Skip to content
2000
Volume 31, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673251648231106112354
2024-01-30
2025-01-15
Loading full text...

Full text loading...

References

  1. ChaeS. LeT.H. ParkC.S. ChoiY. KimS. LeeU. HeoE. LeeH. KimY.A. KwonO.S. YoonH. Anomalous restoration of sp 2 hybridization in graphene functionalization.Nanoscale20201225133511335910.1039/D0NR03422C32572409
    [Google Scholar]
  2. SidorovA.N. YazdanpanahM.M. JalilianR. OusephP.J. CohnR.W. SumanasekeraG.U. Electrostatic deposition of graphene.Nanotechnology2007181313530110.1088/0957‑4484/18/13/13530121730375
    [Google Scholar]
  3. SeemaH. ShirinfarB. ShiG. YounI.S. AhmedN. Facile synthesis of a selective biomolecule chemosensor and fabrication of its highly fluorescent graphene complex.J. Phys. Chem. B2017121195007501610.1021/acs.jpcb.7b0288828463493
    [Google Scholar]
  4. GoldoniR. FarronatoM. ConnellyS.T. TartagliaG.M. YeoW.H. Recent advances in graphene-based nanobiosensors for salivary biomarker detection.Biosens. Bioelectron.202117111272310.1016/j.bios.2020.11272333096432
    [Google Scholar]
  5. MengQ. YuY. TianJ. YangZ. GuoS. CaiR. HanS. LiuT. MaJ. Multifunctional, durable and highly conductive graphene/sponge nanocomposites.Nanotechnology2020314646550210.1088/1361‑6528/ab9f7332575085
    [Google Scholar]
  6. ZhangZ.Z. SongX.X. LuoG. SuZ.J. WangK.L. CaoG. LiH.O. XiaoM. GuoG.C. TianL. DengG.W. GuoG.P. Coherent phonon dynamics in spatially separated graphene mechanical resonators.Proc. Natl. Acad. Sci.2020117115582558710.1073/pnas.191697811732123110
    [Google Scholar]
  7. MahajanC.R. JoshiL.B. VarmaU. NaikJ.B. ChaudhariV.R. MishraS. Sustainable drug delivery of famotidine using chitosan-functionalized graphene oxide as nanocarrier.Glob. Chall.2019310190000210.1002/gch2.20190000231592120
    [Google Scholar]
  8. PrabowoB.A. PurwidyantriA. LiuB. LaiH.C. LiuK.C. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor.Nanotechnology202132909550310.1088/1361‑6528/abcd6233232941
    [Google Scholar]
  9. NejabatM. CharbgooF. RamezaniM. Graphene as multifunctional delivery platform in cancer therapy.J. Biomed. Mater. Res. A201710582355236710.1002/jbm.a.3608028371194
    [Google Scholar]
  10. GholivandK. FaraghiM. PooyanM. BabaeeL.S. MalekshahR.E. PirastehfarF. VahabiradM. Anti-cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation.Curr. Med. Chem.202330303486350310.2174/092986733066622102715271636305155
    [Google Scholar]
  11. KeramatA. KadkhodaJ. FarahzadiR. FathiE. DavaranS. The potential of graphene oxide and reduced graphene oxide in diagnosis and treatment of cancer.Curr. Med. Chem.202229264529454610.2174/092986732966622020809215735135444
    [Google Scholar]
  12. PedrosaM. Da SilvaE.S. Pastrana-MartínezL.M. DrazicG. FalarasP. FariaJ.L. FigueiredoJ.L. SilvaA.M.T. Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation.J. Colloid Interface Sci.202056724325510.1016/j.jcis.2020.01.09332062085
    [Google Scholar]
  13. PatelM.A. YangH. ChiuP.L. MastrogiovanniD.D.T. FlachC.R. SavaramK. GomezL. HemnarineA. MendelsohnR. GarfunkelE. JiangH. HeH. Direct production of graphene nanosheets for near infrared photoacoustic imaging.ACS Nano2013798147815710.1021/nn403429v24001023
    [Google Scholar]
  14. PengL. XuZ. LiuZ. WeiY. SunH. LiZ. ZhaoX. GaoC. An iron-based green approach to 1-h production of single-layer graphene oxide.Nat. Commun.201561571610.1038/ncomms671625607686
    [Google Scholar]
  15. KimF. LuoJ. Cruz-SilvaR. CoteL.J. SohnK. HuangJ. Self-propagating domino-like reactions in oxidized graphite.Adv. Funct. Mater.201020172867287310.1002/adfm.201000736
    [Google Scholar]
  16. ZhengF. XuW.L. JinH.D. ZhuM.Q. YuanW.H. HaoX.T. GhigginoK.P. Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide.Chem. Commun.201551183824382710.1039/C5CC00056D25649830
    [Google Scholar]
  17. BalajiA. ZhangJ. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide.Cancer Nanotechnol.2017811010.1186/s12645‑017‑0035‑z29250208
    [Google Scholar]
  18. AbdelbassetW.K. JasimS.A. BokovD.O. OlenevaM.S. IslamovA. HammidA.T. MustafaY.F. YasinG. AlgunoA.C. KianfarE. Comparison and evaluation of the performance of graphene-based biosensors.Carbon Letters202232492795110.1007/s42823‑022‑00338‑6
    [Google Scholar]
  19. IşınD. EksinE. ErdemA. Graphene-oxide and ionic liquid modified electrodes for electrochemical sensing of breast cancer 1 gene.Biosensors20221229510.3390/bios1202009535200355
    [Google Scholar]
  20. LuongJ.H.T. VashistS.K. Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites.Biosens. Bioelectron.201789Pt 129330410.1016/j.bios.2015.11.05326620098
