Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Drug development is a complex and expensive process that involves extensive research and testing before a new drug can be approved for use. This has led to a limited availability of potential therapeutics for many diseases. Despite significant advances in biomedical science, the process of drug development remains a bottleneck, as all hypotheses must be tested through experiments and observations, which can be time- consuming and costly. To address this challenge, drug repurposing has emerged as an innovative strategy for finding new uses for existing medications that go beyond their original intended use. This approach has the potential to speed up the drug development process and reduce costs, making it an attractive option for pharmaceutical companies and researchers alike. It involves the identification of existing drugs or compounds that have the potential to be used for the treatment of a different disease or condition. This can be done through a variety of approaches, including screening existing drugs against new disease targets, investigating the biological mechanisms of existing drugs, and analyzing data from clinical trials and electronic health records. Additionally, repurposing drugs can lead to the identification of new therapeutic targets and mechanisms of action, which can enhance our understanding of disease biology and lead to the development of more effective treatments. Overall, drug repurposing is an exciting and promising area of research that has the potential to revolutionize the drug development process and improve the lives of millions of people around the world. The present review provides insights on types of interaction, approaches, availability of databases, applications and limitations of drug repurposing.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673266470231023110841
2024-11-08
2025-01-17
Loading full text...

Full text loading...

References

  1. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  2. AgrawalP. Advantages and challenges in drug re-profiling.J. Pharmacovigil.2015223
    [Google Scholar]
  3. SindhuS. MuruganS. Challenges and opportunities in repurposing of drugs: Mini review.Bangladesh J. Med. Sci.202019336537110.3329/bjms.v19i3.45851
    [Google Scholar]
  4. EmigD. IvlievA. PustovalovaO. LancashireL. BureevaS. NikolskyY. BessarabovaM. Drug target prediction and repositioning using an integrated network-based approach.PLoS One201384e6061810.1371/journal.pone.006061823593264
    [Google Scholar]
  5. YellaboinaS. HasnainS.E. Computational methods for drug repurposing.Biomedical Translational Research.SingaporeSpringer2022374810.1007/978‑981‑16‑9232‑1_4
    [Google Scholar]
  6. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the drugbank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  7. LiuT. LinY. WenX. JorissenR.N. GilsonM.K. BindingD.B. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities.Nucleic Acids Res.200735DatabaseD198D20110.1093/nar/gkl99917145705
    [Google Scholar]
  8. GriffithM. GriffithO.L. CoffmanA.C. WeibleJ.V. McMichaelJ.F. SpiesN.C. KovalJ. DasI. CallawayM.B. EldredJ.M. MillerC.A. SubramanianJ. GovindanR. KumarR.D. BoseR. DingL. WalkerJ.R. LarsonD.E. DoolingD.J. SmithS.M. LeyT.J. MardisE.R. WilsonR.K. DGIdb: Mining the druggable genome.Nat. Methods201310121209121010.1038/nmeth.268924122041
    [Google Scholar]
  9. HewettM. OliverD.E. RubinD.L. EastonK.L. StuartJ.M. AltmanR.B. KleinT.E. PharmGKB: The pharmacogenetics knowledge base.Nucleic Acids Res.200230116316510.1093/nar/30.1.16311752281
    [Google Scholar]
  10. BentoA.P. GaultonA. HerseyA. BellisL.J. ChambersJ. DaviesM. KrügerF.A. LightY. MakL. McGlincheyS. NowotkaM. PapadatosG. SantosR. OveringtonJ.P. The ChEMBL bioactivity database: An update.Nucleic Acids Res.201442D1D1083D109010.1093/nar/gkt103124214965
    [Google Scholar]
  11. ChenX. JiZ.L. ChenY.Z. TTD: Therapeutic target database.Nucleic Acids Res.200230141241510.1093/nar/30.1.41211752352
    [Google Scholar]
  12. KuhnM. von MeringC. CampillosM. JensenL.J. BorkP. STITCH: Interaction networks of chemicals and proteins.Nucleic Acids Res.200736DatabaseD684D68810.1093/nar/gkm79518084021
    [Google Scholar]
  13. TanoliZ. Vähä-KoskelaM. AittokallioT. Artificial intelligence, machine learning, and drug repurposing in cancer.Expert Opin. Drug Discov.202116997798910.1080/17460441.2021.188358533543671
    [Google Scholar]
  14. ZengX. ZhuS. HouY. ZhangP. LiL. LiJ. HuangL.F. LewisS.J. NussinovR. ChengF. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest.Bioinformatics20203692805281210.1093/bioinformatics/btaa01031971579
    [Google Scholar]
  15. WenM. ZhangZ. NiuS. ShaH. YangR. YunY. LuH. Deep-learning-based drug-target interaction prediction.J. Proteome Res.20171641401140910.1021/acs.jproteome.6b0061828264154
    [Google Scholar]
  16. McLeodR. Predicting drug-target interaction network using deep learning model.Comput. Biol. Chem.2019809010110.1016/j.compbiolchem.2019.03.01630939415
    [Google Scholar]
  17. HuS. ZhangC. ChenP. GuP. ZhangJ. WangB. Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks.BMC Bioinformatics201920S2568910.1186/s12859‑019‑3263‑x31874614
    [Google Scholar]
  18. HuntaS. AunsriN. YooyativongT. Drug-drug interactions prediction from enzyme action crossing through machine learning approaches.12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).Hua Hin, Thailand, 24-27 June, 20151410.1109/ECTICon.2015.7207126
    [Google Scholar]
  19. BiX. MaH. LiJ. MaY. ChenD. A positive and unlabeled learning framework based on extreme learning machine for drug-drug interactions discovery.J. Ambient Intell. Humaniz. Comput.201810.1007/s12652‑018‑0960‑7
    [Google Scholar]
  20. KastrinA. FerkP. LeskošekB. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning.PLoS One2018135e019686510.1371/journal.pone.019686529738537
    [Google Scholar]
  21. ZhangY. QiuY. CuiY. LiuS. ZhangW. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.Methods2020179374610.1016/j.ymeth.2020.05.00732497603
    [Google Scholar]
  22. KerrienS. ArandaB. BreuzaL. BridgeA. Broackes- CarterF. ChenC. DuesburyM. DumousseauM. FeuermannM. HinzU. JandrasitsC. JimenezR.C. KhadakeJ. MahadevanU. MassonP. PedruzziI. PfeiffenbergerE. PorrasP. RaghunathA. RoechertB. OrchardS. HermjakobH. The IntAct molecular interaction database in 2012.Nucleic Acids Res.201240D1D841D84610.1093/nar/gkr108822121220
    [Google Scholar]
  23. MishraG.R. SureshM. KumaranK. KannabiranN. SureshS. BalaP. ShivakumarK. AnuradhaN. ReddyR. RaghavanT.M. MenonS. HanumanthuG. GuptaM. UpendranS. GuptaS. MaheshM. JacobB. MathewP. ChatterjeeP. ArunK.S. SharmaS. ChandrikaK.N. DeshpandeN. PalvankarK. RaghavnathR. KrishnakanthR. KarathiaH. RekhaB. NayakR. VishnupriyaG. KumarH.G. NaginiM. KumarG.S. JoseR. DeepthiP. MohanS.S. GandhiT.K. HarshaH.C. DeshpandeK.S. SarkerM. PrasadT.S. PandeyA. Human protein reference database--2006 update.Nucleic Acids Res.20063490001D411D41410.1093/nar/gkj14116381900
    [Google Scholar]
  24. Chatr-aryamontriA. CeolA. PalazziL.M. NardelliG. SchneiderM.V. CastagnoliL. CesareniG. MINT: The molecular interaction database.Nucleic Acids Res.200735DatabaseD572D57410.1093/nar/gkl95017135203
    [Google Scholar]
  25. Acuner OzbabacanS.E. EnginH.B. GursoyA. KeskinO. Transient protein-protein interactions.Protein Eng. Des. Sel.201124963564810.1093/protein/gzr02521676899
    [Google Scholar]
  26. KeskinO. NussinovR. Favorable scaffolds: Proteins with different sequence, structure and function may associate in similar ways.Protein Eng. Des. Sel.2005181112410.1093/protein/gzh09515790576
