129710.1177/1534734621100406033856252
    [Google Scholar]
  220. ChoiJ.G. ChoiS.R. KangD.W. ShinH.J. LeeM. HwangJ. KimH.W. Inhibition of angiotensin converting enzyme increases PKCβI isoform expression via activation of substance P and bradykinin receptors in cultured astrocytes of mice.J. Vet. Sci.2023242e2610.4142/jvs.2227537012034
    [Google Scholar]
  221. Al-KeilaniM.S. BdeirR. ElstatyR.I. AlqudahM.A. Expression of substance P, neurokinin 1 receptor, Ki-67 and pyruvate kinase M2 in hormone receptor negative breast cancer and evaluation of impact on overall survival.BMC Cancer202323115810.1186/s12885‑023‑10633‑836797689
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230818110812
Loading
/content/journals/cmc/10.2174/0929867331666230818110812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test