Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The heterogeneous disease, breast cancer (BC), is a frequently detected cancer today, including hormone receptor-positive (HR+), human epidermal growth factor receptor-2-positive (HER2+), and triple-negative (ER-, PR-, HER2-) BC. Advanced endocrine therapies could improve about 85% HR+ BC patient survival. Still, 20% - 30% of cases of endocrine therapy resistance are observed. For all kinds of breast cancer, drug resistance is a common and dangerous phenomenon, comprised of two types: de novo resistance and acquired resistance (prolonged exposure). According to recent works of literature, the PI3K/AKT/mTOR pathway has become an emerging target for overcoming drug resistance in BC therapy due to its close association with tumour growth and resistance from current therapies. Activation of the PI3K/AKT/mTOR pathway was found to promote multidrug resistance by elevating drugs’ outflow. The first orally active PI3K inhibitor, Alpelisib (BYL-719) in fulvestrant combination, was approved for treating HR+/ HER2− metastatic BC. Therefore, utilizing PI3K/mTOR/AKT inhibitors in combination with currently available strategies could be an optimistic approach to overcoming drug resistance and resensitizing drug-resistant tumor cells of BC. Here, in this perspective, BC cancer therapies related to drug resistance, the involvement of PI3K/AKT/mTOR pathway in drug resistance and multi-drug resistance, and the role of PI3K/AKT/mTOR inhibitors in getting rid of drug resistance have been illuminated.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673327425240815065221
2024-08-21
2025-03-31
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/10/CMC-32-10-01.html?itemId=/content/journals/cmc/10.2174/0109298673327425240815065221&mimeType=html&fmt=ahah

References

  1. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  2. NaginiS. Breast cancer: Current molecular therapeutic targets and new players.Anti-Cancer Agents Med. Chem.2017172152163
    [Google Scholar]
  3. ClemonsM. DansonS. HowellA. Tamoxifen (‘Nolvadex’): a review.Cancer Treat. Rev.200228416518010.1016/S0305‑7372(02)00036‑112363457
    [Google Scholar]
  4. DasA. LavanyaK.J. Nandini KaurK. JaitakV. Effectiveness of selective estrogen receptor modulators in breast cancer therapy: an update.Curr. Med. Chem.202330293287331410.2174/092986732966622100611052836201273
    [Google Scholar]
  5. TangY. WangY. KianiM.F. WangB. Classification, treatment strategy, and associated drug resistance in breast cancer.Clin. Breast Cancer201616533534310.1016/j.clbc.2016.05.01227268750
    [Google Scholar]
  6. WolfD.M. LenburgM.E. YauC. BoudreauA. van ’t VeerL.J. Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity.PLoS One201492e8830910.1371/journal.pone.008830924516633
    [Google Scholar]
  7. DongC. WuJ. ChenY. NieJ. ChenC. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer.Front. Pharmacol.20211262869010.3389/fphar.2021.62869033790792
    [Google Scholar]
  8. VerretB. CortesJ. BachelotT. AndreF. ArnedosM. Efficacy of PI3K inhibitors in advanced breast cancer.Ann. Oncol.201930x12x2010.1093/annonc/mdz381
    [Google Scholar]
  9. KathawalaR.J. GuptaP. AshbyC.R.Jr ChenZ.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade.Drug Resist. Updat.20151811710.1016/j.drup.2014.11.00225554624
    [Google Scholar]
  10. MarkhamA. Alpelisib: first global approval.Drugs201979111249125310.1007/s40265‑019‑01161‑631256368
    [Google Scholar]
  11. CidadoJ. ParkB.H. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy.J. Mammary Gland Biol. Neoplasia2012173-420521610.1007/s10911‑012‑9264‑222865098