    [Google Scholar]
  21. ChenS.L. ChenC.Y. HsiehJ.C.H. YuZ.Y. ChengS.J. HsiehK.Y. YangJ.W. KumarP.V. LinS.F. ChenG.Y. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis.Nanomaterials2019912172510.3390/nano912172531816919
    [Google Scholar]
  22. QianW. MiaoZ. ZhangX.J. YangX.T. TangY.Y. TangY.Y. HuL.Y. LiS. ZhuD. ChengH. Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection.Mikrochim. Acta2020187740710.1007/s00604‑020‑04402‑832594259
    [Google Scholar]
  23. PapiM. PalmieriV. DigiacomoL. GiulimondiF. PalchettiS. CiascaG. PeriniG. CaputoD. CartilloneM.C. CasconeC. CoppolaR. CapriottiA.L. LaganàA. PozziD. CaraccioloG. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection.Nanoscale20191132153391534610.1039/C9NR01413F31386742
    [Google Scholar]
  24. WuC. LiP. FanN. HanJ. ZhangW. ZhangW. TangB. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells.ACS Appl. Mater. Interfaces20191148449994500610.1021/acsami.9b1841031714050
    [Google Scholar]
  25. Geetha BaiR. MuthoosamyK. TuvikeneR. Nay MingH. ManickamS. Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker.Nanomaterials2021115127210.3390/nano1105127234066073
    [Google Scholar]
  26. MahmoodiP. RezayiM. RasouliE. AvanA. GholamiM. Ghayour MobarhanM. KarimiE. AliasY. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples.J. Nanobiotechnol.20201811110.1186/s12951‑020‑0577‑931931815
    [Google Scholar]
  27. ShiS. YangK. HongH. ValdovinosH.F. NayakT.R. ZhangY. TheuerC.P. BarnhartT.E. LiuZ. CaiW. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide.Biomaterials201334123002300910.1016/j.biomaterials.2013.01.04723374706
    [Google Scholar]
  28. XuH. FanM. ElhissiA.M.A. ZhangZ. WanK.W. AhmedW. PhoenixD.A. SunX. PEGylated graphene oxide for tumor-targeted delivery of paclitaxel.Nanomedicine20151081247126210.2217/nnm.14.23325955123
    [Google Scholar]
  29. LanM.Y. HsuY.B. LanM.C. ChenJ.P. LuY.J. Polyethylene glycol-coated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells.Int. J. Nanomedicine2020157569758210.2147/IJN.S26543733116488
    [Google Scholar]
  30. ShuaiC. WangB. BinS. PengS. GaoC. TiO 2 -induced in situ reaction in graphene oxide-reinforced az61 biocomposites to enhance the interfacial bonding.ACS Appl. Mater. Interfaces20201220234642347310.1021/acsami.0c0402032345014
    [Google Scholar]
  31. AlibolandiM. MohammadiM. TaghdisiS.M. RamezaniM. AbnousK. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery.Carbohydr. Polym.201715521822910.1016/j.carbpol.2016.08.04627702507
    [Google Scholar]
  32. GuY. GuoY. WangC. XuJ. WuJ. KirkT.B. MaD. XueW. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery.Mater. Sci. Eng. C201770Pt 157258510.1016/j.msec.2016.09.03527770930
    [Google Scholar]
  33. SlekieneN. SnitkaV. Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells.Toxicol. In Vitro 20206510482110.1016/j.tiv.2020.10482132151703
    [Google Scholar]
  34. ZhangY.M. CaoY. YangY. ChenJ.T. LiuY. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin.Chem. Commun.20145086130661306910.1039/C4CC04533E25222700
    [Google Scholar]
  35. KansaraV. PatilR. TripathiR. JhaP.K. BahadurP. TiwariS. Functionalized graphene nanosheets with improved dispersion stability and superior paclitaxel loading capacity.Colloids Surf. B Biointerfaces201917342142810.1016/j.colsurfb.2018.10.01630321800
    [Google Scholar]
  36. YangY.F. MengF.Y. LiX.H. WuN.N. DengY.H. WeiL.Y. ZengX.P. Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy.J. Nanosci. Nanotechnol.201919127517752510.1166/jnn.2019.1676831196255
    [Google Scholar]
  37. LinK.C. LinM.W. HsuM.N. Yu-ChenG. ChaoY.C. TuanH.Y. ChiangC.S. HuY.C. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis.Theranostics2018892477248710.7150/thno.2417329721093
    [Google Scholar]
  38. LuY.J. LanY.H. ChuangC.C. LuW.T. ChanL.Y. HsuP.W. ChenJ.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy.Int. J. Mol. Sci.20202119711110.3390/ijms2119711132993166
    [Google Scholar]
  39. LiuX. GaoM.M. ChengZ. CaiZ-K. YuL. NiuG-M. LiJ-Y. BaiY. ZhaoS-Z. SongY-C. WangX-G. DongY. YuX. TaoZ. YuanZ-Y. Stereotactic body radiotherapy compared with video-assisted thoracic surgery after propensity-score matching in elderly patients with pathologically-proven early-stage non-small cell lung cancer.Precis. Radiat. Oncol.20226427928810.1002/pro6.1175
    [Google Scholar]
  40. ToomehD. GadoueS.M. Yasmin-KarimS. SinghM. ShankerR. Pal SinghS. KumarR. SajoE. NgwaW. Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy.Phys. Med.20185581410.1016/j.ejmp.2018.10.00130471823
    [Google Scholar]