    [Google Scholar]
  27. SiragusaL. CrossS. BaroniM. GoracciL. CrucianiG. BioGPS: Navigating biological space to predict polypharmacology, off-targeting, and selectivity.Proteins201583351753210.1002/prot.2475325556939
    [Google Scholar]
  28. OzdemirE.S. HalakouF. NussinovR. GursoyA. KeskinO. Methods for discovering and targeting druggable protein-protein interfaces and their application to repurposing.Methods Mol. Biol.2019190312110.1007/978‑1‑4939‑8955‑3_130547433
    [Google Scholar]
  29. LiY. MengQ. YangM. LiuD. HouX. TangL. WangX. LyuY. ChenX. LiuK. YuA.M. ZuoZ. BiH. Current trends in drug metabolism and pharmacokinetics.Acta Pharm. Sin. B2019961113114410.1016/j.apsb.2019.10.00131867160
    [Google Scholar]
  30. DudleyJ.T. DeshpandeT. ButteA.J. Exploiting drug-disease relationships for computational drug repositioning.Brief. Bioinform.201112430331110.1093/bib/bbr01321690101
    [Google Scholar]
  31. ChiangA.P. ButteA.J. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses.Clin. Pharmacol. Ther.200986550751010.1038/clpt.2009.10319571805
    [Google Scholar]
  32. CampillosM. KuhnM. GavinA.C. JensenL.J. BorkP. Drug target identification using side-effect similarity.Science2008321588626326610.1126/science.115814018621671
    [Google Scholar]
  33. HuangL. LuoH. LiS. WuF.X. WangJ. Drug-drug similarity measure and its applications.Brief. Bioinform.2020224bbaa26510.1093/bib/bbaa26533152756
    [Google Scholar]
  34. van DrielM.A. BruggemanJ. VriendG. BrunnerH.G. LeunissenJ.A.M. A text-mining analysis of the human phenome.Eur. J. Hum. Genet.200614553554210.1038/sj.ejhg.520158516493445
    [Google Scholar]
  35. LuoH. WangJ. LiM. LuoJ. PengX. WuF.X. PanY. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.Bioinformatics201632172664267110.1093/bioinformatics/btw22827153662
    [Google Scholar]
  36. KimE. ChoiA. NamH. Drug repositioning of herbal compounds via a machine-learning approach.BMC Bioinformatics201920S1024710.1186/s12859‑019‑2811‑831138103
    [Google Scholar]
  37. ZhouR. LuZ. LuoH. XiangJ. ZengM. LiM. NEDD: A network embedding based method for predicting drug-disease associations.BMC Bioinformatics202021S1338710.1186/s12859‑020‑03682‑432938396
    [Google Scholar]
  38. KimH. HanG. SongJ.-H. A review for artificial intelligence proving to fight against COVID-19 pandemic and prefatory health policy.J. Med. Biomed. Appl. Sci.20208849450610.15520/jmbas.v8i8.247
    [Google Scholar]
  39. IssaN.T. StathiasV. SchürerS. DakshanamurthyS. Machine and deep learning approaches for cancer drug repurposing.Semin. Cancer Biol.20216813214210.1016/j.semcancer.2019.12.01131904426
    [Google Scholar]
  40. MaldonadoA.G. DoucetJ.P. PetitjeanM. FanB.T. Molecular similarity and diversity in chemoinformatics: From theory to applications.Mol. Divers.2006101397910.1007/s11030‑006‑8697‑116404528
    [Google Scholar]
  41. KeiserM.J. SetolaV. IrwinJ.J. LaggnerC. AbbasA.I. HufeisenS.J. JensenN.H. KuijerM.B. MatosR.C. TranT.B. WhaleyR. GlennonR.A. HertJ. ThomasK.L.H. EdwardsD.D. ShoichetB.K. RothB.L. Predicting new molecular targets for known drugs.Nature2009462727017518110.1038/nature0850619881490
    [Google Scholar]
  42. GilsonM.K. LiuT. BaitalukM. NicolaG. HwangL. ChongJ. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.Nucleic Acids Res.201644D1D1045D105310.1093/nar/gkv107226481362
    [Google Scholar]
  43. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2019 update: Improved access to chemical data.Nucleic Acids Res.201947D1D1102D110910.1093/nar/gky103330371825
    [Google Scholar]
  44. BarbarinoJ.M. Whirl-CarrilloM. AltmanR.B. KleinT.E. PharmGKB: A worldwide resource for pharmacogenomic information.Wiley Interdiscip. Rev. Syst. Biol. Med.2018104e141710.1002/wsbm.141729474005
    [Google Scholar]
  45. GaultonA. HerseyA. NowotkaM. BentoA.P. ChambersJ. MendezD. MutowoP. AtkinsonF. BellisL.J. Cibrián-UhalteE. DaviesM. DedmanN. KarlssonA. MagariñosM.P. OveringtonJ.P. PapadatosG. SmitI. LeachA.R. The ChEMBL database in 2017.Nucleic Acids Res.201745D1D945D95410.1093/nar/gkw107427899562
    [Google Scholar]
  46. DeshmukhA.L. ChandraS. SinghD.K. SiddiqiM.I. BanerjeeD. Identification of human flap endonuclease 1 (FEN1) inhibitors using a machine learning based consensus virtual screening.Mol. Biosyst.20171381630163910.1039/C7MB00118E28685785
    [Google Scholar]
  47. AllenB.K. AyadN.G. SchürerS.C. Kinome-wide activity classification of small molecules by deep learning.bioRxiv2019201951245910.1101/512459
    [Google Scholar]
  48. RifaiogluA.S. NalbatE. AtalayV. MartinM.J. Cetin-AtalayR. DoğanT. DEEPScreen: High performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations.Chem. Sci.20201192531255710.1039/C9SC03414E33209251
    [Google Scholar]
  49. van WestenG.J.P. van den HovenO.O. van der PijlR. Mulder-KriegerT. de VriesH. WegnerJ.K. IJzermanA.P. van VlijmenH.W.T. BenderA. Identifying novel adenosine receptor ligands by simultaneous proteochemometric modeling of rat and human bioactivity data.J. Med. Chem.201255167010702010.1021/jm300306922827545
    [Google Scholar]
  50. KunduI. PaulG. BanerjeeR. A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties.RSC Advances2018822121271213710.1039/C8RA00003D35539386
    [Google Scholar]
  51. SoufanO. Ba-alawiW. Magana-MoraA. EssackM. BajicV.B. DPubChem: A web tool for QSAR modeling and high-throughput virtual screening.Sci. Rep.201881911010.1038/s41598‑018‑27495‑x29904147
    [Google Scholar]
  52. ScheederC. HeigwerF. BoutrosM. Machine learning and image-based profiling in drug discovery.Curr. Opin. Syst. Biol.201810435210.1016/j.coisb.2018.05.00430159406
    [Google Scholar]
  53. ChenH. EngkvistO. WangY. OlivecronaM. BlaschkeT. The rise of deep learning in drug discovery.Drug Discov. Today20182361241125010.1016/j.drudis.2018.01.03929366762
    [Google Scholar]
  54. BengioY. CourvilleA. VincentP. Representation learning: A review and new perspectives.IEEE Trans. Pattern Anal. Mach. Intell.20133581798182810.1109/TPAMI.2013.5023787338
    [Google Scholar]
  55. WeiningerD. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules.J. Chem. Inf. Comput. Sci.1988281313610.1021/ci00057a005
    [Google Scholar]
  56. JaegerS. FulleS. TurkS. Mol2vec: Unsupervised machine learning approach with chemical intuition.J. Chem. Inf. Model.2018581273510.1021/acs.jcim.7b0061629268609
    [Google Scholar]
  57. MikolovT. ChenK. CorradoG. DeanJ. Efficient estimation of word representations in vector space.arXiv20132013378110.48550/ARXIV.1301.3781
    [Google Scholar]
  58. SeniorA.W. EvansR. JumperJ. KirkpatrickJ. SifreL. GreenT. QinC. ŽídekA. NelsonA.W.R. BridglandA. PenedonesH. PetersenS. SimonyanK. CrossanS. KohliP. JonesD.T. SilverD. KavukcuogluK. HassabisD. Improved protein structure prediction using potentials from deep learning.Nature2020577779270671010.1038/s41586‑019‑1923‑731942072
    [Google Scholar]
  59. LeeI. KeumJ. NamH. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences.PLOS Comput. Biol.2019156e100712910.1371/journal.pcbi.100712931199797
    [Google Scholar]
  60. WanF. HongL. XiaoA. JiangT. ZengJ. NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions.Bioinformatics201935110411110.1093/bioinformatics/bty54330561548
    [Google Scholar]
  61. ZengX. ZhuS. LuW. LiuZ. HuangJ. ZhouY. FangJ. HuangY. GuoH. LiL. TrappB.D. NussinovR. EngC. LoscalzoJ. ChengF. Target identification among known drugs by deep learning from heterogeneous networks.Chem. Sci.20201171775179710.1039/C9SC04336E34123272
    [Google Scholar]