    [Google Scholar]
  12. LiuS. TangY. YanM. JiangW. PIK3CA mutation sensitizes breast cancer cells to synergistic therapy of PI3K inhibition and AMPK activation.Invest. New Drugs201836576377210.1007/s10637‑018‑0563‑329504069
    [Google Scholar]
  13. AllahyariM. Motavalizadeh-KakhkyA.R. MehrzadJ. ZhianiR. ChamaniJ. Cellulose nanocrystals derived from chicory plant: an un-competitive inhibitor of aromatase in breast cancer cells via PI3K/AKT/mTOP signalling pathway.J. Biomol. Struct. Dyn.202442115575558910.1080/07391102.2023.222675137340682
    [Google Scholar]
  14. LiuP. ChengH. RobertsT.M. ZhaoJ.J. Targeting the phosphoinositide 3-kinase pathway in cancer.Nat. Rev. Drug Discov.20098862764410.1038/nrd292619644473
    [Google Scholar]
  15. DeBerardinisR.J. LumJ.J. HatzivassiliouG. ThompsonC.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.Cell Metab.200871112010.1016/j.cmet.2007.10.00218177721
    [Google Scholar]
  16. DaiY. JinS. LiX. WangD. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer.Oncotarget2017811354136810.18632/oncotarget.1381727935869
    [Google Scholar]
  17. ManningB.D. CantleyL.C. AKT/PKB signaling: navigating downstream.Cell200712971261127410.1016/j.cell.2007.06.00917604717
    [Google Scholar]
  18. MuruganA.K. mTOR: Role in cancer, metastasis and drug resistance.Semin. Cancer Biol.20195992111
    [Google Scholar]
  19. DanceyJ. mTOR signaling and drug development in cancer.Nat. Rev. Clin. Oncol.20107420921910.1038/nrclinonc.2010.2120234352
    [Google Scholar]
  20. CarracedoA. MaL. Teruya-FeldsteinJ. RojoF. SalmenaL. AlimontiA. EgiaA. SasakiA.T. ThomasG. KozmaS.C. PapaA. NardellaC. CantleyL.C. BaselgaJ. PandolfiP.P. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer.J. Clin. Invest.200811893065307410.1172/JCI3473918725988
    [Google Scholar]
  21. FritschC. HuangA. Chatenay-RivaudayC. SchnellC. ReddyA. LiuM. KauffmannA. GuthyD. ErdmannD. De PoverA. FuretP. GaoH. FerrettiS. WangY. TrappeJ. BrachmannS.M. MairaS.M. WilsonC. BoehmM. Garcia-EcheverriaC. CheneP. WiesmannM. CozensR. LeharJ. SchlegelR. CaravattiG. HofmannF. SellersW.R. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials.Mol. Cancer Ther.20141351117112910.1158/1535‑7163.MCT‑13‑086524608574
    [Google Scholar]
  22. HasskarlJ. Everolimus.Small Molecules in Oncology2018101123
    [Google Scholar]
  23. ShirleyM. Capivasertib: First Approval.Drugs202484333734610.1007/s40265‑024‑01998‑638388873
    [Google Scholar]
  24. SinghS. BradfordD. LiX. Mishra-KalyaniP.S. ShenY.L. WangL. ZhaoH. XiongY. LiuJ. CharlabR. KraftJ. KhasarS. MillerC.P. RiveraD.R. KluetzP.G. PazdurR. BeaverJ.A. SinghH. DonoghueM. FDA approval summary: alpelisib for PIK3CA-related overgrowth spectrum.Clin. Cancer Res.2024301232810.1158/1078‑0432.CCR‑23‑127037624421
    [Google Scholar]
  25. ElsterN. CremonaM. MorganC. ToomeyS. CarrA. O’GradyA. HennessyB.T. EustaceA.J. A preclinical evaluation of the PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib.Breast Cancer Res. Treat.2015149237338310.1007/s10549‑014‑3239‑525528022
    [Google Scholar]
  26. RodonJ. BrañaI. SiuL.L. De JongeM.J. HomjiN. MillsD. Di TomasoE. SarrC. TrandafirL. MassacesiC. EskensF. BendellJ.C. Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan- Class I PI3K inhibitor, in patients with advanced solid tumors.Invest. New Drugs201432467068110.1007/s10637‑014‑0082‑924652201
    [Google Scholar]
  27. MatulonisU. VergoteI. BackesF. MartinL.P. McMeekinS. BirrerM. CampanaF. XuY. EgileC. GhamandeS. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma.Gynecol. Oncol.2015136224625310.1016/j.ygyno.2014.12.01925528496