  41. KadkhodaJ. TarighatniaA. BararJ. AghanejadA. DavaranS. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy.Photodiagn. Photodyn. Ther.20223710269710.1016/j.pdpdt.2021.10269734936918
    [Google Scholar]
  42. MaM. ChengL. ZhaoA. ZhangH. ZhangA. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells.Photodiagn. Photodyn. Ther.20202910164010.1016/j.pdpdt.2019.10164031899381
    [Google Scholar]
  43. DasP. MudigundaS.V. DarabdharaG. BoruahP.K. GharS. RenganA.K. DasM.R. Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells.J. Photochem. Photobiol. B202021211202810.1016/j.jphotobiol.2020.11202833010550
    [Google Scholar]
  44. GulzarA. XuJ. YangD. XuL. HeF. GaiS. YangP. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy.Dalton Trans.201847113931393910.1039/C7DT04141A29459928
    [Google Scholar]
  45. LiuP. XieX. LiuM. HuS. DingJ. ZhouW. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion.Acta Pharm. Sin. B202111382383410.1016/j.apsb.2020.07.02133777684
    [Google Scholar]
  46. GuoW. ChenZ. FengX. ShenG. HuangH. LiangY. ZhaoB. LiG. HuY. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP).J. Nanobiotechnol.202119114610.1186/s12951‑021‑00874‑934011375
    [Google Scholar]
  47. ZengW.N. YuQ.P. WangD. LiuJ.L. YangQ.J. ZhouZ.K. ZengY.P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma.J. Nanobiotechnol.20211917910.1186/s12951‑021‑00831‑633740998
    [Google Scholar]
  48. ZhaoC. SongX. LiuY. FuY. YeL. WangN. WangF. LiL. MohammadniaeiM. ZhangM. ZhangQ. LiuJ. Synthesis of graphene quantum dots and their applications in drug delivery.J. Nanobiotechnol.202018114210.1186/s12951‑020‑00698‑z33008457
    [Google Scholar]
  49. VatanparastM. ShariatiniaZ. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach.J. Mater. Chem. B Mater. Biol. Med.20197406156617110.1039/C9TB00971J31559403
    [Google Scholar]
  50. SinghG. KaurH. SharmaA. SinghJ. AlajangiH.K. KumarS. SinglaN. KaurI.P. BarnwalR.P. Carbon based nanodots in early diagnosis of cancer.Front Chem.2021966916910.3389/fchem.2021.66916934109155
    [Google Scholar]
  51. CunciL. González-ColónV. Lee Vargas-PérezB. Ortiz-SantiagoJ. PagánM. CarrionP. CruzJ. Molina-OntoriaA. MartinezN. SilvaW. EchegoyenL. CabreraC.R. Multicolor fluorescent graphene oxide quantum dots for sensing cancer cell biomarkers.ACS Appl. Nano Mater.20214121121910.1021/acsanm.0c0252634142014
    [Google Scholar]
  52. XuA. HeP. YeC. LiuZ. GuB. GaoB. LiY. DongH. ChenD. WangG. YangS. DingG. Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection.ACS Appl. Mater. Interfaces2020129107811079010.1021/acsami.9b2043432048821
    [Google Scholar]
  53. GanganboinaA.B. DegaN.K. TranH.L. DarmontoW. DoongR.A. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells.Biosens. Bioelectron.202118111315110.1016/j.bios.2021.11315133740543
    [Google Scholar]
  54. PothiporC. JakmuneeJ. BamrungsapS. OunnunkadK. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film.Analyst2021146124000400910.1039/D1AN00436K34013303
    [Google Scholar]
  55. ZhangH. BaS. YangZ. WangT. LeeJ.Y. LiT. ShaoF. Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker ape1 in living cells.ACS Appl. Mater. Interfaces20201212136341364310.1021/acsami.9b2138532129072
    [Google Scholar]
  56. MarkoA.J. BorahB.M. SitersK.E. MissertJ.R. GuptaA. PeraP. Isaac-LamM.F. PandeyR.K. Targeted nanoparticles for fluorescence imaging of folate receptor positive tumors.Biomolecules20201012165110.3390/biom1012165133317162
    [Google Scholar]
  57. AssarafY.G. LeamonC.P. ReddyJ.A. The folate receptor as a rational therapeutic target for personalized cancer treatment.Drug Resist. Updat.2014174-6899510.1016/j.drup.2014.10.00225457975
    [Google Scholar]
  58. FengS. PanJ. LiC. ZhengY. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells.Nanotechnology2020311313570110.1088/1361‑6528/ab5f7f31810072
    [Google Scholar]
  59. LiuH. LiC. QianY. HuL. FangJ. TongW. NieR. ChenQ. WangH. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window.Biomaterials202023211970010.1016/j.biomaterials.2019.11970031881379
    [Google Scholar]
  60. DharmaratneN.U. KaplanA.R. GlazerP.M. Targeting the hypoxic and acidic tumor microenvironment with ph-sensitive peptides.Cells202110354110.3390/cells1003054133806273
    [Google Scholar]
  61. FangJ. LiuY. ChenY. OuyangD. YangG. YuT. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy.Int. J. Nanomedicine2018135991600710.2147/IJN.S17593430323587
    [Google Scholar]
  62. KhodadadeiF. SafarianS. GhanbariN. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system.Mater. Sci. Eng. C20177928028510.1016/j.msec.2017.05.04928629019