  62. JaradaT.N. RokneJ.G. AlhajjR. Computational method to predict drug- disease interactions using similarity network fusion and collective variational autoencoder.Knowl. Based Syst.2021212
    [Google Scholar]
  63. McNuttA.T. FrancoeurP. AggarwalR. MasudaT. MeliR. RagozaM. SunseriJ. KoesD.R. GNINA 1.0: Molecular docking with deep learning.J. Cheminform.20211314310.1186/s13321‑021‑00522‑234108002
    [Google Scholar]
  64. PanX. LinX. CaoD. ZengX. YuP.S. HeL. NussinovR. ChengF. Deep learning for drug repurposing: Methods, databases, and applications.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022124e159710.1002/wcms.1597
    [Google Scholar]
  65. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  66. Emmert-StreibF. TripathiS. SimoesR.M. HawwaA.F. DehmerM. The human disease network.Syst. Biomed.201311202810.4161/sysb.22816
    [Google Scholar]
  67. CastellettiF. La RoccaL. PelusoS. StingoF.C. ConsonniG. Bayesian learning of multiple directed networks from observational data.Stat. Med.202039304745476610.1002/sim.875132969059
    [Google Scholar]
  68. AskarM. CañadasR.N. SvendsenK. An introduction to network analysis for studies of medication use.Res. Social Adm. Pharm.202117122054206110.1016/j.sapharm.2021.06.02134226152
    [Google Scholar]
  69. WuH. FuZ. WangY. A medical network clustering method with weighted graph structure.Meas. Control2020539-101751175910.1177/0020294020952469
    [Google Scholar]
  70. KöhlerS. BauerS. HornD. RobinsonP.N. Walking the interactome for prioritization of candidate disease genes.Am. J. Hum. Genet.200882494995810.1016/j.ajhg.2008.02.01318371930
    [Google Scholar]
  71. VanunuO. MaggerO. RuppinE. ShlomiT. SharanR. Associating genes and protein complexes with disease via network propagation.PLOS Comput. Biol.201061e100064110.1371/journal.pcbi.100064120090828
    [Google Scholar]
  72. WuH. GaoL. DongJ. YangX. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.PLoS One201493e9185610.1371/journal.pone.009185624642838
    [Google Scholar]
  73. WuZ. WangY. ChenL. Network-based drug repositioning.Mol. Biosyst.2013961268128110.1039/c3mb25382a23493874
    [Google Scholar]
  74. DaiY.F. ZhaoX.M. A survey on the computational approaches to identify drug targets in the postgenomic era.BioMed Res. Int.201520151910.1155/2015/23965426060814
    [Google Scholar]
  75. AmorettiM. AmslerC. BonomiG. BouchtaA. BoweP. CarraroC. CesarC.L. CharltonM. CollierM.J.T. DoserM. FilippiniV. FineK.S. FontanaA. FujiwaraM.C. FunakoshiR. GenovaP. HangstJ.S. HayanoR.S. HolzscheiterM.H. JørgensenL.V. LagomarsinoV. LanduaR. LindelöfD. RizziniE.L. MacrìM. MadsenN. ManuzioG. MarchesottiM. MontagnaP. PruysH. RegenfusC. RiedlerP. RochetJ. RotondiA. RouleauG. TesteraG. VariolaA. WatsonT.L. van der WerfD.P. Production and detection of cold antihydrogen atoms.Nature2002419690645645910.1038/nature0109612368849
    [Google Scholar]
  76. KoyuturkM. Using protein interaction networks to understand complex diseases.Computer2012453313810.1109/MC.2012.40
    [Google Scholar]
  77. Lotfi ShahrezaM. GhadiriN. MousaviS.R. VarshosazJ. GreenJ.R. A review of network-based approaches to drug repositioning.Brief. Bioinform.201819587889210.1093/bib/bbx01728334136
    [Google Scholar]
  78. WinterbachW. MieghemP.V. ReindersM. WangH. RidderD. Topology of molecular interaction networks.BMC Syst. Biol.2013719010.1186/1752‑0509‑7‑9024041013
    [Google Scholar]
  79. ArrellD.K. TerzicA. Network systems biology for drug discovery.Clin. Pharmacol. Ther.201088112012510.1038/clpt.2010.9120520604
    [Google Scholar]
  80. ZhouG. LiS. XiaJ. Network-based approaches for multi-omics integration.Methods Mol. Biol.2020210446948710.1007/978‑1‑0716‑0239‑3_2331953831
    [Google Scholar]
  81. CharitouT. BryanK. LynnD.J. Using biological networks to integrate, visualize and analyze genomics data.Genet. Sel. Evol.20164812710.1186/s12711‑016‑0205‑127036106
    [Google Scholar]
  82. SomolinosF.J. LeónC. Guerrero-AspizuaS. Drug repurposing using biological networks.Processes202196105710.3390/pr9061057
    [Google Scholar]
  83. YanJ. RisacherS.L. ShenL. SaykinA.J. Network approaches to systems biology analysis of complex disease: Integrative methods for multi-omics data.Brief. Bioinform.20172017bbx06610.1093/bib/bbx06628679163
    [Google Scholar]
  84. SanderJ. EsterM. KriegelH.P. XuX. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications.Data Min. Knowl. Discov.19982216919410.1023/A:1009745219419
    [Google Scholar]
  85. AgrawalR. GehrkeJ. GunopulosD. RaghavanP. Automatic subspace clustering of high dimensional data for data mining applications.SIGMOD Rec.19982729410510.1145/276305.276314
    [Google Scholar]
  86. WangW. YangJ. MuntzR. STING: A statistical information grid approach to spatial data mining.Vldb199797186195
    [Google Scholar]
  87. XueH. LiJ. XieH. WangY. Review of drug repositioning approaches and resources.Int. J. Biol. Sci.201814101232124410.7150/ijbs.2461230123072
    [Google Scholar]
  88. YuL. HuangJ. MaZ. ZhangJ. ZouY. GaoL. Inferring drug-disease associations based on known protein complexes.BMC Med. Genomics.20158Suppl 2S210.1186/1755‑8794‑8‑S2‑S2
    [Google Scholar]
  89. WuC. GudivadaR. C. AronowB. J. JeggaA. G. Computational drug repositioning through heterogeneous network clustering.BMC Syst. Biol.20137suppl5S610.1186/1752‑0509‑7‑S5‑S6
    [Google Scholar]
  90. LuZ. PubMed and beyond: A survey of web tools for searching biomedical literature.Database20112011baq03610.1093/database/baq03621245076
    [Google Scholar]
  91. ZhuF. PatumcharoenpolP. ZhangC. YangY. ChanJ. MeechaiA. VongsangnakW. ShenB. Biomedical text mining and its applications in cancer research.J. Biomed. Inform.201346220021110.1016/j.jbi.2012.10.00723159498
    [Google Scholar]
  92. LeamanR. Islamaj DoğanR. LuZ. DNorm: Disease name normalization with pairwise learning to rank.Bioinformatics201329222909291710.1093/bioinformatics/btt47423969135
    [Google Scholar]
  93. LiJ. ZhuX. ChenJ.Y. Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts.PLOS Comput. Biol.200957e100045010.1371/journal.pcbi.100045019649302
    [Google Scholar]
  94. TariL.B. PatelJ.H. Systematic drug repurposing through text mining.Methods Mol. Biol.2014115925326710.1007/978‑1‑4939‑0709‑0_1424788271
    [Google Scholar]
  95. BrownA.S. PatelC.J. MeSHDD: Literature-based drug-drug similarity for drug repositioning.J. Am. Med. Inform. Assoc.201724361461810.1093/jamia/ocw14227678460
    [Google Scholar]
  96. ZengX. ZhuS. LiuX. ZhouY. NussinovR. ChengF. DeepD.R. deepDR: A network-based deep learning approach to in silico drug repositioning.Bioinformatics201935245191519810.1093/bioinformatics/btz41831116390
    [Google Scholar]
  97. KoutsoukasA. SimmsB. KirchmairJ. BondP.J. WhitmoreA.V. ZimmerS. YoungM.P. JenkinsJ.L. GlickM. GlenR.C. BenderA. From in silico target prediction to multi-target drug design: Current databases, methods and applications.J. Proteomics201174122554257410.1016/j.jprot.2011.05.01121621023
    [Google Scholar]
  98. GobbiG. JaniriL. Clozapine blocks dopamine, 5-HT2 and 5-HT3 responses in the medial prefrontal cortex: An in vivo microiontophoretic study.Eur. Neuropsychopharmacol.1999101434910.1016/S0924‑977X(99)00055‑310647096
    [Google Scholar]
  99. MendenM.P. IorioF. GarnettM. McDermottU. BenesC.H. BallesterP.J. Saez-RodriguezJ. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties.PLoS One201384e6131810.1371/journal.pone.006131823646105
    [Google Scholar]
  100. YangY. AdelsteinS.J. KassisA.I. Target discovery from data mining approaches.Drug Discov. Today201217Suppl.S16S2310.1016/j.drudis.2011.12.006
