Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Non-invasive antitumor therapy can treat tumor patients who cannot tolerate surgery or are unsuitable. However, tumor resistance to non-invasive antitumor therapy and cardiotoxicity caused by treatment seriously affect the quality of life and prognosis of patients. As a kind of polyphenol extracted from herbs, curcumin has many pharmacological effects, such as anti-inflammation, antioxidation, antitumor, Curcumin plays the antitumor effect by directly promoting tumor cell death and reducing tumor cells' invasive ability. Curcumin exerts the therapeutic effect mainly by inhibiting the nuclear factor-κB (NF-κB) signal pathway, inhibiting the production of cyclooxygenase-2 (COX-2), promoting the expression of caspase-9, and directly inducing reactive oxygen species (ROS) production in tumor cells. Curcumin nanoparticles can solve curcumin's shortcomings, such as poor water solubility and high metabolic rate, and can be effectively used in antitumor therapy. Curcumin nanoparticles can improve the prognosis and quality of life of tumor patients by using as adjuvants to enhance the sensitivity of tumors to non-invasive therapy and reduce the side effects, especially cardiotoxicity. In this paper, we collect and analyze the literature of relevant databases. It is pointed out that future research on curcumin tends to alleviate the adverse reactions caused by treatment, which is of more significance to tumor patients.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673305616240610153554
2024-06-24
2025-01-17
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/3/CMC-32-3-03.html?itemId=/content/journals/cmc/10.2174/0109298673305616240610153554&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. WuJ. FanD. ShaoZ. XuB. RenG. JiangZ. WangY. JinF. ZhangJ. ZhangQ. MaF. MaJ. WangZ. WangS. WangX. WangS. WangH. WangT. WangX. WangJ. WangJ. WangB. FuL. LiH. ShiY. GanL. LiuY. LiuJ. LiuZ. LiuQ. SunQ. ChengW. YuK. TongZ. WuX. SongC. ZhangJ. ZhangJ. LiJ. LiB. LiM. LiH. YangW. YangH. YangB. BuH. ShenJ. ShenZ. ChenY. ChenC. PangD. FanZ. ZhengY. YuX. LiuG. HuX. LingY. TangJ. YinY. GengC. YuanP. GuY. ChangC. CaoX. ShengY. HuangY. HuangJ. PengW. ZengX. XieY. LiaoN. DaimingF. ZhiminS. BingheX. GuoshengR. JiongW. ZefeiJ. YongshengW. FengJ. JinZ. QingyuanZ. FeiM. JinliM. ZhonghuaW. YongshengW. ShusenW. XiaojiaW. ShuW. HaiboW. TaoW. XiangW. JingW. JiaW. BiyunW. LiF. HongyuanL. YehuiS. LuG. GuoshengR. YunjiangL. JianL. ZhenzhenL. QiangL. WenwuC. ZefeiJ. KedaY. ZhongshengT. XinhongW. ChuanguiS. JianguoZ. JianZ. QingyuanZ. JinZ. JunjieL. BinL. ManL. HuipingL. WentaoY. HongjianY. BenlongY. HongB. JupingS. ZhenzhouS. ZhiminS. YidingC. CeshiC. DaP. ZhiminF. YingZ. FengJ. XiaoliY. GuangyuL. XichunH. YiqunL. JinhaiT. BingheX. YongmeiY. CuizhiG. CuizhiG. CuizhiG. PengY. YajiaG. CaiC. XuchenC. YuanS. YuanxiH. JianH. JianH. WeijunP. XiaohuaZ. YuntaoX. NingL. CACA guidelines for holistic integrative management of breast cancer.Holist. Integr. Oncol.2022117
    [Google Scholar]
  3. KoukourakisI.M. GkegkaA.G. XanthopoulouE. NanosC. GiatromanolakiA. KoukourakisM.I. Prognostic and predictive relevance of tumor-infiltrating lymphocytes in squamous cell head–neck cancer patients treated with radical radiotherapy/chemo-radiotherapy.Curr. Oncol.20222964274428410.3390/curroncol2906034235735451
    [Google Scholar]
  4. ClasenK. WelzS. FaltinH. ZipsD. EckertF. Plasma sICAM-1 correlates with tumor volume before primary radiochemotherapy of head and neck squamous cell carcinoma patients.Radiol. Oncol.202256450150710.2478/raon‑2022‑004336503712
    [Google Scholar]
  5. WuY. SongY. WangR. WangT. Molecular mechanisms of tumor resistance to radiotherapy.Mol. Cancer20232219610.1186/s12943‑023‑01801‑237322433
    [Google Scholar]
  6. XiaZ. KongF. WangK. ZhangX. Role of N6-methyladenosine methylation regulators in the drug therapy of digestive system tumours.Front. Pharmacol.20221390807910.3389/fphar.2022.90807935754499
    [Google Scholar]
  7. LommaC. RansomD. Chemotherapy dosing and toxicity in a patient with muscular dystrophy.Cancer Rep.201812e110610.1002/cnr2.110632721099
    [Google Scholar]
  8. SilvestreF. SantosC. SilvaV. OmbredaneA. PinheiroW. AndradeL. GarciaM. PachecoT. JoanittiG. LuzG. CarneiroM. Pharmacokinetics of curcumin delivered by nanoparticles and the relationship with antitumor efficacy: A systematic review.Pharmaceuticals202316794310.3390/ph1607094337513855
    [Google Scholar]
  9. HassanalilouT. GhavamzadehS. KhaliliL. Curcumin and gastric cancer: A review on mechanisms of action.J. Gastrointest. Cancer201950218519210.1007/s12029‑018‑00186‑630725357
    [Google Scholar]
  10. HussainY. IslamL. KhanH. FilosaR. AschnerM. JavedS. Curcumin–cisplatin chemotherapy: A novel strategy in promoting chemotherapy efficacy and reducing side effects.Phytother. Res.202135126514652910.1002/ptr.722534347326
    [Google Scholar]
  11. ŞuekiF. RuhiM.K. GülsoyM. The effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines.Photodiagn. Photodyn. Ther.201927959910.1016/j.pdpdt.2019.05.01231100447
    [Google Scholar]
  12. ZhuJ.X. ZhuW.T. HuJ.H. YangW. LiuP. LiuQ.H. BaiY.X. XieR. Curcumin-loaded poly(l-lactide- co-glycolide) microbubble-mediated sono-photodynamic therapy in liver cancer cells.Ultrasound Med. Biol.20204682030204310.1016/j.ultrasmedbio.2020.03.03032475714
    [Google Scholar]
  13. SadeghiM. DehnaviS. AsadiradA. XuS. MajeedM. JamialahmadiT. JohnstonT.P. SahebkarA. Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases.Inflammopharmacology20233131069109310.1007/s10787‑023‑01136‑w36997729
    [Google Scholar]
  14. HuangX. WangY. YangW. DongJ. LiL. Regulation of dietary polyphenols on cancer cell pyroptosis and the tumor immune microenvironment.Front. Nutr.2022997489610.3389/fnut.2022.97489636091247
    [Google Scholar]
  15. TanX. KimG. LeeD. OhJ. KimM. PiaoC. LeeJ. LeeM.S. JeongJ.H. LeeM. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model.Biomater. Sci.20186240741710.1039/C7BM01088E29340361
    [Google Scholar]