    [Google Scholar]
  28. PapadopoulosK.P. TaberneroJ. MarkmanB. PatnaikA. TolcherA.W. BaselgaJ. ShiW. EgileC. Ruiz-SotoR. LairdA.D. MilesD. LoRussoP.M. Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245409 (XL765), a novel, orally administered PI3K/mTOR inhibitor in patients with advanced solid tumors.Clin. Cancer Res.20142092445245610.1158/1078‑0432.CCR‑13‑240324583798
    [Google Scholar]
  29. ShapiroG.I. LoRussoP. KwakE. PandyaS. RudinC.M. KurkjianC. ClearyJ.M. PilatM.J. JonesS. de CrespignyA. FredricksonJ. MusibL. YanY. WongchenkoM. HsiehH.J. GatesM.R. ChanI.T. BendellJ. Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors.Invest. New Drugs202038241943210.1007/s10637‑019‑00776‑631020608
    [Google Scholar]
  30. DicklerM.N. SauraC. RichardsD.A. KropI.E. CervantesA. BedardP.L. PatelM.R. PusztaiL. OliveiraM. CardenasA.K. CuiN. WilsonT.R. StoutT.J. WeiM.C. HsuJ.Y. BaselgaJ. Phase II study of taselisib (GDC-0032) in combination with fulvestrant in patients with her2-negative, hormone receptor–positive advanced breast cancer.Clin. Cancer Res.201824184380438710.1158/1078‑0432.CCR‑18‑061329793946
    [Google Scholar]
  31. ShapiroG.I. LoRussoP. ChoD.C. MusibL. YanY. WongchenkoM. ChangI. PatelP. ChanI.T. Sanabria-BohorquezS. MengR.D. BendellJ.C. A phase Ib open-label dose escalation study of the safety, pharmacokinetics, and pharmacodynamics of cobimetinib (GDC-0973) and ipatasertib (GDC-0068) in patients with locally advanced or metastatic solid tumors.Invest. New Drugs202139116317410.1007/s10637‑020‑00975‑632737717
    [Google Scholar]
  32. Wise-DraperT.M. MoorthyG. SalkeniM.A. KarimN.A. ThomasH.E. MercerC.A. BegM.S. O’GaraS. OlowokureO. FathallahH. KozmaS.C. ThomasG. RixeO. DesaiP. MorrisJ.C. A phase Ib study of the dual PI3K/mTOR inhibitor dactolisib (BEZ235) combined with everolimus in patients with advanced solid malignancies.Target. Oncol.201712332333210.1007/s11523‑017‑0482‑928357727
    [Google Scholar]
  33. PatelC.G. RangachariL. PattiM. GriffinC. ShouY. VenkatakrishnanK. Characterizing the sources of pharmacokinetic variability for TAK-117 (Serabelisib), an investigational phosphoinositide 3-kinase alpha inhibitor: a clinical biopharmaceutics study to inform development strategy.Clin. Pharmacol. Drug Dev.20198563764610.1002/cpdd.61330168905
    [Google Scholar]
  34. HiraiH. SootomeH. NakatsuruY. MiyamaK. TaguchiS. TsujiokaK. UenoY. HatchH. MajumderP.K. PanB.S. KotaniH. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo.Mol. Cancer Ther.2010971956196710.1158/1535‑7163.MCT‑09‑101220571069
    [Google Scholar]
  35. RiniB.I. Temsirolimus, an inhibitor of mammalian target of rapamycin.Clin. Cancer Res.20081451286129010.1158/1078‑0432.CCR‑07‑471918316545
    [Google Scholar]
  36. RiveraV.M. SquillaceR.M. MillerD. BerkL. WardwellS.D. NingY. PollockR. NarasimhanN.I. IuliucciJ.D. WangF. ClacksonT. Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens.Mol. Cancer Ther.20111061059107110.1158/1535‑7163.MCT‑10‑079221482695
    [Google Scholar]
  37. RodriguezM.J. PerroneM.C. RiggioM. PalafoxM. SalinasV. EliaA. SalgueiroN.D. WerbachA.E. MarksM.P. KauffmanM.A. VellónL. SerraV. NovaroV. Targeting mTOR to overcome resistance to hormone and CDK4/6 inhibitors in ER-positive breast cancer models.Sci. Rep.2023131271010.1038/s41598‑023‑29425‑y36792625
    [Google Scholar]
  38. FiascarelliA. MerlinoG. CapanoS. TalucciS. BisignanoD. BressanA. BellarosaD. CarrisiC. PaoliA. BigioniM. TuniciP. IrrissutoC. SalernoM. ArribasJ. de StanchinaE. ScaltritiM. BinaschiM. Antitumor activity of the PI3K δ-sparing inhibitor MEN1611 in PIK3CA mutated, trastuzumab-resistant HER2 + breast cancer.Breast Cancer Res. Treat.20231991132310.1007/s10549‑023‑06895‑236913051