    [Google Scholar]
  101. BurbidgeR. TrotterM. BuxtonB. HoldenS. Drug design by machine learning: Support vector machines for pharmaceutical data analysis.Comput. Chem.200126151410.1016/S0097‑8485(01)00094‑811765851
    [Google Scholar]
  102. LoY.C. RensiS.E. TorngW. AltmanR.B. Machine learning in chemoinformatics and drug discovery.Drug Discov. Today20182381538154610.1016/j.drudis.2018.05.01029750902
    [Google Scholar]
  103. MazanduG.K. OpapK. MulderN.J. Contribution of microarray data to the advancement of knowledge on the Mycobacterium tuberculosis interactome: Use of the random partial least squares approach.Infect. Genet. Evol.201111118118910.1016/j.meegid.2010.09.00320850566
    [Google Scholar]
  104. PanteleevJ. GaoH. JiaL. Recent applications of machine learning in medicinal chemistry.Bioorg. Med. Chem. Lett.201828172807281510.1016/j.bmcl.2018.06.04630122222
    [Google Scholar]
  105. HanP. YangP. ZhaoP. ShangS. LiuY. ZhouJ. GaoX. KalnisP. Gcn-Mf: Disease-gene association identification by graph convolutional networks and matrix factorization.Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining.New York, NY, USA 201910.1145/3292500.3330912
    [Google Scholar]
  106. NunesT. CamposD. MatosS. OliveiraJ.L. BeCAS: Biomedical concept recognition services and visualization.Bioinformatics201329151915191610.1093/bioinformatics/btt31723736528
    [Google Scholar]
  107. ChengD. KnoxC. YoungN. StothardP. DamarajuS. WishartD. S. PolySearch: A web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites.Nucleic Acids Res.200836Web Server issueW39940510.1093/nar/gkn296
    [Google Scholar]
  108. LeeS. KimD. LeeK. ChoiJ. KimS. JeonM. LimS. ChoiD. KimS. TanA.C. KangJ. BEST: Next-generation biomedical entity search tool for knowledge discovery from biomedical literature.PLoS One20161110e016468010.1371/journal.pone.016468027760149
    [Google Scholar]
  109. SunH.Y. HouT.J. ZhangH.Y. Finding chemical drugs for genetic diseases.Drug Discov. Today201419121836184010.1016/j.drudis.2014.09.01325256778
    [Google Scholar]
  110. FaroukI.A. LowZ.Y. PuniyamurtiA. ZabidiN.Z. AminM.K.A. LalS.K. Genomic approaches for drug repositioning.Biomedical Translational Research.SingaporeSpringer2022497210.1007/978‑981‑16‑9232‑1_5
    [Google Scholar]
  111. AmbergerJ.S. BocchiniC.A. ScottA.F. HamoshA. OMIM.org: Leveraging knowledge across phenotype-gene relationships.Nucleic Acids Res.201947D1D1038D104310.1093/nar/gky115130445645
    [Google Scholar]
  112. WeinreichS.S. MangonR. SikkensJ.J. TeeuwM.E. CornelM.C. Orphanet: A European database for rare diseases.Ned. Tijdschr. Geneeskd.2008152951851918389888
    [Google Scholar]
  113. SherryS.T. WardM.H. KholodovM. BakerJ. PhanL. SmigielskiE.M. SirotkinK. dbSNP: The NCBI database of genetic variation.Nucleic Acids Res.200129130831110.1093/nar/29.1.30811125122
    [Google Scholar]
  114. VidovićD. KoletiA. SchürerS.C. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action.Front. Genet.2014534210.3389/fgene.2014.0034225324859
    [Google Scholar]
  115. LambJ. CrawfordE.D. PeckD. ModellJ.W. BlatI.C. WrobelM.J. LernerJ. BrunetJ.P. SubramanianA. RossK.N. ReichM. HieronymusH. WeiG. ArmstrongS.A. HaggartyS.J. ClemonsP.A. WeiR. CarrS.A. LanderE.S. GolubT.R. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease.Science200631357951929193510.1126/science.113293917008526
    [Google Scholar]
  116. HuangH. NguyenT. IbrahimS. ShantharamS. YueZ. ChenJ. Y. DMAP: A connectivity map database to enable identification of novel drug repositioning candidates.BMC Bioinformatics201516Suppl 13S410.1186/1471‑2105‑16‑S13‑S4
    [Google Scholar]
  117. IorioF. BosottiR. ScacheriE. BelcastroV. MithbaokarP. FerrieroR. MurinoL. TagliaferriR. Brunetti-PierriN. IsacchiA. di BernardoD. Discovery of drug mode of action and drug repositioning from transcriptional responses.Proc. Natl. Acad. Sci.201010733146211462610.1073/pnas.100013810720679242
    [Google Scholar]
  118. JiangW. ChenX. LiaoM. LiW. LianB. WangL. MengF. LiuX. ChenX. JinY. LiX. Identification of links between small molecules and miRNAs in human cancers based on transcriptional responses.Sci. Rep.20122128210.1038/srep0028222355792
    [Google Scholar]
  119. LiuX. WangS. MengF. WangJ. ZhangY. DaiE. YuX. LiX. JiangW. SM2miR: A database of the experimentally validated small molecules’ effects on microRNA expression.Bioinformatics201329340941110.1093/bioinformatics/bts69823220571
    [Google Scholar]
  120. LiY. QiuC. TuJ. GengB. YangJ. JiangT. CuiQ. HMDD v2.0: A database for experimentally supported human microRNA and disease associations.Nucleic Acids Res.201442D1D1070D107410.1093/nar/gkt102324194601
    [Google Scholar]
  121. HuangZ. ShiJ. GaoY. CuiC. ZhangS. LiJ. ZhouY. CuiQ. HMDD v3.0: A database for experimentally supported human microRNA-disease associations.Nucleic Acids Res.201947D1D1013D101710.1093/nar/gky101030364956
    [Google Scholar]
  122. RukovJ.L. WilentzikR. JaffeI. VintherJ. ShomronN. Pharmaco-miR: Linking microRNAs and drug effects.Brief. Bioinform.201415464865910.1093/bib/bbs08223376192
    [Google Scholar]
  123. IorioF. RittmanT. GeH. MendenM. Saez-RodriguezJ. Transcriptional data: A new gateway to drug repositioning?Drug Discov. Today2013187-835035710.1016/j.drudis.2012.07.01422897878
    [Google Scholar]
  124. ArakelyanA. NersisyanL. NikoghosyanM. HakobyanS. SimonyanA. HoppL. Loeffler-WirthH. BinderH. Transcriptome-guided drug repositioning.Pharmaceutics2019111267710.3390/pharmaceutics1112067731842375
    [Google Scholar]
  125. KeenanA.B. JenkinsS.L. JagodnikK.M. KoplevS. HeE. TorreD. WangZ. DohlmanA.B. SilversteinM.C. LachmannA. KuleshovM.V. Ma’ayanA. StathiasV. TerrynR. CooperD. ForlinM. KoletiA. VidovicD. ChungC. SchürerS.C. VasiliauskasJ. PilarczykM. ShamsaeiB. FazelM. RenY. NiuW. ClarkN.A. WhiteS. MahiN. ZhangL. KourilM. ReichardJ.F. SivaganesanS. MedvedovicM. MellerJ. KochR.J. BirtwistleM.R. IyengarR. SobieE.A. AzelogluE.U. KayeJ. OsterlohJ. HastonK. KalraJ. FinkbienerS. LiJ. MilaniP. AdamM. Escalante-ChongR. SachsK. LenailA. RamamoorthyD. FraenkelE. DaigleG. HussainU. CoyeA. RothsteinJ. SareenD. OrnelasL. BanuelosM. MandefroB. HoR. SvendsenC.N. LimR.G. StocksdaleJ. CasaleM.S. ThompsonT.G. WuJ. ThompsonL.M. DardovV. VenkatramanV. MatlockA. Van EykJ.E. JaffeJ.D. PapanastasiouM. SubramanianA. GolubT.R. EricksonS.D. Fallahi-SichaniM. HafnerM. GrayN.S. LinJ.R. MillsC.E. MuhlichJ.L. NiepelM. ShamuC.E. WilliamsE.H. WrobelD. SorgerP.K. HeiserL.M. GrayJ.W. KorkolaJ.E. MillsG.B. LaBargeM. FeilerH.S. DaneM.A. BucherE. NederlofM. SudarD. GrossS. KilburnD.F. SmithR. DevlinK. MargolisR. DerrL. LeeA. PillaiA. The library of integrated network-based cellular signatures nih program: System-level cataloging of human cells response to perturbations.Cell Syst.201861132410.1016/j.cels.2017.11.00129199020
    [Google Scholar]
  126. SubramanianA. NarayanR. CorselloS.M. PeckD.D. NatoliT.E. LuX. GouldJ. DavisJ.F. TubelliA.A. AsieduJ.K. LahrD.L. HirschmanJ.E. LiuZ. DonahueM. JulianB. KhanM. WaddenD. SmithI. LamD. LiberzonA. ToderC. BagulM. OrzechowskiM. EnacheO.M. PiccioniF. BergerA.H. ShamjiA. BrooksA.N. VrcicA. FlynnC. RosainsJ. TakedaD. DavisonD. LambJ. ArdlieK. HogstromL. GrayN.S. ClemonsP.A. SilverS. WuX. ZhaoW-N. Read-ButtonW. WuX. HaggartyS.J. RoncoL.V. BoehmJ.S. SchreiberS.L. DoenchJ.G. BittkerJ.A. RootD.E. WongB. GolubT.R. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles.bioRxiv2017201713616810.1101/136168
    [Google Scholar]
  127. LiF. MichelsonA.P. ForakerR. ZhanM. PayneP.R.O. Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2.BMC Med. Inform. Decis. Mak.20212111510.1186/s12911‑020‑01373‑x33413329