  16. DzayeO. BødtkerH. Reiter-BrennanC. BlahaM.J. MortensenM.B. Danish National Trends in Cardiovascular Disease and Cancer Drug Expenditure in Relation to Trends in Cardiovascular Disease and Cancer Deaths Danish national trends in cardiovascular disease and cancer drug expenditure in relation to trends in cardiovascular disease and cancer deaths.Am. J. Med.2020133111350135310.1016/j.amjmed.2020.02.05832325044
    [Google Scholar]
  17. ZhangX. GaoY. YangB. MaS. ZuoW. WeiJ. The mechanism and treatment of targeted anti-tumour drugs induced cardiotoxicity.Int. Immunopharmacol.202311710989510.1016/j.intimp.2023.10989536806040
    [Google Scholar]
  18. SharifiaghdamZ. DalouchiF. SharifiaghdamM. ShaabaniE. RamezaniF. NikbakhtF. AziziY. Curcumin- coated gold nanoparticles attenuate doxorubicin-induced cardiotoxicity via regulating apoptosis in a mouse model.Clin. Exp. Pharmacol. Physiol.2022491708310.1111/1440‑1681.1357934449914
    [Google Scholar]
  19. AkbariS. KariznaviE. JannatiM. ElyasiS. Tayarani- NajaranZ. Curcumin as a preventive or therapeutic measure for chemotherapy and radiotherapy induced adverse reaction: A comprehensive review.Food Chem. Toxicol.202014511169910.1016/j.fct.2020.11169932858134
    [Google Scholar]
  20. AbadiA.J. MirzaeiS. MahabadyM.K. HashemiF. ZabolianA. HashemiF. RaeeP. AghamiriS. AshrafizadehM. ArefA.R. HamblinM.R. HushmandiK. ZarrabiA. SethiG. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects.Phytother. Res.202236118921310.1002/ptr.730534697839
    [Google Scholar]
  21. FarghadaniR. NaiduR. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer.Int. J. Mol. Sci.2022234214410.3390/ijms2304214435216255
    [Google Scholar]
  22. ShahD. SavaliyaR. PatelP. KansaraK. PandyaA. DhawanA. SinghS. Curcumin Ag nanoconjugates for improved therapeutic effects in cancer.Int. J. Nanomedicine201813T-NANO 2014 Abstracts757710.2147/IJN.S12469629593400
    [Google Scholar]
  23. ZhangX. DaiF. ChenJ. XieX. XuH. BaiC. QiaoW. ShenW. Antitumor effect of curcumin liposome after transcatheter arterial embolization in VX2 rabbits.Cancer Biol. Ther.201920564265210.1080/15384047.2018.155056730621501
    [Google Scholar]
  24. AlamJ. DilnawazF. SahooS. SinghD. MukhopadhyayA. HussainT. PatiS. Curcumin encapsulated into biocompatible co-polymer plga nanoparticle enhanced anti-gastric cancer and anti-helicobacter pylori effect.Asian Pac. J. Cancer Prev.2022231617010.31557/APJCP.2022.23.1.6135092372
    [Google Scholar]
  25. MarquesM.S. CordeiroM.F. MarinhoM.A.G. VianC.O. VazG.R. AlvesB.S. JardimR.D. HortM.A. DoraC.L. HornA.P. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats.Brain Res.2020174614700710.1016/j.brainres.2020.14700732645380
    [Google Scholar]
  26. De VelascoM.A. LuY. KuraY. ChinaT. InoueY. NakayamaA. OkadaH. HorieS. UemuraH. IdeH. Chemopreventive effects of nanoparticle curcumin in a mouse model of Pten-deficient prostate cancer.Hum. Cell202033373073610.1007/s13577‑020‑00337‑732146706
    [Google Scholar]
  27. MatloubiZ. HassanZ. HSA-curcumin nanoparticles: A promising substitution for curcumin as a cancer chemoprevention and therapy.Daru202028120921910.1007/s40199‑020‑00331‑232270402
    [Google Scholar]
  28. AnandP. ThomasS.G. KunnumakkaraA.B. SundaramC. HarikumarK.B. SungB. TharakanS.T. MisraK. PriyadarsiniI.K. RajasekharanK.N. AggarwalB.B. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature.Biochem. Pharmacol.200876111590161110.1016/j.bcp.2008.08.00818775680
    [Google Scholar]
  29. ChakrabortyS. KarmenyanA. TsaiJ.W. ChiouA. Inhibitory effects of curcumin and cyclocurcumin in 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in differentiated PC12 cells.Sci. Rep.2017711697710.1038/s41598‑017‑17268‑329209088
    [Google Scholar]
  30. KhanT.K. YouY. NelsonT.J. KunduS. PramanikS.K. DasJ. Modulation of proteasome activity by curcumin and didemethylcurcumin.J. Biomol. Struct. Dyn.202240188332833910.1080/07391102.2021.191185333876718
    [Google Scholar]
  31. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.107719526528921
    [Google Scholar]
  32. Del Prado-AudeloM. Caballero-FloránI. Meza-ToledoJ. Mendoza-MuñozN. González-TorresM. FloránB. CortésH. Leyva-GómezG. Formulations of curcumin nanoparticles for brain diseases.Biomolecules2019925610.3390/biom902005630743984
    [Google Scholar]
  33. GuptaS.C. KismaliG. AggarwalB.B. Curcumin, a component of turmeric: From farm to pharmacy.Biofactors201339121310.1002/biof.107923339055
    [Google Scholar]
  34. YuY. SunJ. WangR. LiuJ. WangP. WangC. Curcumin management of myocardial fibrosis and its mechanisms of action: A review.Am. J. Chin. Med.20194781675171010.1142/S0192415X1950086131786946
    [Google Scholar]
  35. BasniwalR.K. KhoslaR. JainN. Improving the Anticancer Activity of Curcumin Using Nanocurcumin Dispersion in Water Improving the anticancer activity of curcumin using nanocurcumin dispersion in water.Nutr. Cancer20146661015102210.1080/01635581.2014.93694825068616
    [Google Scholar]
  36. SzymusiakM. HuX. Leon PlataP.A. CiupinskiP. WangZ.J. LiuY. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.Int. J. Pharm.2016511141542310.1016/j.ijpharm.2016.07.02727426105
    [Google Scholar]
  37. BansalS.S. KausarH. VadhanamM.V. RavooriS. PanJ. RaiS.N. GuptaR.C. Curcumin implants, not curcumin diet, inhibit estrogen-induced mammary carcinogenesis in ACI rats.Cancer Prev. Res.20147445646510.1158/1940‑6207.CAPR‑13‑024824501322
    [Google Scholar]
  38. AshrafizadehM. ZarrabiA. HushmandiK. ZarrinV. MoghadamE.R. HashemiF. MakvandiP. SamarghandianS. KhanH. HashemiF. NajafiM. MirzaeiH. Toward regulatory effects of curcumin on transforming growth factor-beta across different diseases: A review.Front. Pharmacol.20201158541310.3389/fphar.2020.58541333381035
    [Google Scholar]
  39. HuY. WangS. WuX. ZhangJ. ChenR. ChenM. WangY. Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma.J. Ethnopharmacol.2013149360161210.1016/j.jep.2013.07.03023916858
    [Google Scholar]
  40. Jalili-NikM. SoltaniA. MoussaviS. Ghayour-MobarhanM. FernsG.A. HassanianS.M. AvanA. Current status and future prospective of curcumin as a potential therapeutic agent in the treatment of colorectal cancer.J. Cell. Physiol.201823396337634510.1002/jcp.2636829219177