    [Google Scholar]
  63. WeiZ. YinX. CaiY. XuW. SongC. WangY. ZhangJ. KangA. WangZ. HanW. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma.Int. J. Nanomedicine2018131505152410.2147/IJN.S15698429559779
    [Google Scholar]
  64. NasrollahiF. KohY.R. ChenP. VarshosazJ. KhodadadiA.A. LimS. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging.Mater. Sci. Eng. C20199424725710.1016/j.msec.2018.09.02030423706
    [Google Scholar]
  65. IannazzoD. PistoneA. SalamòM. GalvagnoS. RomeoR. GiofréS.V. BrancaC. VisalliG. Di PietroA. Graphene quantum dots for cancer targeted drug delivery.Int. J. Pharm.20175181-218519210.1016/j.ijpharm.2016.12.06028057464
    [Google Scholar]
  66. Nigam JoshiP. AgawaneS. AthalyeM.C. JadhavV. SarkarD. PrakashR. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy.Mater. Sci. Eng. C2017781203121110.1016/j.msec.2017.03.17628575959
    [Google Scholar]
  67. AuT.H. NguyenB.N. NguyenP.H. PetheS. Vo-ThanhG. Vu ThiT.H. Vinblastine loaded on graphene quantum dots and its anticancer applications.J. Microencapsul.202239323925110.1080/02652048.2022.206036135352611
    [Google Scholar]
  68. RamedaniA. SabzevariO. SimchiA. Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment.Int. J. Pharm.202262912237310.1016/j.ijpharm.2022.12237336356790
    [Google Scholar]
  69. YuC.X. Radiotherapy of early-stage breast cancer.Precis. Radiat. Oncol.202371677910.1002/pro6.1183
    [Google Scholar]
  70. EsgandariK. MohammadianM. ZohdiaghdamR. RastinS.J. AlidadiS. BehrouzkiaZ. Combined treatment with silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells.J. Cell. Physiol.202123642817282810.1002/jcp.3004632901933
    [Google Scholar]
  71. ReagenS. WuY. SunD. MunozC. OncelN. CombsC. ZhaoJ.X. Development of biodegradable GQDs-hMSNs for fluorescence imaging and dual cancer treatment via photodynamic therapy and drug delivery.Int. J. Mol. Sci.202223231493110.3390/ijms23231493136499261
    [Google Scholar]
  72. OstańskaE. AebisherD. Bartusik-AebisherD. The potential of photodynamic therapy in current breast cancer treatment methodologies.Biomed. Pharmacother.202113711130210.1016/j.biopha.2021.11130233517188
    [Google Scholar]
  73. CaoH. FangB. LiuJ. ShenY. ShenJ. XiangP. ZhouQ. De SouzaS.C. LiD. TianY. LuoL. ZhangZ. TianX. Photodynamic therapy directed by three-photon active rigid plane organic photosensitizer.Adv. Healthc. Mater.2021107200148910.1002/adhm.20200148933336561
    [Google Scholar]
  74. KwiatkowskiS. KnapB. PrzystupskiD. SaczkoJ. KędzierskaE. Knap-CzopK. KotlińskaJ. MichelO. KotowskiK. KulbackaJ. Photodynamic therapy - mechanisms, photosensitizers and combinations.Biomed. Pharmacother.20181061098110710.1016/j.biopha.2018.07.04930119176
    [Google Scholar]
  75. ChenL. LiuD. WuM. ChauH.F. WangK. FungY.H. WongK.L. WangZ. WuF. Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization.Nanotechnology2020313131510110.1088/1361‑6528/ab86ea32252029
    [Google Scholar]
  76. ZouZ. ChangH. LiH. WangS. Induction of reactive oxygen species: An emerging approach for cancer therapy.Apoptosis201722111321133510.1007/s10495‑017‑1424‑928936716
    [Google Scholar]
  77. HamblinM.R. AbrahamseH. Factors affecting photodynamic therapy and anti-tumor immune response.Anticancer. Agents Med. Chem.202021212313610.2174/187152062066620031810103732188394
    [Google Scholar]
  78. HeS. LiJ. ChenM. DengL. YangY. ZengZ. XiongW. WuX. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy.Int. J. Nanomedicine2020158451846310.2147/IJN.S26513433149586
    [Google Scholar]
  79. NeelgundG.M. OkiA.R. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.J. Colloid Interface Sci.201648413514510.1016/j.jcis.2016.07.07827599382
    [Google Scholar]
  80. ShiJ. ZhaoZ. LiuZ. WuR. WangY. Ultralow-intensity NIR light triggered on-demand drug release by employing highly emissive UCNP and photocleavable linker with low bond dissociation energy.Int. J. Nanomedicine2019144017402810.2147/IJN.S20198231239667
    [Google Scholar]
  81. HanR. TangK. HouY. YuJ. WangC. WangY. Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy.Biomater. Sci.20208260761810.1039/C9BM01607D31793930
    [Google Scholar]
  82. LuH. LiW. QiuP. ZhangX. QinJ. CaiY. LuX. MnO 2 doped graphene nanosheets for carotid body tumor combination therapy.Nanoscale Adv.20224204304431310.1039/D2NA00086E36321141
    [Google Scholar]
  83. YuT. HuY. FengG. HuK. Noninvasive tumor therapy: A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy.Adv. Ther.202033207000510.1002/adtp.202070005
    [Google Scholar]