    [Google Scholar]
  128. KwakM.S. LeeH.H. ChaJ.M. ShinH.P. JeonJ.W. YoonJ.Y. Novel candidate drugs in anti-tumor necrosis factor refractory Crohn’s diseases: In silico study for drug repositioning.Sci. Rep.20201011070810.1038/s41598‑020‑67801‑032612148
    [Google Scholar]
  129. SanseauP. AgarwalP. BarnesM.R. PastinenT. RichardsJ.B. CardonL.R. MooserV. Use of genome-wide association studies for drug repositioning.Nat. Biotechnol.201230431732010.1038/nbt.215122491277
    [Google Scholar]
  130. BrookesA.J. The essence of SNPs.Gene1999234217718610.1016/S0378‑1119(99)00219‑X10395891
    [Google Scholar]
  131. LauA. SoH.C. Turning genome-wide association study findings into opportunities for drug repositioning.Comput. Struct. Biotechnol. J.2020181639165010.1016/j.csbj.2020.06.01532670504
    [Google Scholar]
  132. GroverM. P. BallouzS. MohanasundaramK. A. GeorgeR. A. GoscinskiA. CrowleyT. M. ShermanC. D. H. WoutersM. A. Novel therapeutics for coronary artery disease from genome-wide association study data.BMC Med. Genomics20158Suppl 8S110.1186/1755‑8794‑8‑S2‑S1
    [Google Scholar]
  133. WatsonH.J. YilmazZ. SullivanP.F. History, development, and the future.Personalized Psychiatry.Elsevier20209110110.1016/B978‑0‑12‑813176‑3.00009‑2
    [Google Scholar]
  134. ShuklaR. HenkelN.D. AlganemK. HamoudA. ReigleJ. AlnafisahR.S. EbyH.M. ImamiA.S. CreedenJ.F. MiruzziS.A. MellerJ. MccullumsmithR.E. Signature-based approaches for informed drug repurposing: Targeting CNS disorders.Neuropsychopharmacology202146111613010.1038/s41386‑020‑0752‑632604402
    [Google Scholar]
  135. ChoudhuryC. PriyakumarU.D. SastryG.N. Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors.J. Chem. Sci.2016128571973210.1007/s12039‑016‑1069‑1
    [Google Scholar]
  136. GinalskiK. Comparative modeling for protein structure prediction.Curr. Opin. Struct. Biol.200616217217710.1016/j.sbi.2006.02.00316510277
    [Google Scholar]
  137. YangJ. YanR. RoyA. XuD. PoissonJ. ZhangY. The I-TASSER Suite: Protein structure and function prediction.Nat. Methods20151217810.1038/nmeth.321325549265
    [Google Scholar]
  138. BaekM. DiMaioF. AnishchenkoI. DauparasJ. OvchinnikovS. LeeG.R. WangJ. CongQ. KinchL.N. SchaefferR.D. MillánC. ParkH. AdamsC. GlassmanC.R. DeGiovanniA. PereiraJ.H. RodriguesA.V. van DijkA.A. EbrechtA.C. OppermanD.J. SagmeisterT. BuhlhellerC. Pavkov-KellerT. RathinaswamyM.K. DalwadiU. YipC.K. BurkeJ.E. GarciaK.C. GrishinN.V. AdamsP.D. ReadR.J. BakerD. Accurate prediction of protein structures and interactions using a three-track neural network.Science2021373655787187610.1126/science.abj875434282049
    [Google Scholar]
  139. ChenY.C. TolbertR. AronovA.M. McGaugheyG. WaltersW.P. MeirelesL. Prediction of protein pairs sharing common active ligands using protein sequence, structure, and ligand similarity.J. Chem. Inf. Model.20165691734174510.1021/acs.jcim.6b0011827559831
    [Google Scholar]
  140. RocheD. BrackenridgeD. McGuffinL. Proteins and their interacting partners: An introduction to protein–ligand binding site prediction methods.Int. J. Mol. Sci.20151612298292984210.3390/ijms16122620226694353
    [Google Scholar]
  141. ChoudhuryC. Arul MuruganN. PriyakumarU.D. Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods.Drug Discov. Today20222771847186110.1016/j.drudis.2022.03.00635301148
    [Google Scholar]
  142. LaskowskiR. A. SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions.J. Mol. Graph.199513532333010.1016/0263‑7855(95)00073‑9
    [Google Scholar]
  143. Le GuillouxV. SchmidtkeP. TufferyP. Fpocket: An open source platform for ligand pocket detection.BMC Bioinformatics200910116810.1186/1471‑2105‑10‑16819486540
    [Google Scholar]
  144. HuangB. SchroederM. LIGSITEcsc: Predicting ligand binding sites using the connolly surface and degree of conservation.BMC Struct. Biol.2006611910.1186/1472‑6807‑6‑1916995956
    [Google Scholar]
  145. BradyG.P.Jr StoutenP.F.W. Fast prediction and visualization of protein binding pockets with PASS.J. Comput. Aided Mol. Des.200014438340110.1023/A:100812420295610815774
    [Google Scholar]
  146. LaurieA.T.R. JacksonR.M. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites.Bioinformatics20052191908191610.1093/bioinformatics/bti31515701681
    [Google Scholar]
  147. BrylinskiM. SkolnickJ. FINDSITE-metal: Integrating evolutionary information and machine learning for structure-based metal-binding site prediction at the proteome level.Proteins201179373575110.1002/prot.2291321287609
    [Google Scholar]
  148. MacCallumR.M. MartinA.C.R. ThorntonJ.M. Antibody-antigen interactions: Contact analysis and binding site topography.J. Mol. Biol.1996262573274510.1006/jmbi.1996.05488876650
    [Google Scholar]
  149. WuQ. PengZ. ZhangY. YangJ. COACH-D: Improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking.Nucleic Acids Res.201846W1W438W44210.1093/nar/gky43929846643
    [Google Scholar]
  150. VanhaelenQ. MamoshinaP. AliperA.M. ArtemovA. LezhninaK. OzerovI. LabatI. ZhavoronkovA. Design of efficient computational workflows for in silico drug repurposing.Drug Discov. Today201722221022210.1016/j.drudis.2016.09.01927693712
    [Google Scholar]
  151. LiH. GaoZ. KangL. ZhangH. YangK. YuK. LuoX. ZhuW. ChenK. ShenJ. WangX. JiangH. TarFisDock: A web server for identifying drug targets with docking approach.Nucleic Acids Res.200634Web Server issueW2192410.1093/nar/gkl114
    [Google Scholar]
  152. LuoH. ChenJ. ShiL. MikailovM. ZhuH. WangK. HeL. YangL. DRAR-CPI: A server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome.Nucleic Acids Res.201139Web Server issueW49249810.1093/nar/gkr299
    [Google Scholar]
  153. McmartinC. BohacekR.S. QXP: Powerful, rapid computer algorithms for structure-based drug design.J. Comput. Aided Mol. Des.199711433334410.1023/A:10079077288929334900
    [Google Scholar]
  154. RognanD. Structure-based approaches to target fishing and ligand profiling.Mol. Inform.201029317618710.1002/minf.20090008127462761
    [Google Scholar]
  155. KumarS. Molecular docking: A structure-based approach for drug repurposing. In silico Drug Design.Elsevier2019161189
    [Google Scholar]
  156. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b0072831294972
    [Google Scholar]
  157. WeiY. LiW. DuT. HongZ. LinJ. Targeting HIV/HCV coinfection using a machine learning-based multiple quantitative structure-activity relationships (Multiple QSAR) method.Int. J. Mol. Sci.20192014357210.3390/ijms2014357231336592
    [Google Scholar]
  158. CanoG. Garcia-RodriguezJ. Garcia-GarciaA. Perez-SanchezH. BenediktssonJ.A. ThapaA. BarrA. Automatic selection of molecular descriptors using random forest: Application to drug discovery.Expert Syst. Appl.20177215115910.1016/j.eswa.2016.12.008
    [Google Scholar]
  159. RahmanR. OtridgeJ. PalR. IntegratedMRF: Random forest-based framework for integrating prediction from different data types.Bioinformatics20173391407141010.1093/bioinformatics/btw76528334269
    [Google Scholar]
  160. MaltarolloV.G. KronenbergerT. EspinozaG.Z. OliveiraP.R. HonorioK.M. Advances with support vector machines for novel drug discovery.Expert Opin. Drug Discov.2019141233310.1080/17460441.2019.154903330488731
    [Google Scholar]
  161. WangY.C. ZhangC.H. DengN.Y. WangY. Kernel-based data fusion improves the drug-protein interaction prediction.Comput. Biol. Chem.201135635336210.1016/j.compbiolchem.2011.10.00322099632
    [Google Scholar]
  162. KawaiK. FujishimaS. TakahashiY. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.J. Chem. Inf. Model.20084861152116010.1021/ci700475318533712
    [Google Scholar]