    [Google Scholar]
  41. SanchezC. ZappiaJ. LambertC. FoguenneJ. DierckxsensY. DubucJ.E. DelcourJ.P. GothotA. HenrotinY. Curcuma longa and Boswellia serrata extracts modulate different and complementary pathways on human chondrocytes in vitro: Deciphering of a transcriptomic study.Front. Pharmacol.20221393191410.3389/fphar.2022.93191436034822
    [Google Scholar]
  42. HacimN.A. Curcumin Enhanced the Neomucosa Formation by Mediating the Antioxidation Mechanism in Rats; SiSli Etfal Hastanesi Tip Bulteni / The Medical Bulletin of Sisli Hospital.202256115416010.14744/SEMB.2021.01878
    [Google Scholar]
  43. MedigueN.E.H. Bouakouk-ChittiZ. BechohraL.L. Kellou-TaïriS. Theoretical study of the impact of metal complexation on the reactivity properties of curcumin and its diacetylated derivative as antioxidant agents.J. Mol. Model.202127619210.1007/s00894‑021‑04768‑334057657
    [Google Scholar]
  44. GuoQ. SuJ. ShuX. YuanF. MaoL. LiuJ. GaoY. Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin.Food Chem.202133712801910.1016/j.foodchem.2020.12801932927227
    [Google Scholar]
  45. Yavuz TürelG. Şahin CalapoğluN. BayramD. ÖzgöçmenM. ToğayV.A. Evgen TülüceoğluE. Curcumin induces apoptosis through caspase dependent pathway in human colon carcinoma cells.Mol. Biol. Rep.20224921351136010.1007/s11033‑021‑06965‑y34806141
    [Google Scholar]
  46. TangX. DingH. LiangM. ChenX. YanY. WanN. ChenQ. ZhangJ. CaoJ. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy.Thorac. Cancer20211281219123010.1111/1759‑7714.1390433656766
    [Google Scholar]
  47. ZhouH. NingY. ZengG. ZhouC. DingX. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT.Oncol. Rep.20214541110.3892/or.2021.796233649826
    [Google Scholar]
  48. LiangW.F. GongY.X. LiH.F. SunF.L. LiW.L. ChenD.Q. XieD.P. RenC.X. GuoX.Y. WangZ.Y. KwonT. SunH.N. Curcumin activates ROS signaling to promote pyroptosis in hepatocellular carcinoma HepG2 cells.In vivo202135124925710.21873/invivo.1225333402471
    [Google Scholar]
  49. PanieriE. SantoroM.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells.Cell Death Dis.201676e2253e225310.1038/cddis.2016.10527277675
    [Google Scholar]
  50. ZhaoY. TaoJ. ChenZ. LiS. LiuZ. LinL. ZhaiL. Functional drug–target–disease network analysis of gene–phenotype connectivity for curcumin in hepatocellular carcinoma.PeerJ20219e1233910.7717/peerj.1233934754622
    [Google Scholar]
  51. LuC. SongE. HuD.N. ChenM. XueC. RosenR. McCormickS.A. Curcumin induces cell death in human uveal melanoma cells through mitochondrial pathway.Curr. Eye Res.201035435236010.3109/0271368090352194420373902
    [Google Scholar]
  52. XuR. LiH. WuS. QuJ. YuanH. ZhouY. LuQ. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53.Int. Urol. Nephrol.201951101771177910.1007/s11255‑019‑02210‑531236854
    [Google Scholar]
  53. SharifiS. KhanH. AbdolahiniaE.D. AhmadianS. BohlouliS. GharehbaghF.J. JahandiziN.G. VahedS.Z. SaadatY.R. AghbaliA. DizajS.M. AlsharifK.F. Effect of curcumin on the head and neck squamous cell carcinoma cell line HN5.Curr. Mol. Pharmacol.202316337438010.2174/187446721566622041414344135431006
    [Google Scholar]
  54. LoutfyS.A. ElberryM.H. FarrohK.Y. MohamedH.T. MohamedA.A. MohamedE.B. FaraagA.H.I. MousaS.A. Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines.Int. J. Nanomedicine2020152699271510.2147/IJN.S24170232368050
    [Google Scholar]
  55. SahuR.P. BatraS. SrivastavaS.K. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells.Br. J. Cancer200910091425143310.1038/sj.bjc.660503919401701
    [Google Scholar]
  56. SumirtanurdinR. SungkarS. HisprastinY. SidhartaK.D. NurhikmahD.D. Molecular docking simulation studies of curcumin and its derivatives as cyclin-dependent kinase 2 inhibitors.Turk. J. Pharm. Sci.202017441742310.4274/tjps.galenos.2019.5582232939138
    [Google Scholar]
  57. MohammadinejadS. Jafari-GharabaghlouD. ZarghamiN. Development of PEGylated PLGA nanoparticles co-loaded with bioactive compounds: Potential anticancer effect on breast cancer cell lines.Asian Pac. J. Cancer Prev.202223124063407210.31557/APJCP.2022.23.12.406336579986
    [Google Scholar]
  58. ObaidiI. Blanco FernándezA. McMorrowT. Curcumin sensitises cancerous kidney cells to trail induced apoptosis via let-7C mediated deregulation of cell cycle proteins and cellular metabolism.Int. J. Mol. Sci.20222317956910.3390/ijms2317956936076967
    [Google Scholar]
  59. BlaconàG. RasoR. CastellaniS. PierandreiS. Del PortoP. FerragutiG. AscenzioniF. ConeseM. LucarelliM. Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting.Cell. Mol. Life Sci.202279525710.1007/s00018‑022‑04190‑935462606
    [Google Scholar]
  60. MuY.T. FengH.H. YuJ.Q. LiuZ.K. WangY. ShaoJ. LiR.H. LiD.K. Curcumin suppressed proliferation and migration of human retinoblastoma cells through modulating NF-κB pathway.Int. Ophthalmol.202040102435244010.1007/s10792‑020‑01406‑432399774
    [Google Scholar]
  61. ChaiY. ChenY. LinS. XieK. WangC. YangY. XuF. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice.Biomed. Pharmacother.202012510994610.1016/j.biopha.2020.10994632004976
    [Google Scholar]
  62. ShafabakhshR. PourhanifehM.H. MirzaeiH.R. SahebkarA. AsemiZ. MirzaeiH. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy.Pharmacol. Res.201914710435310.1016/j.phrs.2019.10435331306775
    [Google Scholar]
  63. ZouJ.Y. SuC.H. LuoH.H. LeiY.Y. ZengB. ZhuH.S. ChenZ.G. Curcumin converts Foxp3+ regulatory T cells to T helper 1 cells in patients with lung cancer.J. Cell. Biochem.201811921420142810.1002/jcb.2630228731226
    [Google Scholar]
  64. MardaniR. HamblinM.R. TaghizadehM. BanafsheH.R. NejatiM. MokhtariM. BorranS. DavoodvandiA. KhanH. JaafariM.R. MirzaeiH. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis.Pathol. Res. Pract.2020216915308210.1016/j.prp.2020.15308232825950
    [Google Scholar]
  65. Ahmad Merza MohammadT. Combining nano-curcumin with catechin improves COVID-19-infected patient’s inflammatory conditions.Hum. Immunol.202384947148310.1016/j.humimm.2023.05.00337331910
    [Google Scholar]