    [Google Scholar]
  39. JonesR.H. CasbardA. CarucciM. CoxC. ButlerR. AlchamiF. MaddenT.A. BaleC. BezecnyP. JoffeJ. MoonS. TwelvesC. VenkitaramanR. WatersS. FoxleyA. HowellS.J. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial.Lancet Oncol.202021334535710.1016/S1470‑2045(19)30817‑432035020
    [Google Scholar]
  40. HosfordS.R. DillonL.M. BouleyS.J. RosatiR. YangW. ChenV.S. DemidenkoE. MorraR.P.Jr MillerT.W. Combined inhibition of both p110α and p110β isoforms of phosphatidylinositol 3-kinase is required for sustained therapeutic effect in PTEN-deficient, ER+ breast cancer.Clin. Cancer Res.201723112795280510.1158/1078‑0432.CCR‑15‑276427903677
    [Google Scholar]
  41. AmanteR.J. JehannoC. De SilvaD. CoissieuxM.M. AckerknechtM. RomanetV. SethiA. HamelinB. PrecaB.T. PiscuoglioS. NgC.K.Y. MohseniM. Bentires-AljM. PI3K inhibition circumvents resistance to SHP2 blockade in metastatic triple-negative breast cancer.J. Mammary Gland Biol. Neoplasia20232811310.1007/s10911‑023‑09539‑937294349
    [Google Scholar]
  42. TsouS.H. ChenT.M. HsiaoH.T. ChenY.H. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance.PLoS One2015101e011674710.1371/journal.pone.011674725635866
    [Google Scholar]
  43. SunC. ZhangF. XiangT. ChenQ. PanditaT.K. HuangY. HuM.C.T. YangQ. Phosphorylation of ribosomal protein S6 confers PARP inhibitor resistance in BRCA1-deficient cancers.Oncotarget20145103375338510.18632/oncotarget.195224831086
    [Google Scholar]
  44. JuricD. JankuF. RodonJ. BurrisH.A. MayerI.A. SchulerM. Seggewiss-BernhardR. Gil-MartinM. MiddletonM.R. BaselgaJ. Alpelisib (BYL719) plus Fulvestrant in PIK3CA-altered and PIK3CA wild-type ER+ advanced breast cancer. An open-label, phase 1b dose-escalation and expansion study.JAMA Oncol.2018E1E9
    [Google Scholar]
  45. JuricD. KropI. RamanathanR.K. WilsonT.R. WareJ.A. Sanabria BohorquezS.M. SavageH.M. SampathD. SalphatiL. LinR.S. JinH. ParmarH. HsuJ.Y. Von HoffD.D. BaselgaJ. Phase I dose-escalation study of taselisib, an oral PI3K inhibitor, in patients with advanced solid tumors.Cancer Discov.20177770471510.1158/2159‑8290.CD‑16‑108028331003
    [Google Scholar]
  46. HudesG. CarducciM. TomczakP. DutcherJ. FiglinR. KapoorA. StaroslawskaE. SosmanJ. McDermottD. BodrogiI. KovacevicZ. LesovoyV. Schmidt-WolfI.G.H. BarbarashO. GokmenE. O’TooleT. LustgartenS. MooreL. MotzerR.J. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.N. Engl. J. Med.2007356222271228110.1056/NEJMoa06683817538086
    [Google Scholar]
  47. ChrestaC.M. DaviesB.R. HicksonI. HardingT. CosulichS. CritchlowS.E. VincentJ.P. EllstonR. JonesD. SiniP. JamesD. HowardZ. DudleyP. HughesG. SmithL. MaguireS. HummersoneM. MalaguK. MenearK. JenkinsR. JacobsenM. SmithG.C.M. GuichardS. PassM. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity.Cancer Res.201070128829810.1158/0008‑5472.CAN‑09‑175120028854
    [Google Scholar]
  48. MillerM.L. ShizukaM. WilhelmA. SalomonP. ReidE.E. LanieriL. SikkaS. MaloneyE.K. HarveyL. QiuQ. ArcherK.E. BaiC. VitharanaD. HarrisL. SinghR. PonteJ.F. YoderN.C. KovtunY. LaiK.C. AbO. PinkasJ. KeatingT.A. ChariR.V.J. A DNA-interacting payload designed to eliminate cross-linking improves the therapeutic index of antibody–drug conjugates (ADCs).Mol. Cancer Ther.201817365066010.1158/1535‑7163.MCT‑17‑094029440292
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673327425240815065221
Loading
/content/journals/cmc/10.2174/0109298673327425240815065221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test