  163. ChenX. ChouC.Y. ChangG.G. Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme.Antivir. Chem. Chemother.200919415115610.1177/09563202090190040219374142
    [Google Scholar]
  164. SofticL. BrilletR. BerryF. AhnouN. NeversQ. Morin-DewaeleM. HamadatS. BruscellaP. FouratiS. PawlotskyJ.M. Ahmed-BelkacemA. Inhibition of SARS-CoV-2 infection by the cyclophilin inhibitor alisporivir (Debio 025).Antimicrob. Agents Chemother.2020647e008762010.1128/AAC.00876‑2032376613
    [Google Scholar]
  165. MahantaS. ChowdhuryP. GogoiN. GoswamiN. BorahD. KumarR. ChetiaD. BorahP. BuragohainA.K. GogoiB. Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: An In silico based approach.J. Biomol. Struct. Dyn.202139103802381110.1080/07391102.2020.176890232406317
    [Google Scholar]
  166. OdharH.A. AhjelS.W. AlbeerA.A.M.A. HashimA.F. RayshanA.M. HumadiS.S. Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus.Bioinformation202016323624410.6026/9732063001623632308266
    [Google Scholar]
  167. ChenY.W. YiuC.P.B. WongK.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates.F1000 Res.2020912910.12688/f1000research.22457.232194944
    [Google Scholar]
  168. KandeelM. Al-NazawiM. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease.Life Sci.202025111762711762710.1016/j.lfs.2020.11762732251634
    [Google Scholar]
  169. AftabS.O. GhouriM.Z. MasoodM.U. HaiderZ. KhanZ. AhmadA. MunawarN. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach.J. Transl. Med.202018127510.1186/s12967‑020‑02439‑032635935
    [Google Scholar]
  170. BibiN. GulS. AliJ. KamalM.A. Viroinformatics approach to explore the inhibitory mechanism of existing drugs repurposed to fight against COVID-19.Eur. J. Pharmacol.202088517349617349610.1016/j.ejphar.2020.17349632841640
    [Google Scholar]
  171. ElfikyA.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study.Life Sci.202025311759211759210.1016/j.lfs.2020.11759232222463
    [Google Scholar]
  172. WuC. LiuY. YangY. ZhangP. ZhongW. WangY. WangQ. XuY. LiM. LiX. ZhengM. ChenL. LiH. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.00832292689
    [Google Scholar]
  173. LucasJ.M. HeinleinC. KimT. HernandezS.A. MalikM.S. TrueL.D. MorrisseyC. CoreyE. MontgomeryB. MostaghelE. CleggN. ColemanI. BrownC.M. SchneiderE.L. CraikC. SimonJ.A. BedalovA. NelsonP.S. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis.Cancer Discov.20144111310132510.1158/2159‑8290.CD‑13‑101025122198
    [Google Scholar]
  174. ParvathaneniV. GuptaV. Utilizing drug repurposing against COVID-19 - Efficacy, limitations, and challenges.Life Sci.202025911827511827510.1016/j.lfs.2020.11827532818545
    [Google Scholar]
  175. RossignolJ.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus.J. Infect. Public Health20169322723010.1016/j.jiph.2016.04.00127095301
    [Google Scholar]
  176. UyekiT.M. ErlandsonK.J. KorchG. O’HaraM. WathenM. Hu-PrimmerJ. HojvatS. StemmyE.J. DonabedianA. Development of medical countermeasures to middle east respiratory syndrome coronavirus.Emerg. Infect. Dis.2016227e16002210.3201/eid2207.16002227191188
    [Google Scholar]
  177. Al-SaleemJ. GranetR. RamakrishnanS. CiancettaN.A. SavesonC. GessnerC. ZhouQ. Knowledge graph-based approaches to drug repurposing for COVID-19.J. Chem. Inf. Model.20216184058406710.1021/acs.jcim.1c0064234297570
    [Google Scholar]
  178. TanoliZ. SeemabU. SchererA. WennerbergK. TangJ. Vähä-KoskelaM. Exploration of databases and methods supporting drug repurposing: A comprehensive survey.Brief. Bioinform.20212221656167810.1093/bib/bbaa00332055842
    [Google Scholar]
  179. CaiM.C. XuQ. PanY.J. PanW. JiN. LiY.B. JinH.J. LiuK. JiZ.L. ADReCS: An ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms.Nucleic Acids Res.201543D1D907D91310.1093/nar/gku106625361966
    [Google Scholar]
  180. GaultonA. BellisL.J. BentoA.P. ChambersJ. DaviesM. HerseyA. LightY. McGlincheyS. MichalovichD. Al-LazikaniB. OveringtonJ.P. ChEMBL: A large-scale bioactivity database for drug discovery.Nucleic Acids Res.201240D1D1100D110710.1093/nar/gkr77721948594
    [Google Scholar]
  181. DrugbankAvailable from: http://www.drugbank.ca
  182. MattinglyC.J. ColbyG.T. ForrestJ.N. BoyerJ.L. The comparative toxicogenomics database (CTD).Environ. Health Perspect.2003111679379510.1289/ehp.602812760826
    [Google Scholar]
  183. National Institutes of HealthHealth Human Services DailyMed.Available from: http://dailymed.nlm
    [Google Scholar]
  184. UrsuO. HolmesJ. KnockelJ. BologaC.G. YangJ.J. MathiasS.L. NelsonS.J. OpreaT.I. DrugCentral: Online drug compendium.Nucleic Acids Res.201745D1D932D93910.1093/nar/gkw99327789690
    [Google Scholar]
  185. PihanE. ColliandreL. GuichouJ.F. DouguetD. e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design.Bioinformatics201228111540154110.1093/bioinformatics/bts18622539672
    [Google Scholar]
  186. YangW. SoaresJ. GreningerP. EdelmanE.J. LightfootH. ForbesS. BindalN. BeareD. SmithJ.A. ThompsonI.R. RamaswamyS. FutrealP.A. HaberD.A. StrattonM.R. BenesC. McDermottU. GarnettM.J. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells.Nucleic Acids Res.201241D1D955D96110.1093/nar/gks111123180760
    [Google Scholar]
  187. YellaJ. YaddanapudiS. WangY. JeggaA. Changing trends in computational drug repositioning.Pharmaceuticals20181125710.3390/ph1102005729874824
    [Google Scholar]
  188. KoscielnyG. AnP. Carvalho-SilvaD. ChamJ.A. FumisL. GasparyanR. HasanS. KaramanisN. MaguireM. PapaE. PierleoniA. PignatelliM. PlattT. RowlandF. WankarP. BentoA.P. BurdettT. FabregatA. ForbesS. GaultonA. GonzalezC.Y. HermjakobH. HerseyA. JupeS. KafkasŞ. KeaysM. LeroyC. LopezF.J. MagarinosM.P. MaloneJ. McEntyreJ. Munoz-Pomer FuentesA. O’DonovanC. PapatheodorouI. ParkinsonH. PalkaB. PaschallJ. PetryszakR. PratanwanichN. SarntivijalS. SaundersG. SidiropoulosK. SmithT. SondkaZ. StegleO. TangY.A. TurnerE. VaughanB. VrousgouO. WatkinsX. MartinM.J. SanseauP. VamathevanJ. BirneyE. BarrettJ. DunhamI. Open Targets: A platform for therapeutic target identification and validation.Nucleic Acids Res.201745D1D985D99410.1093/nar/gkw105527899665
    [Google Scholar]
  189. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  190. CowleyG.S. WeirB.A. VazquezF. TamayoP. ScottJ.A. RusinS. East-SeletskyA. AliL.D. GerathW.F.J. PantelS.E. LizotteP.H. JiangG. HsiaoJ. TsherniakA. DwinellE. AoyamaS. OkamotoM. HarringtonW. GelfandE. GreenT.M. TomkoM.J. GopalS. WongT.C. LiH. HowellS. StranskyN. LiefeldT. JangD. BistlineJ. Hill MeyersB. ArmstrongS.A. AndersonK.C. StegmaierK. ReichM. PellmanD. BoehmJ.S. MesirovJ.P. GolubT.R. RootD.E. HahnW.C. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.Sci. Data20141114003510.1038/sdata.2014.3525984343
    [Google Scholar]
  191. von EichbornJ. MurgueitioM.S. DunkelM. KoernerS. BourneP.E. PreissnerR. PROMISCUOUS: A database for network-based drug-repositioning.Nucleic Acids Res.201139DatabaseD1060D106610.1093/nar/gkq103721071407
    [Google Scholar]
  192. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  193. KuhnM. LetunicI. JensenL.J. BorkP. The SIDER database of drugs and side effects.Nucleic Acids Res.201644D1D1075D107910.1093/nar/gkv107526481350
    [Google Scholar]
  194. DunkelM. GüntherS. AhmedJ. WittigB. PreissnerR. SuperPred: Drug classification and target prediction.Nucleic Acids Res.200836Web Server issueW555910.1093/nar/gkn307
    [Google Scholar]
  195. WishartD. ArndtD. PonA. SajedT. GuoA.C. DjoumbouY. KnoxC. WilsonM. LiangY. GrantJ. LiuY. GoldansazS.A. RappaportS.M. T3DB: The toxic exposome database.Nucleic Acids Res.201543D1D928D93410.1093/nar/gku100425378312
    [Google Scholar]