  84. ShiJ. WangB. ChenZ. LiuW. PanJ. HouL. ZhangZ. A multi-functional tumor theranostic nanoplatform for mri guided photothermal-chemotherapy.Pharm. Res.20163361472148510.1007/s11095‑016‑1891‑726984128
    [Google Scholar]
  85. KhanH.A. LeeY.K. ShaikM.R. AlrashoodS.T. EkhzaimyA.A. Nanocomposites of nitrogen-doped graphene oxide and manganese oxide for photodynamic therapy and magnetic resonance imaging.Int. J. Mol. Sci.202223231508710.3390/ijms23231508736499412
    [Google Scholar]
  86. ZhouC. WuH. WangM. HuangC. YangD. JiaN. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.Mater. Sci. Eng. C20177881782510.1016/j.msec.2017.04.13928576054
    [Google Scholar]
  87. Gonzalez-RodriguezR. CampbellE. NaumovA. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing.PLoS One2019146e021707210.1371/journal.pone.021707231170197
    [Google Scholar]
  88. YangY. ChenS. LiH. YuanY. ZhangZ. XieJ. HwangD.W. ZhangA. LiuM. ZhouX. Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging.Nano Lett.201919144144810.1021/acs.nanolett.8b0425230560672
    [Google Scholar]
  89. LuoY. TangY. LiuT. ChenQ. ZhouX. WangN. MaM. ChengY. ChenH. Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics.Chem. Commun.201955131963196610.1039/C8CC09185D30681672
    [Google Scholar]
  90. ZhangG. DuR. QianJ. ZhengX. TianX. CaiD. HeJ. WuY. HuangW. WangY. ZhangX. ZhongK. ZouD. WuZ. A tailored nanosheet decorated with a metallized dendrimer for angiography and magnetic resonance imaging-guided combined chemotherapy.Nanoscale201810148849810.1039/C7NR07957E29231948
    [Google Scholar]
  91. CaoJ. AnH. HuangX. FuG. ZhuangR. ZhuL. XieJ. ZhangF. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI.Nanoscale2016819101521015910.1039/C6NR02012G27121639
    [Google Scholar]
  92. WangC. RaviS. GarapatiU.S. DasM. HowellM. MallelaJ. AlwarappanS. MohapatraS.S. MohapatraS. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents.J. Mater. Chem. B Mater. Biol. Med.20131354396440510.1039/c3tb20452a24883188
    [Google Scholar]
  93. SonS. KimJ.H. WangX. ZhangC. YoonS.A. ShinJ. SharmaA. LeeM.H. ChengL. WuJ. KimJ.S. Multifunctional sonosensitizers in sonodynamic cancer therapy.Chem. Soc. Rev.202049113244326110.1039/C9CS00648F32337527
    [Google Scholar]
  94. CostleyD. Mc EwanC. FowleyC. McHaleA.P. AtchisonJ. NomikouN. CallanJ.F. Treating cancer with sonodynamic therapy: A review.Int. J. Hyperthermia201531210711710.3109/02656736.2014.99248425582025
    [Google Scholar]
  95. NinomiyaK. NodaK. OginoC. KurodaS. ShimizuN. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy.Ultrason. Sonochem.201421128929410.1016/j.ultsonch.2013.05.00523746399
    [Google Scholar]
  96. YumitaN. IwaseY. UmemuraS.I. ChenF.S. MomoseY. Sonodynamically-induced anticancer effects of polyethylene glycol-modified carbon nano tubes.Anticancer Res.20204052549255710.21873/anticanres.1422532366399
    [Google Scholar]
  97. MilowskaK. Ultrasound--mechanisms of action and application in sonodynamic therapy.Postepy Hig. Med. Dosw.200761338349
    [Google Scholar]
  98. LafondM. YoshizawaS. UmemuraS. Sonodynamic therapy: Advances and challenges in clinical translation.J. Ultrasound Med.201938356758010.1002/jum.1473330338863
    [Google Scholar]
  99. SunH. GeW. GaoX. WangS. JiangS. HuY. YuM. HuS. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer.PLoS One2015109e013798010.1371/journal.pone.013798026367393
    [Google Scholar]
  100. LiangS. DengX. MaP. ChengZ. LinJ. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy.Adv. Mater.20203247200321410.1002/adma.20200321433064322
    [Google Scholar]
  101. RobertsJ.E. Techniques to improve photodynamic therapy.Photochem. Photobiol.202096352452810.1111/php.1322332027382
    [Google Scholar]
  102. ChengD. WangX. ZhouX. LiJ. Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy.Front. Bioeng. Biotechnol.2021976121810.3389/fbioe.2021.76121834660560
    [Google Scholar]
  103. HuangJ. XiaoZ. AnY. HanS. WuW. WangY. GuoY. ShuaiX. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy.Biomaterials202126912063610.1016/j.biomaterials.2020.12063633453632
    [Google Scholar]
  104. ZhangQ. BaoC. CaiX. JinL. SunL. LangY. LiL. Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment.Cancer Sci.201810951330134510.1111/cas.1357829575297
    [Google Scholar]
  105. GuZ. ZhuS. YanL. ZhaoF. ZhaoY. Graphene-based smart platforms for combined cancer therapy.Adv. Mater.2019319180066210.1002/adma.20180066230039878
    [Google Scholar]
  106. FuscoL. GazziA. PengG. ShinY. VranicS. BedognettiD. VitaleF. YilmazerA. FengX. FadeelB. CasiraghiC. DeloguL.G. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics.Theranostics202010125435548810.7150/thno.4006832373222