  66. NoureddinS.A. El-ShishtawyR.M. Al-FootyK.O. Curcumin analogues and their hybrid molecules as multifunctional drugs.Eur. J. Med. Chem.201918211163110.1016/j.ejmech.2019.11163131479974
    [Google Scholar]
  67. LiL. ZhangX. PiC. YangH. ZhengX. ZhaoL. WeiY. Review of curcumin physicochemical targeting delivery system.Int. J. Nanomedicine2020159799982110.2147/IJN.S27620133324053
    [Google Scholar]
  68. MaY. ChenS. LiaoW. ZhangL. LiuJ. GaoY. Formation, physicochemical stability, and redispersibility of curcumin-loaded rhamnolipid nanoparticles using the ph- driven method.J. Agric. Food Chem.202068277103711110.1021/acs.jafc.0c0132632559379
    [Google Scholar]
  69. HuangP. ZengB. MaiZ. DengJ. FangY. HuangW. ZhangH. YuanJ. WeiY. ZhouW. Novel drug delivery nanosystems based on out-inside bifunctionalized mesoporous silica yolk–shell magnetic nanostars used as nanocarriers for curcumin.J. Mater. Chem. B Mater. Biol. Med.201641465610.1039/C5TB02184G32262808
    [Google Scholar]
  70. CarpentierR. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: Impact on  Antioxidant and antinitrosant properties.Int. J. Nanomedicine201510.2147/IJN.S84760
    [Google Scholar]
  71. LiC. ZhuP. XiangH. JinY. LuB. ShenY. WangW. HuangB. ChenY. 3D-CEUS tracking of injectable chemo-sonodynamic therapy-enabled mop-up of residual renal cell carcinoma after thermal ablation.Mater. Today Bio20231810051310.1016/j.mtbio.2022.10051336569591
    [Google Scholar]
  72. YiX. ZhouH. ZhangZ. XiongS. YangK. X-rays-optimized delivery of radiolabeled albumin for cancer theranostics.Biomaterials202023311976410.1016/j.biomaterials.2020.11976431927252
    [Google Scholar]
  73. ShengJ. WangX. YanJ. PanD. YangR. WangL. XuY. YangM. Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds.J. Mater. Chem. B Mater. Biol. Med.20186488163816910.1039/C8TB02817F32254935
    [Google Scholar]
  74. JiangY. Studies on DNA damage repair and precision radiotherapy for breast cancer.Translational Research in Breast Cancer.SpringerSingapore2017105123
    [Google Scholar]
  75. DuS. LiuY. YuanY. WangY. ChenY. WangS. ChiY. Advances in the study of HSP70 inhibitors to enhance the sensitivity of tumor cells to radiotherapy.Front. Cell Dev. Biol.20221094282810.3389/fcell.2022.94282836036010
    [Google Scholar]
  76. ChenY.-W. WongT.-T. HoD.M.-T. HuangP.-I. ChangK.-P. ShiauC.-Y. YenS.-H. Impact of radiotherapy for pediatric CNS atypical teratoid/rhabdoid tumor (single institute experience).Int. J. Radiat. Oncol. Biol. Phys.200664410381043
    [Google Scholar]
  77. DubinskýP. JeremicB. ŠvajdováM. BarilikováG. MatulaP. NadzonováD. VojtekV. Concurrent weekly cisplatin and simultaneous integrated boost intensity-modulated radiotherapy of locally advanced squamous cell carcinoma of the head and neck.Klin. Onkol.202235430731410.48095/ccko202230735989088
    [Google Scholar]
  78. DengX. GengS. LuoM. ChaiJ. XuY. ChenC. QiuL. KeQ. DuanQ. SongS. ShenL. LuoZ. Curcumin potentiates laryngeal squamous carcinoma radiosensitivity via NF-ΚB inhibition by suppressing IKKγ expression.J. Recept. Signal Transduct. Res.202040654154910.1080/10799893.2020.176764932515250
    [Google Scholar]
  79. AzziJ. WakedA. Bou-GhariosJ. Al ChoboqJ. GearaF. BodgiL. MaaloufM. Radiosensitizing effect of curcumin on human bladder cancer cell lines: Impact on DNA repair mechanisms.Nutr. Cancer20227462207222110.1080/01635581.2021.198553434643466
    [Google Scholar]
  80. YangT. ChenY. XuJ. LiJ. LiuH. LiuN. Bioinformatics screening the novel and promising targets of curcumin in hepatocellular carcinoma chemotherapy and prognosis.BMC Complement. Med. Ther.202222121
    [Google Scholar]
  81. ZhuD. ShaoM. YangJ. FangM. LiuS. LouD. GaoR. LiuY. LiA. LvY. MoZ. FanQ. Curcumin enhances radiosensitization of nasopharyngeal carcinoma via mediating regulation of tumor stem-like cells by a CircRNA network.J. Cancer20201182360237010.7150/jca.3951132127962
    [Google Scholar]
  82. KhafifA. Lev-AriS. VexlerA. BarneaI. StarrA. KaraushV. HaifS. Ben-YosefR. Curcumin: A potential radio-enhancer in head and neck cancer.Laryngoscope2009119102019202610.1002/lary.2058219655336
    [Google Scholar]
  83. JavvadiP. HertanL. KosoffR. DattaT. KolevJ. MickR. TuttleS.W. KoumenisC. Thioredoxin reductase-1 mediates curcumin-induced radiosensitization of squamous carcinoma cells.Cancer Res.20107051941195010.1158/0008‑5472.CAN‑09‑302520160040
    [Google Scholar]
  84. LiuY. WangX. ZengS. ZhangX. ZhaoJ. ZhangX. ChenX. YangW. YangY. DongZ. ZhuJ. XuX. TianF. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma.J. Exp. Clin. Cancer Res.201837130310.1186/s13046‑018‑0959‑030518397
    [Google Scholar]
  85. GaoR. GuY. YangY. HeY. HuangW. SunT. TangZ. WangY. YangW. Robust radiosensitization of hemoglobin-curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma.J. Nanobiotechnology202220111510.1186/s12951‑022‑01316‑w35248069
    [Google Scholar]
  86. RadesD. NarvaezC.A. DoemerC. JanssenS. OlbrichD. TvilstedS. Conde-MorenoA.J. CacicedoJ. Radiotherapy-related skin toxicity (RAREST-02): A randomized trial testing the effect of a mobile application reminding head-and-neck cancer patients to perform skin care (reminder app) on radiation dermatitis.Trials202021142410.1186/s13063‑020‑04307‑032450921
    [Google Scholar]
  87. ReddyP.D. YanF. NguyenS.A. NathanC.A.O. Factors influencing the development of pneumonia in patients with head and neck cancer: A meta-analysis.Otolaryngol. Head Neck Surg.2021164223424310.1177/019459982093801132660345
    [Google Scholar]
  88. HashimotoS. YoshikawaH. MiyagiM. OnishiY. OhgaS. AsaiK. IshibashiT. Cataracts after low-dose radiotherapy for lymphoproliferative disease of the ocular adnexa.Semin. Ophthalmol.201732670270610.3109/08820538.2016.117015927420339
    [Google Scholar]
  89. PodlesnikarT. BerlotB. DolencJ. GoričarK. MarinkoT. Radiotherapy-induced cardiotoxicity: The role of multimodality cardiovascular imaging.Front. Cardiovasc. Med.2022988770510.3389/fcvm.2022.88770535966531
    [Google Scholar]
  90. GinexP. BacklerC. CrosonE. HorrellL. MoriartyK. MaloneyC. VrabelM. MorganR. Radiodermatitis in patients with cancer: Systematic review and meta-analysis.Oncol. Nurs. Forum2020476E225E23610.1188/20.ONF.E225‑E23633063778