  196. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  197. AkbarianS. LiuC. KnowlesJ.A. VaccarinoF.M. FarnhamP.J. CrawfordG.E. JaffeA.E. PintoD. DrachevaS. GeschwindD.H. MillJ. NairnA.C. AbyzovA. PochareddyS. PrabhakarS. WeissmanS. SullivanP.F. StateM.W. WengZ. PetersM.A. WhiteK.P. GersteinM.B. AmiriA. ArmoskusC. Ashley-KochA.E. BaeT. Beckel-MitchenerA. BermanB.P. CoetzeeG.A. CoppolaG. FrancoeurN. FromerM. GaoR. GrennanK. HersteinJ. KavanaghD.H. IvanovN.A. JiangY. KitchenR.R. KozlenkovA. KundakovicM. LiM. LiZ. LiuS. MangraviteL.M. MatteiE. Markenscoff-PapadimitriouE. NavarroF.C.P. NorthN. OmbergL. PanchisionD. ParikshakN. PoschmannJ. PriceA.J. PurcaroM. ReddyT.E. RoussosP. SchreinerS. ScuderiS. SebraR. ShibataM. ShiehA.W. SkaricaM. SunW. SwarupV. ThomasA. TsujiJ. van BakelH. WangD. WangY. WangK. WerlingD.M. WillseyA.J. WittH. WonH. WongC.C.Y. WrayG.A. WuE.Y. XuX. YaoL. SenthilG. LehnerT. SklarP. SestanN. The PsychENCODE project.Nat. Neurosci.201518121707171210.1038/nn.415626605881
    [Google Scholar]
  198. BrazmaA. ParkinsonH. SarkansU. ShojatalabM. ViloJ. AbeygunawardenaN. HollowayE. KapusheskyM. KemmerenP. LaraG.G. OezcimenA. Rocca-SerraP. SansoneS-A. ArrayExpress--a public repository for microarray gene expression data at the EBI.Nucleic Acids Res.2003311687110.1093/nar/gkg09112519949
    [Google Scholar]
  199. BarretinaJ. CaponigroG. StranskyN. VenkatesanK. MargolinA.A. KimS. WilsonC.J. LehárJ. KryukovG.V. SonkinD. ReddyA. LiuM. MurrayL. BergerM.F. MonahanJ.E. MoraisP. MeltzerJ. KorejwaA. Jané-ValbuenaJ. MapaF.A. ThibaultJ. Bric-FurlongE. RamanP. ShipwayA. EngelsI.H. ChengJ. YuG.K. YuJ. AspesiP.Jr de SilvaM. JagtapK. JonesM.D. WangL. HattonC. PalescandoloE. GuptaS. MahanS. SougnezC. OnofrioR.C. LiefeldT. MacConaillL. WincklerW. ReichM. LiN. MesirovJ.P. GabrielS.B. GetzG. ArdlieK. ChanV. MyerV.E. WeberB.L. PorterJ. WarmuthM. FinanP. HarrisJ.L. MeyersonM. GolubT.R. MorrisseyM.P. SellersW.R. SchlegelR. GarrawayL.A. Addendum: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity.Nature20195657738E5E610.1038/s41586‑018‑0722‑x30559381
    [Google Scholar]
  200. MailmanM.D. FeoloM. JinY. KimuraM. TrykaK. BagoutdinovR. HaoL. KiangA. PaschallJ. PhanL. PopovaN. PretelS. ZiyabariL. LeeM. ShaoY. WangZ.Y. SirotkinK. WardM. KholodovM. ZbiczK. BeckJ. KimelmanM. ShevelevS. PreussD. YaschenkoE. GraeffA. OstellJ. SherryS.T. The NCBI dbGaP database of genotypes and phenotypes.Nat. Genet.200739101181118610.1038/ng1007‑118117898773
    [Google Scholar]
  201. PiñeroJ. Queralt-RosinachN. BravoA. Deu-PonsJ. Bauer-MehrenA. BaronM. SanzF. FurlongL.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes.Database201520150bav02810.1093/database/bav02825877637
    [Google Scholar]
  202. GrossmanR.L. HeathA.P. FerrettiV. VarmusH.E. LowyD.R. KibbeW.A. StaudtL.M. Toward a shared vision for cancer genomic data.N. Engl. J. Med.2016375121109111210.1056/NEJMp160759127653561
    [Google Scholar]
  203. LonsdaleJ. ThomasJ. SalvatoreM. PhillipsR. LoE. ShadS. HaszR. WaltersG. GarciaF. YoungN. FosterB. MoserM. KarasikE. GillardB. RamseyK. SullivanS. BridgeJ. MagazineH. SyronJ. FlemingJ. SiminoffL. TrainoH. MosavelM. BarkerL. JewellS. RohrerD. MaximD. FilkinsD. HarbachP. CortadilloE. BerghuisB. TurnerL. HudsonE. FeenstraK. SobinL. RobbJ. BrantonP. KorzeniewskiG. ShiveC. TaborD. QiL. GrochK. NampallyS. BuiaS. ZimmermanA. SmithA. BurgesR. RobinsonK. ValentinoK. BradburyD. CosentinoM. Diaz-MayoralN. KennedyM. EngelT. WilliamsP. EricksonK. ArdlieK. WincklerW. GetzG. DeLucaD. MacArthurD. KellisM. ThomsonA. YoungT. GelfandE. DonovanM. MengY. GrantG. MashD. MarcusY. BasileM. LiuJ. ZhuJ. TuZ. CoxN.J. NicolaeD.L. GamazonE.R. ImH.K. KonkashbaevA. PritchardJ. StevensM. FlutreT. WenX. DermitzakisE.T. LappalainenT. GuigoR. MonlongJ. SammethM. KollerD. BattleA. MostafaviS. McCarthyM. RivasM. MallerJ. RusynI. NobelA. WrightF. ShabalinA. FeoloM. SharopovaN. SturckeA. PaschalJ. AndersonJ.M. WilderE.L. DerrL.K. GreenE.D. StruewingJ.P. TempleG. VolpiS. BoyerJ.T. ThomsonE.J. GuyerM.S. NgC. AbdallahA. ColantuoniD. InselT.R. KoesterS.E. LittleA.R. BenderP.K. LehnerT. YaoY. ComptonC.C. VaughtJ.B. SawyerS. LockhartN.C. DemchokJ. MooreH.F. The Genotype-Tissue Expression (GTEx) project.Nat. Genet.201345658058510.1038/ng.265323715323
    [Google Scholar]
  204. KimM.S. PintoS.M. GetnetD. NirujogiR.S. MandaS.S. ChaerkadyR. MadugunduA.K. KelkarD.S. IsserlinR. JainS. ThomasJ.K. MuthusamyB. Leal-RojasP. KumarP. SahasrabuddheN.A. BalakrishnanL. AdvaniJ. GeorgeB. RenuseS. SelvanL.D.N. PatilA.H. NanjappaV. RadhakrishnanA. PrasadS. SubbannayyaT. RajuR. KumarM. SreenivasamurthyS.K. MarimuthuA. SatheG.J. ChavanS. DattaK.K. SubbannayyaY. SahuA. YelamanchiS.D. JayaramS. RajagopalanP. SharmaJ. MurthyK.R. SyedN. GoelR. KhanA.A. AhmadS. DeyG. MudgalK. ChatterjeeA. HuangT.C. ZhongJ. WuX. ShawP.G. FreedD. ZahariM.S. MukherjeeK.K. ShankarS. MahadevanA. LamH. MitchellC.J. ShankarS.K. SatishchandraP. SchroederJ.T. SirdeshmukhR. MaitraA. LeachS.D. DrakeC.G. HalushkaM.K. PrasadT.S.K. HrubanR.H. KerrC.L. BaderG.D. Iacobuzio-DonahueC.A. GowdaH. PandeyA. A draft map of the human proteome.Nature2014509750257558110.1038/nature1330224870542
    [Google Scholar]
  205. ClarkeL. FairleyS. Zheng-BradleyX. StreeterI. PerryE. LowyE. TasséA.M. FlicekP. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 genomes project data.Nucleic Acids Res.201745D1D854D85910.1093/nar/gkw82927638885
    [Google Scholar]
  206. AyméS. SchmidtkeJ. Networking for rare diseases: A necessity for Europe.Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz200750121477148310.1007/s00103‑007‑0381‑918026888
    [Google Scholar]
  207. SzklarczykD. FranceschiniA. KuhnM. SimonovicM. RothA. MinguezP. DoerksT. StarkM. MullerJ. BorkP. JensenL.J. MeringC. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored.Nucleic Acids Res.201139DatabaseD561D56810.1093/nar/gkq97321045058
    [Google Scholar]
  208. FriesnerR.A. BanksJ.L. MurphyR.B. HalgrenT.A. KlicicJ.J. MainzD.T. RepaskyM.P. KnollE.H. ShelleyM. PerryJ.K. ShawD.E. FrancisP. ShenkinP.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm030643015027865
    [Google Scholar]
  209. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  210. CheeserightT. MackeyM. RoseS. VinterA. Molecular field extrema as descriptors of biological activity: Definition and validation.J. Chem. Inf. Model.200646266567610.1021/ci050357s16562997
    [Google Scholar]
  211. ShermanW. BeardH.S. FaridR. Use of an induced fit receptor structure in virtual screening.Chem. Biol. Drug Des.2006671838410.1111/j.1747‑0285.2005.00327.x16492153
    [Google Scholar]
  212. ZhuK. BorrelliK.W. GreenwoodJ.R. DayT. AbelR. FaridR.S. HarderE. Docking covalent inhibitors: A parameter free approach to pose prediction and scoring.J. Chem. Inf. Model.20145471932194010.1021/ci500118s24916536
    [Google Scholar]
  213. ThomsenR. ChristensenM.H. MolDock: A new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e16722650
    [Google Scholar]
  214. JonesG. WillettP. GlenR.C. LeachA.R. TaylorR. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen.J. Mol. Biol.1997267372774810.1006/jmbi.1996.08979126849
    [Google Scholar]
  215. HalgrenT. New method for fast and accurate binding-site identification and analysis.Chem. Biol. Drug Des.200769214614810.1111/j.1747‑0285.2007.00483.x17381729
    [Google Scholar]
  216. VelankarS. BestC. BeuthB. BoutselakisC.H. CobleyN. Sousa Da SilvaA.W. DimitropoulosD. GolovinA. HirshbergM. JohnM. KrissinelE.B. NewmanR. OldfieldT. PajonA. PenkettC.J. Pineda-CastilloJ. SahniG. SenS. SlowleyR. Suarez-UruenaA. SwaminathanJ. van GinkelG. VrankenW.F. HenrickK. KleywegtG.J. PDBe: Protein data bank in europe.Nucleic Acids Res.201038DatabaseD308D31710.1093/nar/gkp91619858099