    [Google Scholar]
  107. DaiC. ZhangS. LiuZ. WuR. ChenY. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication.ACS Nano20171199467948010.1021/acsnano.7b0521528829584
    [Google Scholar]
  108. ChenY.W. LiuT.Y. ChangP.H. HsuP.H. LiuH.L. LinH.C. ChenS.Y. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor.Nanoscale2016825126481265710.1039/C5NR07782F26838477
    [Google Scholar]
  109. LeeH.R. KimD.W. JonesV.O. ChoiY. FerryV.E. GellerM.A. AzarinS.M. Sonosensitizer-functionalized graphene nanoribbons for adhesion blocking and sonodynamic ablation of ovarian cancer spheroids.Adv. Healthc. Mater.20211013200136810.1002/adhm.20200136834050609
    [Google Scholar]
  110. QinD. ZouQ. LeiS. WangW. LiZ. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues.Ultrason. Sonochem.20217810571210.1016/j.ultsonch.2021.10571234391164
    [Google Scholar]
  111. ShenZ.Y. JiangY.M. ZhouY.F. High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound.Ultrason Sonoch.201840(Pt A)98098710.1016/j.ultsonch.2017.09.01528946510
    [Google Scholar]
  112. KooimanK. RooversS. LangeveldS.A.G. KlevenR.T. DewitteH. O’ReillyM.A. EscoffreJ.M. BouakazA. VerweijM.D. HynynenK. LentackerI. StrideE. HollandC.K. Ultrasound-responsive cavitation nuclei for therapy and drug delivery.Ultrasound Med. Biol.20204661296132510.1016/j.ultrasmedbio.2020.01.00232165014
    [Google Scholar]
  113. ShenZ. ShaoJ. ZhangJ. QuW. Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application.Exp. Biol. Med.2020245141200121210.1177/153537022093615032567346
    [Google Scholar]
  114. SontakkeA.D. PurkaitM.K. Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls.Ultrason. Sonochem.20206310497610.1016/j.ultsonch.2020.10497631986329
    [Google Scholar]
  115. SilvaL.I. MirabellaD.A. Pablo TombaJ. RiccardiC.C. Optimizing graphene production in ultrasonic devices.Ultrasonics202010010598910.1016/j.ultras.2019.10598931479970
    [Google Scholar]
  116. ZhaoW. LiM. QiY. TaoY. ShiZ. LiuY. ChengJ. Ultrasound sonochemical synthesis of amorphous Sb2S3-graphene composites for sodium-ion batteries.J. Colloid Interface Sci.202158640441110.1016/j.jcis.2020.10.10433183754
    [Google Scholar]
  117. ŠtenglV. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor.Chemistry20121844140471405410.1002/chem.20120141123015465
    [Google Scholar]
  118. Geetha BaiR. MuthoosamyK. ShiptonF.N. ManickamS. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells.Ultrason. Sonochem.20173612913810.1016/j.ultsonch.2016.11.02128069192
    [Google Scholar]
  119. GaoH. XueC. HuG. ZhuK. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium.Ultrason. Sonochem.20173712012710.1016/j.ultsonch.2017.01.00128427614
    [Google Scholar]
  120. ZhouY. YangK. CuiJ. YeJ.Y. DengC.X. Controlled permeation of cell membrane by single bubble acoustic cavitation.J. Control. Release2012157110311110.1016/j.jconrel.2011.09.06821945682
    [Google Scholar]
  121. LentackerI. De CockI. DeckersR. De SmedtS.C. MoonenC.T.W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms.Adv. Drug Deliv. Rev.201472496410.1016/j.addr.2013.11.00824270006
    [Google Scholar]
  122. YangY. LiQ. GuoX. TuJ. ZhangD. Mechanisms underlying sonoporation: Interaction between microbubbles and cells.Ultrason. Sonochem.20206710509610.1016/j.ultsonch.2020.10509632278246
    [Google Scholar]
  123. DaigelerA. ChromikA.M. HaendschkeK. EmmelmannS. SiepmannM. HenselK. SchmitzG. Klein-HitpassL. SteinauH.U. LehnhardtM. HauserJ. Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma.Ultrasound Med. Biol.201036111893190610.1016/j.ultrasmedbio.2010.08.00920870344
    [Google Scholar]
  124. ShenZ.Y. XiaG.L. WuM.F. JiL.Y. LiY.J. The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors.J. Cancer Res. Clin. Oncol.2016142237337810.1007/s00432‑015‑2034‑y26306908
    [Google Scholar]
  125. ZhouQ. ShaoS. WangJ. XuC. XiangJ. PiaoY. ZhouZ. YuQ. TangJ. LiuX. GanZ. MoR. GuZ. ShenY. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy.Nat. Nanotechnol.201914879980910.1038/s41565‑019‑0485‑z31263194
    [Google Scholar]
  126. RizwanullahM. AlamM. Harshita MirS.R. RizviM.M.A. AminS. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors.Curr. Pharm. Des.202026111206121510.2174/138161282666620011615042631951163
    [Google Scholar]
  127. YuZ. GuoJ. HuM. GaoY. HuangL. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma.ACS Nano20201444816482810.1021/acsnano.0c0070832188241
    [Google Scholar]
  128. CaoC. WangQ. LiuY. Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers.Drug Des. Devel. Ther.2019131087109810.2147/DDDT.S19800331118562
    [Google Scholar]