    [Google Scholar]
  91. Ryan WolfJ. HecklerC.E. GuidoJ.J. PeoplesA.R. GewandterJ.S. LingM. VinciguerraV.P. AndersonT. EvansL. WadeJ. PentlandA.P. MorrowG.R. Oral curcumin for radiation dermatitis: A URCC NCORP study of 686 breast cancer patients.Support. Care Cancer20182651543155210.1007/s00520‑017‑3957‑429192329
    [Google Scholar]
  92. GaoX. Shi GaoX. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation.Int. J. Nanomedicine2012260110.2147/IJN.S31439
    [Google Scholar]
  93. LeungH.W.C. ChanA.L.F. MuoC.H. Late cardiac morbidity of adjuvant radiotherapy for early breast cancer – A population-based study.J. Cardiol.201667656757110.1016/j.jjcc.2015.07.00926359709
    [Google Scholar]
  94. KoutroumpakisE. PalaskasN.L. LinS.H. AbeJ. LiaoZ. BanchsJ. DeswalA. YusufS.W. Modern radiotherapy and risk of cardiotoxicity.Chemotherapy2020653-4657610.1159/00051057333049738
    [Google Scholar]
  95. RitterA. QuartermaineC. Pierre-CharlesJ. BalasubramanianS. Raeisi-GiglouP. AddisonD. MillerE. Cardiotoxicity of anti-cancer radiation therapy: A focus on heart failure.Curr. Heart Fail. Rep.2023201445510.1007/s11897‑023‑00587‑036692820
    [Google Scholar]
  96. BoermaM. SridharanV. MaoX.W. NelsonG.A. CheemaA.K. KoturbashI. SinghS.P. TackettA.J. Hauer-JensenM. Effects of ionizing radiation on the heart.Mutat. Res. Rev. Mutat. Res.2016770Pt B31932710.1016/j.mrrev.2016.07.00327919338
    [Google Scholar]
  97. GkantaifiA. PapadopoulosC. SpyropoulouD. ToumpourlekaM. IliadisG. KardamakisD. NikolaouM. TsoukalasN. KyrgiasG. ToliaM. Breast radiotherapy and early adverse cardiac effects. The role of serum biomarkers and strain echocardiography.Anticancer Res.20193941667167310.21873/anticanres.1327230952705
    [Google Scholar]
  98. Díaz-GavelaA. Figueiras-GrailletL. LuisÁ. Salas SeguraJ. CiérvideR. del Cerro PeñalverE. CouñagoF. ArenasM. López-FernándezT. Breast radiotherapy-related cardiotoxicity. When, How, Why. Risk prevention and control strategies.Cancers2021137171210.3390/cancers1307171233916644
    [Google Scholar]
  99. BenzerF. KandemirF.M. OzkaracaM. KucuklerS. CaglayanC. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats.J. Biochem. Mol. Toxicol.2018322e2203010.1002/jbt.2203029315967
    [Google Scholar]
  100. SolimanN.A. Abo El GheitR.E. Abdel GhafarM.T. AbuoHashishN.A. IbrahimM.A.A. Abo SafiaH.S. El-SakaM.H. ElshamyA.M. Unraveling the biomechanistic role of Rac1/TWEAK/Fn14/NF-κB intricate network in experimentally doxorubicin-induced cardiotoxicity in rats: The role of curcumin.J. Biochem. Mol. Toxicol.2021358e2282910.1002/jbt.2282934047412
    [Google Scholar]
  101. RajasekaranT. NgQ.S. TanD.S.W. LimW.T. AngM.K. TohC.K. ChowbayB. KanesvaranR. TanE.H. Metronomic chemotherapy: A relook at its basis and rationale.Cancer Lett.201738832833310.1016/j.canlet.2016.12.01328003122
    [Google Scholar]
  102. HassanB. MohammedA.H. AlsammarraieA.Z.A. AlabboodiM.K. WayyesA.M. AhmedA.A. ShanshalA. Knowledge, attitude, and practice of oncologists toward chemotherapy resistance: A questionnaire development and pilot testing.Asian Pac. J. Cancer Prev.202223124275428410.31557/APJCP.2022.23.12.427536580010
    [Google Scholar]
  103. UghachukwuP.O. UnekweP.C. Efflux pump-mediated resistance in chemotherapy.Ann. Med. Health Sci. Res.20122219119810.4103/2141‑9248.10567123439914
    [Google Scholar]
  104. SongX. LanY. ZhengX. ZhuQ. LiaoX. LiuK. ZhangW. PengQ. ZhuY. ZhaoL. ChenX. ShuY. YangK. HuJ. Targeting drug-tolerant cells: A promising strategy for overcoming acquired drug resistance in cancer cells.MedComm202345e34210.1002/mco2.34237638338
    [Google Scholar]
  105. Wong-BrownM.W. van der WesthuizenA. BowdenN.A. Targeting DNA repair in ovarian cancer treatment resistance.Clin. Oncol.202032851852610.1016/j.clon.2020.03.00532253106
    [Google Scholar]
  106. AlfaroukK.O. StockC.M. TaylorS. WalshM. MuddathirA.K. VerduzcoD. BashirA.H.H. MohammedO.Y. ElhassanG.O. HarguindeyS. ReshkinS.J. IbrahimM.E. RauchC. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp.Cancer Cell Int.20151517110.1186/s12935‑015‑0221‑126180516
    [Google Scholar]
  107. LiT. WangW.C. McAlisterV. ZhouQ. ZhengX. Circular RNA in colorectal cancer.J. Cell. Mol. Med.20212583667367910.1111/jcmm.1638033687140
    [Google Scholar]
  108. ZhangJ. LiangL. LiZ. ShenY. GuanX. YueJ. CongL. XuW. ShiW. LiangC. XuS. Multi-functionalized nano-conjugate for combating multidrug resistant breast cancer via starvation-assisted chemotherapy.Mater. Sci. Eng. C202011611112710.1016/j.msec.2020.11112732806277
    [Google Scholar]
  109. JiangD. XuM. PeiY. HuangY. ChenY. MaF. LuH. ChenJ. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer.Acta Biomater.20198840642110.1016/j.actbio.2019.02.00930763634
    [Google Scholar]
  110. MaW. WangJ. GuoQ. TuP. Simultaneous determination of doxorubicin and curcumin in rat plasma by LC–MS/MS and its application to pharmacokinetic study.J. Pharm. Biomed. Anal.201511121522110.1016/j.jpba.2015.04.00725910045
    [Google Scholar]
  111. Ruiz de PorrasV. Natural bioactive compounds: A potential therapeutic strategy to sensitize bladder cancer to cisplatin treatment?Cancer Drug Resist.202252339343
    [Google Scholar]
  112. HamI.H. WangL. LeeD. WooJ. KimT. JeongH. OhH. ChoiK. KimT.M. HurH. Curcumin inhibits the cancer-associated fibroblast-derived chemoresistance of gastric cancer through the suppression of the JAK/STAT3 signaling pathway.Int. J. Oncol.20226118510.3892/ijo.2022.537535621145
    [Google Scholar]
  113. LiuP. YingQ. LiuH. YuS.Q. BuL.P. ShaoL. LiX.Y. Curcumin enhances anti-cancer efficacy of either gemcitabine or docetaxel on pancreatic cancer cells.Oncol. Rep.20204441393140210.3892/or.2020.771332945513
    [Google Scholar]
  114. LiuL. YangS. ChenF. ChengK.W. Hyaluronic acid–zein core-shell nanoparticles improve the anticancer effect of curcumin alone or in combination with oxaliplatin against colorectal cancer via cd44-mediated cellular uptake.Molecules2022275149810.3390/molecules2705149835268597
    [Google Scholar]