  129. LuoS. ZhuY. LiY. ChenL. LvS. ZhangY. GeL. ZhouW. Targeted chemotherapy for breast cancer using an intelligent doxorubicin-loaded hexapeptide hydrogel.J. Biomed. Nanotechnol.202016684285210.1166/jbn.2020.293533187580
    [Google Scholar]
  130. BenjanuwattraJ. Siri-AngkulN. ChattipakornS.C. ChattipakornN. Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies.Pharmacol. Res.202015110454210.1016/j.phrs.2019.10454231730804
    [Google Scholar]
  131. ZhangL. QuX. TengY. ShiJ. YuP. SunT. WangJ. ZhuZ. ZhangX. ZhaoM. LiuJ. JinB. LuoY. TengZ. DongY. WenF. AnY. YuanC. ChenT. ZhouL. ChenY. ZhangJ. WangZ. QuJ. JinF. ZhangJ. JinX. XieX. WangJ. ManL. FuL. LiuY. Efficacy of thalidomide in preventing delayed nausea and vomiting induced by highly emetogenic chemotherapy: A randomized, multicenter, double-blind, placebo-controlled phase III trial (CLOG1302 study).J. Clin. Oncol.201735313558356510.1200/JCO.2017.72.253828854065
    [Google Scholar]
  132. VargelI. ErdemA. ErtoyD. PinarA. ErkY. AltundagM.K. GulluI. Effects of growth factors on doxorubicin-induced skin necrosis: Documentation of histomorphological alterations and early treatment by GM-CSF and G-CSF.Ann. Plast. Surg.200249664665310.1097/00000637‑200212000‑0001512461449
    [Google Scholar]
  133. LiuY. QiaoL. ZhangS. WanG. ChenB. ZhouP. ZhangN. WangY. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy.Acta Biomater.20186631032410.1016/j.actbio.2017.11.01029129789
    [Google Scholar]
  134. DongK. ZhaoZ.Z. KangJ. LinL.R. ChenW.T. LiuJ.X. WuX.L. LuT.L. Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis.Int. J. Nanomedicine202015102851030410.2147/IJN.S28398133376322
    [Google Scholar]
  135. ZhangJ. ChenL. ShenB. ChenL. MoJ. FengJ. Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy.Langmuir201935186120612810.1021/acs.langmuir.9b0061130983368
    [Google Scholar]
  136. SinghM. GuptaP. BaroniaR. In vitro cytotoxicity of GO-DOx on FaDu squamous carcinoma cell lines.Int. J. Nanomedicine.201813107111
    [Google Scholar]
  137. FongY. ChenC.H. ChenJ.P. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy.Nanomaterials201771138810.3390/nano711038829135959
    [Google Scholar]
  138. ZiemysA. YokoiK. KojicM. Capillary collagen as the physical transport barrier in drug delivery to tumor microenvironment.Tissue Barriers201533e103741810.1080/21688370.2015.103741826451342
    [Google Scholar]
  139. ShenZ.Y. ShenB.Q. ShenA.J. ZhuX.H. Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 khz low-frequency ultrasound and microbubbles.J. Nanomater.202020202411310.1155/2020/3136078
    [Google Scholar]
  140. LiaoC. LiY. TjongS. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity.Int. J. Mol. Sci.20181911356410.3390/ijms1911356430424535
    [Google Scholar]
  141. ZhangB. WeiP. ZhouZ. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights.Adv. Drug Deliv. Rev.2016105(Pt B)145162
    [Google Scholar]
  142. RussierJ. TreossiE. ScarsiA. PerrozziF. DumortierH. OttavianoL. MeneghettiM. PalermoV. BiancoA. Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells.Nanoscale2013522112341124710.1039/c3nr03543c24084792
    [Google Scholar]
  143. MendesR.G. KochB. BachmatiukA. MaX. SanchezS. DammC. SchmidtO.G. GemmingT. EckertJ. RümmeliM.H. A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide.J. Mater. Chem. B Mater. Biol. Med.20153122522252910.1039/C5TB00180C32262127
    [Google Scholar]
  144. WojtoniszakM. ChenX. KalenczukR.J. WajdaA. ŁapczukJ. KurzewskiM. DrozdzikM. ChuP.K. Borowiak-PalenE. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide.Colloids Surf. B Biointerfaces201289798510.1016/j.colsurfb.2011.08.02621962852
    [Google Scholar]
  145. MatesanzM.C. VilaM. FeitoM.J. LinaresJ. GonçalvesG. Vallet-RegiM. MarquesP.A.A.P. PortolésM.T. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations.Biomaterials20133451562156910.1016/j.biomaterials.2012.11.00123177613
    [Google Scholar]
  146. AkhavanO. GhaderiE. AkhavanA. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells.Biomaterials201233328017802510.1016/j.biomaterials.2012.07.04022863381
    [Google Scholar]
  147. WuY. WangF. WangS. MaJ. XuM. GaoM. LiuR. ChenW. LiuS. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages.Nanoscale20181030146371465010.1039/C8NR02798F30028471
    [Google Scholar]
  148. DasguptaA. SarkarJ. GhoshM. BhattacharyaA. MukherjeeA. ChattopadhyayD. AcharyaK. Green conversion of graphene oxide to graphene nanosheets and its biosafety study.PLoS One2017122e017160710.1371/journal.pone.017160728158272
    [Google Scholar]