  115. ZhangH.H. ZhangY. ChengY.N. GongF.L. CaoZ.Q. YuL.G. GuoX.L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo.Mol. Carcinog.2018571445610.1002/mc.2271828833603
    [Google Scholar]
  116. AbdallahF.M. HelmyM.W. KataryM.A. GhoneimA.I. Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells.Naunyn Schmiedebergs Arch. Pharmacol.2018391121399141010.1007/s00210‑018‑1557‑630155693
    [Google Scholar]
  117. ElbadawyM. HayashiK. AyameH. IshiharaY. AbugomaaA. ShibutaniM. HayashiS.M. HazamaS. TakenouchiH. NakajimaM. TsunedomiR. SuzukiN. NaganoH. ShinoharaY. KanedaM. YamawakiH. UsuiT. SasakiK. Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids.Biomed. Pharmacother.202114211204310.1016/j.biopha.2021.11204334411919
    [Google Scholar]
  118. Ruiz de PorrasV. LayosL. Martínez-BalibreaE. Curcumin: A therapeutic strategy for colorectal cancer?Semin. Cancer Biol.20217332133010.1016/j.semcancer.2020.09.00432942023
    [Google Scholar]
  119. LuY. ZhangR. ZhangX. ZhangB. YaoQ. Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress.Biomed. Pharmacother.202012911038110.1016/j.biopha.2020.11038132887024
    [Google Scholar]
  120. TaoG. HuangJ. MoorthyB. WangC. HuM. GaoS. GhoseR. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity.Expert Opin. Drug Metab. Toxicol.202016111109112410.1080/17425255.2020.181570532841068
    [Google Scholar]
  121. GlennonK. MulliganK. CarpenterK. MooneyR. MulsowJ. McCormackO. BoydW. WalshT. McVeyR. ThompsonC. RyanB. PadfieldK. MurrayP. BrennanD.J. The addition of sodium thiosulphate to hyperthermic intraperitoneal chemotherapy with cisplatin in ovarian cancer.Gynecol. Oncol. Rep.20213710079610.1016/j.gore.2021.10079634141848
    [Google Scholar]
  122. AzzamM. WasefM. KhalafH. Al-HabbaaA. 3D-based strain analysis and cardiotoxicity detection in cancer patients received chemotherapy.BMC Cancer202323176010.1186/s12885‑023‑11261‑y37587421
    [Google Scholar]
  123. JainA. RaniV. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts.Mol. Cell. Biochem.20184421-2819610.1007/s11010‑017‑3195‑628929270
    [Google Scholar]
  124. Ruiz de PorrasV. FigolsM. FontA. PardinaE. Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury.Life Sci.202333212211910.1016/j.lfs.2023.12211937741319
    [Google Scholar]
  125. AliB.H. AbdelrahmanA. Al SuleimaniY. ManojP. AliH. NemmarA. Al Za’abiM. Effect of concomitant treatment of curcumin and melatonin on cisplatin-induced nephrotoxicity in rats.Biomed. Pharmacother.202013111076110.1016/j.biopha.2020.11076133152924
    [Google Scholar]
  126. AlkofideH. AlnaimL. AlorfN. AlessaW. BawazeerG. Cardiotoxicity and cardiac monitoring among anthracycline-treated cancer patients: A retrospective cohort study.Cancer Manag. Res.2021135149515910.2147/CMAR.S31387434234558
    [Google Scholar]
  127. RussoM. Della SalaA. TocchettiC.G. PorporatoP.E. GhigoA. Metabolic aspects of anthracycline cardiotoxicity.Curr. Treat. Options Oncol.20212221810.1007/s11864‑020‑00812‑133547494
    [Google Scholar]
  128. OrphanosG.S. IoannidisG.N. ArdavanisA.G. Cardiotoxicity induced by tyrosine kinase inhibitors.Acta Oncol.200948796497010.1080/0284186090322912419734999
    [Google Scholar]
  129. XiaoM. TangY. WangJ. LuG. NiuJ. WangJ. LiJ. LiuQ. WangZ. HuangZ. GuoY. GaoT. ZhangX. YueS. GuJ. A new FGF1 variant protects against adriamycin-induced cardiotoxicity via modulating p53 activity.Redox Biol.20224910221910.1016/j.redox.2021.10221934990928
    [Google Scholar]
  130. HassaneinE.H.M. Abd El-GhafarO.A.M. AhmedM.A. SayedA.M. Gad-ElrabW.M. AjaremJ.S. AllamA.A. MahmoudA.M. Edaravone and acetovanillone upregulate Nrf2 and PI3K/Akt/mTOR signaling and prevent cyclophosphamide cardiotoxicity in rats.Drug Des. Devel. Ther.2020145275528810.2147/DDDT.S28185433299300
    [Google Scholar]
  131. BashaR. ConnellyS.F. SankpalU.T. NagarajuG.P. PatelH. VishwanathaJ.K. ShelakeS. Tabor-SimeckaL. ShojiM. SimeckaJ.W. El-RayesB. Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-kB translocation to nucleus and cell cycle phase distribution.J. Nutr. Biochem.201631778710.1016/j.jnutbio.2016.01.00327133426
    [Google Scholar]
  132. KhadrawyY.A. HosnyE.N. El-GizawyM.M. SawieH.G. Aboul EzzH.S. The effect of curcumin nanoparticles on cisplatin-induced cardiotoxicity in male wistar albino rats.Cardiovasc. Toxicol.202121643344310.1007/s12012‑021‑09636‑333548025
    [Google Scholar]
  133. SarawiW.S. AlhusainiA.M. FaddaL.M. AlomarH.A. AlbakerA.B. AljrboaA.S. AlotaibiA.M. HasanI.H. MahmoudA.M. Nano-curcumin prevents cardiac injury, oxidative stress and inflammation, and modulates TLR4/NF-κB and MAPK signaling in copper sulfate-intoxicated rats.Antioxidants2021109141410.3390/antiox1009141434573046
    [Google Scholar]
  134. LinX. BaiD. WeiZ. ZhangY. HuangY. DengH. HuangX. HuangX. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway.PLoS One2019145e021671110.1371/journal.pone.021671131112588
    [Google Scholar]
  135. YuW. QinX. ZhangY. QiuP. WangL. ZhaW. RenJ. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner.Cardiovasc. Diagn. Ther.202010475276910.21037/cdt‑19‑70732968631
    [Google Scholar]
  136. PillaiS.C. BorahA. LeM.N.T. KawanoH. HasegawaK. KumarD.S. Co-delivery of curcumin and bioperine via PLGA nanoparticles to prevent atherosclerotic foam cell formation.Pharmaceutics2021139142010.3390/pharmaceutics1309142034575496
    [Google Scholar]
  137. RoychoudhuriR. EilR.L. RestifoN.P. The interplay of effector and regulatory T cells in cancer.Curr. Opin. Immunol.20153310111110.1016/j.coi.2015.02.00325728990
    [Google Scholar]
  138. AbdollahiE. MomtaziA.A. JohnstonT.P. SahebkarA. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all- trades?J. Cell. Physiol.2018233283084810.1002/jcp.2577828059453
    [Google Scholar]
  139. ZhangH. DaiZ. WuW. WangZ. ZhangN. ZhangL. ZengW.J. LiuZ. ChengQ. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer.J. Exp. Clin. Cancer Res.202140118410.1186/s13046‑021‑01987‑734088360
    [Google Scholar]
  140. KamathS.D. KalyanA. KircherS. NimeiriH. FoughtA.J. BensonA.III MulcahyM. Ipilimumab and gemcitabine for advanced pancreatic cancer: A phase Ib study.Oncologist2020255e808e81510.1634/theoncologist.2019‑047331740568