  149. PalmieriV. PeriniG. De SpiritoM. PapiM. Graphene oxide touches blood: In vivo interactions of bio-coronated 2D materials.Nanoscale Horiz.20194227329010.1039/C8NH00318A32254085
    [Google Scholar]
  150. RenH. WangC. ZhangJ. ZhouX. XuD. ZhengJ. GuoS. ZhangJ. DNA cleavage system of nanosized graphene oxide sheets and copper ions.ACS Nano20104127169717410.1021/nn101696r21082807
    [Google Scholar]
  151. LuC.J. JiangX.F. JunaidM. MaY.B. JiaP.P. WangH.B. PeiD.S. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo.Chemosphere201718479580510.1016/j.chemosphere.2017.06.04928645083
    [Google Scholar]
  152. Ali-boucettaH. BitounisD. Raveendran-NairR. ServantA. Van den BosscheJ. KostarelosK. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity.Adv. Healthc. Mater.20132343344110.1002/adhm.20120024823184580
    [Google Scholar]
  153. SinghS.K. SinghM.K. KulkarniP.P. SonkarV.K. GrácioJ.J.A. DashD. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications.ACS Nano2012632731274010.1021/nn300172t22376049
    [Google Scholar]
  154. LiuY. LuoY. WuJ. WangY. YangX. YangR. WangB. YangJ. ZhangN. Graphene oxide can induce in vitro and in vivo mutagenesis.Sci. Rep.201331346910.1038/srep0346924326739
    [Google Scholar]
  155. MaJ. LiuR. WangX. LiuQ. ChenY. ValleR.P. ZuoY.Y. XiaT. LiuS. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals.ACS Nano2015910104981051510.1021/acsnano.5b0475126389709
    [Google Scholar]
  156. MendonçaM.C.P. SoaresE.S. de JesusM.B. CeragioliH.J. BatistaÂ.G. Nyúl-TóthÁ. MolnárJ. WilhelmI. MarósticaM.R.Jr KrizbaiI. da Cruz-HöflingM.A. PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: An in vitro and in vivo Study.Mol. Pharm.201613113913392410.1021/acs.molpharmaceut.6b0069627712077
    [Google Scholar]
  157. Amrollahi-SharifabadiM. KoohiM.K. ZayerzadehE. HablolvaridM.H. HassanJ. SeifalianA.M. in vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application.Int. J. Nanomedicine2018134757476910.2147/IJN.S16873130174424
    [Google Scholar]
  158. WangK. RuanJ. SongH. ZhangJ. WoY. GuoS. CuiD. Biocompatibility of graphene oxide.Nanoscale Res. Lett.201061810.1007/s11671‑010‑9751‑627502632
    [Google Scholar]
  159. JiangLi. Blood exposure to graphene oxide may cause anaphylactic death in non-human primates.Nano Taday20203512100922
    [Google Scholar]
  160. RhazouaniA. GamraniH. El AchabyM. AzizK. GebratiL. UddinM.S. AzizF. Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies.BioMed Res. Int.2021202111910.1155/2021/551899934222470
    [Google Scholar]
  161. ShahriariS. SastryM. PanjikarS. Singh RamanR.K. Graphene and graphene oxide as a support for biomolecules in the development of biosensors.Nanotechnol. Sci. Appl.20211419722010.2147/NSA.S33448734815666
    [Google Scholar]
  162. FontanaC.R. LermanM.A. PatelN. GreccoC. de Souza CostaC.A. AmijiM.M. BagnatoV.S. SoukosN.S. Safety assessment of oral photodynamic therapy in rats.Lasers Med. Sci.201328247948610.1007/s10103‑012‑1091‑622467011
    [Google Scholar]
  163. LuckyS.S. Muhammad IdrisN. LiZ. HuangK. SooK.C. ZhangY. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy.ACS Nano20159119120510.1021/nn503450t25564723
    [Google Scholar]
  164. YounisM.R. WangC. AnR. WangS. YounisM.A. LiZ.Q. WangY. IhsanA. YeD. XiaX.H. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents.ACS Nano20191328b0955210.1021/acsnano.8b0955230730695
    [Google Scholar]
  165. Beltrán HernándezI. YuY. OssendorpF. KorbelikM. OliveiraS. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: Clinical recommendations.J. Clin. Med.20209233310.3390/jcm902033331991650
    [Google Scholar]
  166. ChoiV. RajoraM.A. ZhengG. Activating drugs with sound: Mechanisms behind sonodynamic therapy and the role of nanomedicine.Bioconjug. Chem.202031496798910.1021/acs.bioconjchem.0c0002932129984
    [Google Scholar]
  167. SviridovA.P. OsminkinaL.A. KharinA.Y. GongalskyM.B. KarginaJ.V. KudryavtsevA.A. BezsudnovaY.I. PerovaT.S. GeloenA. LysenkoV. TimoshenkoV.Y. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications.Nanotechnology2017281010510210.1088/1361‑6528/aa5b7c28177935
    [Google Scholar]
  168. YumitaN. UmemuraS. Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour.J. Pharm. Pharmacol.2010561859010.1211/002235702241214980005
    [Google Scholar]
  169. CanaveseG. AnconaA. RaccaL. CantaM. DumontelB. BarbarescoF. LimongiT. CaudaV. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer.Chem. Eng. J.201834015517210.1016/j.cej.2018.01.06030881202
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673251648231106112354
Loading
/content/journals/cmc/10.2174/0109298673251648231106112354
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test