    [Google Scholar]
  141. AbeK. ShibataK. NaitoT. OtsukaA. KarayamaM. MaekawaM. MiyakeH. SudaT. KawakamiJ. Impacts of cachexia progression in addition to serum IgG and blood lymphocytes on serum nivolumab in advanced cancer patients.Eur. J. Clin. Pharmacol.2022781778710.1007/s00228‑021‑03199‑634410448
    [Google Scholar]
  142. EhlersF.A.I. MahaweniN.M. van de Waterweg BerendsA. SayaT. BosG.M.J. WietenL. Exploring the potential of combining IL-2-activated NK cells with an anti-PDL1 monoclonal antibody to target multiple myeloma-associated macrophages.Cancer Immunol. Immunother.20237261789180110.1007/s00262‑022‑03365‑436656341
    [Google Scholar]
  143. GeS. SunX. SangL. ZhangM. YanX. JuQ. MaX. XuM. Curcumin inhibits malignant behavior of colorectal cancer cells by regulating M2 polarization of tumor-associated macrophages and metastasis associated in colon cancer 1 (MACC1) expression.Chem. Biol. Drug Des.202310251202121210.1111/cbdd.1433037599210
    [Google Scholar]
  144. LiaoF. LiuL. LuoE. HuJ. Curcumin enhances anti- tumor immune response in tongue squamous cell carcinoma.Arch. Oral Biol.201892323710.1016/j.archoralbio.2018.04.01529751146
    [Google Scholar]
  145. SalminenA. KaarnirantaK. KauppinenA. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders.Int. Immunopharmacol.20186123124010.1016/j.intimp.2018.06.00529894862
    [Google Scholar]
  146. JeonY. SymS.J. YooB.K. BaekJ.H. Long-term survival, tolerability, and safety of first-line bevacizumab and FOLFIRI in combination with ginsenoside-modified nanostructured lipid carrier containing curcumin in patients with unresectable metastatic colorectal cancer.Integr. Cancer Ther.202221.10.1177/1534735422110549835695002
    [Google Scholar]
  147. DongM. YuT. ZhangZ. ZhangJ. WangR. TseG. LiuT. ZhongL. ICIs-related cardiotoxicity in different types of cancer.J. Cardiovasc. Dev. Dis.20229720310.3390/jcdd907020335877565
    [Google Scholar]
  148. FaubryC. FaureM. ToublancA.C. VeillonR. LemaîtreA.I. VergnenègreC. CochetH. KhanS. RaherisonC. Dos SantosP. ZysmanM. A prospective study to detect immune checkpoint inhibitors associated with myocarditis among patients treated for lung cancer.Front. Cardiovasc. Med.2022987821110.3389/fcvm.2022.87821135734278
    [Google Scholar]
  149. TarrioM.L. GrabieN. BuD. SharpeA.H. LichtmanA.H. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis.J. Immunol.2012188104876488410.4049/jimmunol.120038922491251
    [Google Scholar]
  150. GiustozziM. BecattiniC. RoilaF. AgnelliG. MandalàM. Vascular events with immune checkpoint inhibitors in melanoma or non-small cell lung cancer: A systematic review and meta-analysis.Cancer Treat. Rev.202110010228010.1016/j.ctrv.2021.10228034438237
    [Google Scholar]
  151. MaW. WangY. LuS. YanL. HuF. WangZ. Targeting androgen receptor with ASC-J9 attenuates cardiac injury and dysfunction in experimental autoimmune myocarditis by reducing M1-like macrophage.Biochem. Biophys. Res. Commun.2017485474675210.1016/j.bbrc.2017.02.12328246012
    [Google Scholar]
  152. DuS. LiZ. XieX. XuC. ShenX. WangN. ShenY. IL-17 stimulates the expression of CCL2 in cardiac myocytes via Act1/TRAF6/p38MAPK-dependent AP-1 activation.Scand. J. Immunol.2020911e1284010.1111/sji.1284031630418
    [Google Scholar]
  153. LiX. GuL. ChenY. WangX. MeiY. ZhouJ. MaM. MaJ. ChongY. WangX. GuoP. HeD. ZengJ. A novel 450-nm laser-mediated sinoporphyrin sodium-based photodynamic therapy induces autophagic cell death in gastric cancer through regulation of the ROS/PI3K/Akt/mTOR signaling pathway.BMC Med.202220147510.1186/s12916‑022‑02676‑836482460
    [Google Scholar]
  154. HuJ. SongJ. TangZ. WeiS. ChenL. ZhouR. Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis.Eur. J. Pharmacol.202190017407110.1016/j.ejphar.2021.17407133811836
    [Google Scholar]
  155. WangX. WuM. ZhangX. LiF. ZengY. LinX. LiuX. LiuJ. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy.J. Nanobiotechnology202119120410.1186/s12951‑021‑00952‑y34238297
    [Google Scholar]
  156. SzlasaW. SupplittS. Drąg-ZalesińskaM. PrzystupskiD. KotowskiK. SzewczykA. KasperkiewiczP. SaczkoJ. KulbackaJ. Effects of curcumin based PDT on the viability and the organization of actin in melanotic (A375) and amelanotic melanoma (C32) – in vitro studies.Biomed. Pharmacother.202013211088310.1016/j.biopha.2020.11088333113417
    [Google Scholar]
  157. TsaiW.H. YuK.H. HuangY.C. LeeC.I. EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles.Int. J. Nanomedicine20181390391610.2147/IJN.S14830529445279
    [Google Scholar]
  158. JingX. ZhiZ. JinL. WangF. WuY. WangD. YanK. ShaoY. MengL. pH/redox dual-stimuli-responsive cross-linked polyphosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy.Nanoscale201911199457946710.1039/C9NR01194C31042245
    [Google Scholar]
  159. LanY. ZhuX. TangM. WuY. ZhangJ. LiuJ. ZhangY. Construction of a near-infrared responsive upconversion nanoplatform against hypoxic tumors via NO-enhanced photodynamic therapy.Nanoscale202012147875788710.1039/C9NR10453D32227004
    [Google Scholar]
  160. LuoG. LiX. LinJ. GeG. FangJ. SongW. XiaoG.G. ZhangB. PengX. DuoY. TangB.Z. Multifunctional calcium–manganese nanomodulator provides antitumor treatment and improved immunotherapy via reprogramming of the tumor microenvironment.ACS Nano20231716154491546510.1021/acsnano.3c0121537530575
    [Google Scholar]
  161. ZhangZ. WangR. HuangX. LuoR. XueJ. GaoJ. LiuW. LiuF. FengF. QuW. Self-delivered and self- monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of hif-1α and depletion of GSH.ACS Appl. Mater. Interfaces20201255680569410.1021/acsami.9b2332531944660
    [Google Scholar]
  162. Firouzi AmoodizajF. BaghaeifarS. TaheriE. Farhoudi Sefidan JadidM. SafiM. Seyyed SaniN. HajazimianS. IsazadehA. ShanehbandiD. RETRACTED: Enhanced anticancer potency of doxorubicin in combination with curcumin in gastric adenocarcinoma.J. Biochem. Mol. Toxicol.2020346e2248610.1002/jbt.2248632128952
    [Google Scholar]
  163. BrennanP.A. LewthwaiteR. SakthithasanP. McGuiganS. DonnellyO. AlamP. GomezR.S. FedeleS. Diclofenac mouthwash as a potential therapy for reducing pain and discomfort in chemo-radiotherapy–induced oral mucositis.J. Oral Pathol. Med.202049995695910.1111/jop.1300132017243
    [Google Scholar]
  164. DongL. QinJ. TaiL. MouK. LiaoX. ChenF. HuX. Inactivation of Bacillus subtilis by curcumin-mediated photodynamic technology through inducing oxidative stress response.Microorganisms202210480210.3390/microorganisms1004080235456852
    [Google Scholar]
  165. PinheiroS.L. BonadimanA.C. Borges LemosA.L.A. AnnicchinoB.M. SegattiB. PuccaD.S. DutraP.T. de Carvalho e SilvaR.M. LealF. Photobiomodulation therapy in cancer patients with mucositis: A clinical evaluation.Photobiomodul. Photomed. Laser Surg.201937314215010.1089/photob.2018.452631050952
    [Google Scholar]
  166. Pires MarquesE.C. Piccolo LopesF. NascimentoI.C. MorelliJ. PereiraM.V. Machado MeikenV.M. PinheiroS.L. Photobiomodulation and photodynamic therapy for the treatment of oral mucositis in patients with cancer.Photodiagn. Photodyn. Ther.20202910162110.1016/j.pdpdt.2019.10162131841687
    [Google Scholar]
  167. AshkbarA. RezaeiF. AttariF. AshkevarianS. Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles.Sci. Rep.20201012120610.1038/s41598‑020‑78241‑133273672
    [Google Scholar]
  168. ZhangY. BiL. HuZ. CaoW. ZhuangD. Hematoporphyrin monomethyl ether-mediated sonodynamic therapy induces A-253 cell apoptosis.Oncol. Lett.20201943223322810.3892/ol.2020.1141932218867
    [Google Scholar]
  169. ChenY. ShangH. WangC. ZengJ. ZhangS. WuB. ChengW. RNA-seq explores the mechanism of oxygen-boosted sonodynamic therapy based on all-in-one nanobubbles to enhance ferroptosis for the treatment of HCC.Int. J. Nanomedicine20221710512310.2147/IJN.S34336135027829
    [Google Scholar]
  170. TianY. LiuY. WangL. GuoX. LiuY. MouJ. WuH. YangS. Gadolinium-doped hollow silica nanospheres loaded with curcumin for magnetic resonance imaging-guided synergistic cancer sonodynamic-chemotherapy.Mater. Sci. Eng. C202112611215710.1016/j.msec.2021.11215734082962
    [Google Scholar]
  171. LiY. HuangC. XuY. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload.Front. Bioeng. Biotechnol.202210106967610.3389/fbioe.2022.106967636457858
    [Google Scholar]
  172. Sowa-KasprzakK. JózkowiakM. OlenderD. PawełczykA. Piotrowska-KempistyH. ZaprutkoL. Curcumin–triterpene type hybrid as effective sonosensitizers for sonodynamic therapy in oral squamous cell carcinoma.Pharmaceutics2023157200810.3390/pharmaceutics1507200837514194
    [Google Scholar]
  173. JiangL. WangJ. JiangJ. ZhangC. ZhaoM. ChenZ. WangN. HuD. LiuX. PengH. LianM. Sonodynamic therapy in atherosclerosis by curcumin nanosuspensions: Preparation design, efficacy evaluation, and mechanisms analysis.Eur. J. Pharm. Biopharm.202014610111010.1016/j.ejpb.2019.12.00531841689
    [Google Scholar]
  174. ZhengL. LiY. LiX. KouJ. ZhongZ. JiangY. LiuZ. TianY. YangL. Combination of hydroxyl acetylated curcumin and ultrasound induces macrophage autophagy with anti-apoptotic and anti-lipid aggregation effects.Cell. Physiol. Biochem.20163951746176010.1159/00044787527744450
    [Google Scholar]
  175. FengT. HuZ. WangK. ZhuX. ChenD. ZhuangH. YaoL. SongS. WangH. SunM. Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin.Int. J. Biol. Macromol.202016174675410.1016/j.ijbiomac.2020.06.08832553966
    [Google Scholar]
  176. ChenY. TaiK. MaP. SuJ. DongW. GaoY. MaoL. LiuJ. YuanF. Novel γ-cyclodextrin-metal–organic frameworks for encapsulation of curcumin with improved loading capacity, physicochemical stability and controlled release properties.Food Chem.202134712897810.1016/j.foodchem.2020.12897833444890
    [Google Scholar]
  177. PrasannaA.P.S. VenkataprasannaK.S. PannerselvamB. AsokanV. JenifferR.S. VenkatasubbuG.D. Multifunctional ZnO/SiO2 core/shell nanoparticles for bioimaging and drug delivery application.J. Fluoresc.20203051075108310.1007/s10895‑020‑02578‑z32621092
    [Google Scholar]
  178. SalarbashiD. TafaghodiM. BazzazB.S.F. Mohammad AboutorabzadeS. FathiM. pH-sensitive soluble soybean polysaccharide/SiO2 incorporated with curcumin for intelligent packaging applications.Food Sci. Nutr.2021942169217910.1002/fsn3.218733841833
    [Google Scholar]
  179. MaZ. GaoX. RazaF. ZafarH. HuangG. YangY. ShiF. WangD. HeX. Design of GSH-responsive curcumin nanomicelles for oesophageal cancer therapy.Pharmaceutics2022149180210.3390/pharmaceutics1409180236145550
    [Google Scholar]
  180. WeiY. CaiX. WuQ. LiaoH. LiangS. FuH. XiangQ. ZhangS. Extraction, isolation, and component analysis of turmeric-derived exosome-like nanoparticles.Bioengineering20231010119910.3390/bioengineering1010119937892929
    [Google Scholar]
  181. ZhuJ. WangY. YangP. LiuQ. HuJ. YangW. LiuP. HeF. BaiY. GaiS. XieR. LiC. GPC3-targeted and curcumin-loaded phospholipid microbubbles for sono-photodynamic therapy in liver cancer cells.Colloids Surf. B Biointerfaces202119711135810.1016/j.colsurfb.2020.11135833068823
    [Google Scholar]
  182. ChenX. LiQ. HuangZ. LinW. MaY. Construction and evaluation of curcumin upconversion nanocarriers decorated with MnO2 for tumor photodynamic therapy.Drug Deliv. Transl. Res.202212112678269210.1007/s13346‑022‑01118‑535061221
    [Google Scholar]
  183. BaiY. LiX. LiM. ShangQ. YangJ. FanL. TianW. Host–guest interaction-based supramolecular prodrug self-assemblies for GSH-consumption augmented chemotherapy.J. Mater. Chem. B Mater. Biol. Med.202210264952495810.1039/D2TB00989G35723649
    [Google Scholar]
  184. GroverM. BehlT. SachdevaM. BungaoS. AleyaL. SetiaD. Focus on multi-targeted role of curcumin: A boon in therapeutic paradigm.Environ. Sci. Pollut. Res. Int.20212815188931890710.1007/s11356‑021‑12809‑w33595796
    [Google Scholar]
  185. FetoniA.R. PacielloF. MezzogoriD. RolesiR. EramoS.L.M. PaludettiG. TroianiD. Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: The role of curcumin on pSTAT3 and Nrf-2 signalling.Br. J. Cancer2015113101434144410.1038/bjc.2015.35926469832
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673305616240610153554
Loading
/content/journals/cmc/10.2174/0109298673305616240610153554
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test