    [Google Scholar]
  217. WolberG. LangerT. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.J. Chem. Inf. Model.200545116016910.1021/ci049885e15667141
    [Google Scholar]
  218. DesaphyJ. RaimbaudE. DucrotP. RognanD. Encoding protein-ligand interaction patterns in fingerprints and graphs.J. Chem. Inf. Model.201353362363710.1021/ci300566n23432543
    [Google Scholar]
  219. KolesnikovN. HastingsE. KeaysM. MelnichukO. TangY.A. WilliamsE. DylagM. KurbatovaN. BrandiziM. BurdettT. MegyK. PilichevaE. RusticiG. TikhonovA. ParkinsonH. PetryszakR. SarkansU. BrazmaA. ArrayExpress update-implifying data submissions.Nucleic Acids Res.201543D1D1113D111610.1093/nar/gku105725361974
    [Google Scholar]
  220. UlrichE.L. AkutsuH. DoreleijersJ.F. HaranoY. IoannidisY.E. LinJ. LivnyM. MadingS. MaziukD. MillerZ. NakataniE. SchulteC.F. TolmieD.E. Kent WengerR. YaoH. MarkleyJ.L. BioMagResBank.Nucleic Acids Res.200736DatabaseD402D40810.1093/nar/gkm95717984079
    [Google Scholar]
  221. TzouP.L. DescampsD. RheeS.Y. RaugiD.N. CharpentierC. TaveiraN. SmithR.A. SorianoV. de MendozaC. HolmesS.P. GottliebG.S. ShaferR.W. Expanded spectrum of antiretroviral-selected mutations in human immunodeficiency virus type 2.J. Infect. Dis.2020221121962197210.1093/infdis/jiaa02631965175
    [Google Scholar]
  222. HanL. HeH. LiF. CuiX. XieD. LiuY. ZhengX. BaiH. WangS. BoX. Inferring infection patterns based on a connectivity map of host transcriptional responses.Sci. Rep.2015511582010.1038/srep1582026508266
    [Google Scholar]
  223. RobinsonJ.L. KocabaşP. WangH. CholleyP.E. CookD. NilssonA. AntonM. FerreiraR. DomenzainI. BillaV. LimetaA. HedinA. GustafssonJ. KerkhovenE.J. SvenssonL.T. PalssonB.O. MardinogluA. HanssonL. UhlénM. NielsenJ. An atlas of human metabolism.Sci. Signal.202013624eaaz148210.1126/scisignal.aaz148232209698
    [Google Scholar]
  224. Perez-RiverolY. BaiM. da Veiga LeprevostF. SquizzatoS. ParkY.M. HaugK. CarrollA.J. SpaldingD. PaschallJ. WangM. del-ToroN. TernentT. ZhangP. BusoN. BandeiraN. DeutschE.W. CampbellD.S. BeavisR.C. SalekR.M. SarkansU. PetryszakR. KeaysM. FahyE. SudM. SubramaniamS. BarberaA. JiménezR.C. NesvizhskiiA.I. SansoneS.A. SteinbeckC. LopezR. VizcaínoJ.A. PingP. HermjakobH. Discovering and linking public omics data sets using the Omics Discovery Index.Nat. Biotechnol.201735540640910.1038/nbt.379028486464
    [Google Scholar]
  225. UhlenM. ZhangC. LeeS. SjöstedtE. FagerbergL. BidkhoriG. BenfeitasR. ArifM. LiuZ. EdforsF. SanliK. von FeilitzenK. OksvoldP. LundbergE. HoberS. NilssonP. MattssonJ. SchwenkJ.M. BrunnströmH. GlimeliusB. SjöblomT. EdqvistP.H. DjureinovicD. MickeP. LindskogC. MardinogluA. PontenF. A pathology atlas of the human cancer transcriptome.Science20173576352eaan250710.1126/science.aan250728818916
    [Google Scholar]
  226. Perez-RiverolY. CsordasA. BaiJ. Bernal-LlinaresM. HewapathiranaS. KunduD.J. InugantiA. GrissJ. MayerG. EisenacherM. PérezE. UszkoreitJ. PfeufferJ. SachsenbergT. YılmazŞ. TiwaryS. CoxJ. AudainE. WalzerM. JarnuczakA.F. TernentT. BrazmaA. VizcaínoJ.A. The PRIDE database and related tools and resources in 2019: Improving support for quantification data.Nucleic Acids Res.201947D1D442D45010.1093/nar/gky110630395289
    [Google Scholar]
  227. HuangR. GrishaginI. WangY. ZhaoT. GreeneJ. ObenauerJ.C. NganD. NguyenD.T. GuhaR. JadhavA. SouthallN. SimeonovA. AustinC.P. The NCATS bioplanet - An integrated platform for exploring the universe of cellular signaling pathways for toxicology, systems biology, and chemical genomics.Front. Pharmacol.20191044510.3389/fphar.2019.00445
    [Google Scholar]
  228. ChenW.H. LuG. ChenX. ZhaoX.M. BorkP. OGEE v2: An update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines.Nucleic Acids Res.201745D1D940D94410.1093/nar/gkw101327799467
    [Google Scholar]
  229. PolakP. KarlićR. KorenA. ThurmanR. SandstromR. LawrenceM.S. ReynoldsA. RynesE. VlahovičekK. StamatoyannopoulosJ.A. SunyaevS.R. Cell-of-origin chromatin organization shapes the mutational landscape of cancer.Nature2015518753936036410.1038/nature1422125693567
    [Google Scholar]
  230. Urán LandaburuL. BerensteinA.J. VidelaS. MaruP. ShanmugamD. ChernomoretzA. AgüeroF. TDR Targets 6: Driving drug discovery for human pathogens through intensive chemogenomic data integration.Nucleic Acids Res.201948D1gkz99910.1093/nar/gkz99931680154
    [Google Scholar]
  231. Duran-FrigolaM. PaulsE. Guitart-PlaO. BertoniM. AlcaldeV. AmatD. Juan-BlancoT. AloyP. Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker.Nat. Biotechnol.20203891087109610.1038/s41587‑020‑0502‑732440005
    [Google Scholar]
  232. UrsuO. HolmesJ. BologaC.G. YangJ.J. MathiasS.L. StathiasV. NguyenD.T. SchürerS. OpreaT. DrugCentral 2018: An update.Nucleic Acids Res.201947D1D963D97010.1093/nar/gky96330371892
    [Google Scholar]
  233. SkutaC. PoprM. MullerT. JindrichJ. KahleM. SedlakD. SvozilD. BartunekP. Probes Drugs portal: An interactive, open data resource for chemical biology.Nat. Methods201714875976010.1038/nmeth.436528753599
    [Google Scholar]
  234. HeckerN. AhmedJ. von EichbornJ. DunkelM. MachaK. EckertA. GilsonM.K. BourneP.E. PreissnerR. SuperTarget goes quantitative: Update on drug-target interactions.Nucleic Acids Res.201240D1D1113D111710.1093/nar/gkr91222067455
    [Google Scholar]
  235. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  236. YuC. MannanA.M. YvoneG.M. RossK.N. ZhangY.L. MartonM.A. TaylorB.R. CrenshawA. GouldJ.Z. TamayoP. WeirB.A. TsherniakA. WongB. GarrawayL.A. ShamjiA.F. PalmerM.A. FoleyM.A. WincklerW. SchreiberS.L. KungA.L. GolubT.R. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines.Nat. Biotechnol.201634441942310.1038/nbt.346026928769
    [Google Scholar]
  237. SmirnovP. KofiaV. MaruA. FreemanM. HoC. El-HachemN. AdamG.A. Ba-alawiW. SafikhaniZ. Haibe-KainsB. PharmacoD.B. PharmacoDB: An integrative database for mining in vitro anticancer drug screening studies.Nucleic Acids Res.201846D1D994D100210.1093/nar/gkx91130053271
    [Google Scholar]
  238. RudrapalM. KhairnarJ. Drug Repurposing (DR): An emerging approach in drug discovery.Drug Repurposing - Hypothesis, Molecular Aspects and Therapeutic Applications.IntechOpen202013, 10.
    [Google Scholar]
  239. CorselloS.M. BittkerJ.A. LiuZ. GouldJ. McCarrenP. HirschmanJ.E. JohnstonS.E. VrcicA. WongB. KhanM. AsieduJ. NarayanR. MaderC.C. SubramanianA. GolubT.R. The Drug Repurposing Hub: A next-generation drug library and information resource.Nat. Med.201723440540810.1038/nm.430628388612
    [Google Scholar]
  240. HernandezJ.J. PryszlakM. SmithL. YanchusC. KurjiN. ShahaniV.M. MolinskiS.V. Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics.Front. Oncol.2017727310.3389/fonc.2017.0027329184849
    [Google Scholar]
  241. GnsH.S. GrS. MurahariM. KrishnamurthyM. An update on Drug Repurposing: Re-written saga of the drug’s fate.Biomed. Pharmacother.201911070071610.1016/j.biopha.2018.11.12730553197
    [Google Scholar]
  242. PaulS.M. MytelkaD.S. DunwiddieC.T. PersingerC.C. MunosB.H. LindborgS.R. SchachtA.L. How to improve RD productivity: The pharmaceutical industry’s grand challenge.Nat. Rev. Drug Discov.20109320321410.1038/nrd307820168317
    [Google Scholar]
  243. GunčarG. KukarM. NotarM. BrvarM. ČernelčP. NotarM. NotarM. An application of machine learning to haematological diagnosis.Sci. Rep.20188141110.1038/s41598‑017‑18564‑829323142
    [Google Scholar]
  244. YoungJ. D. CaiC. LuX. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.BMC Bioinfo.20171811517
    [Google Scholar]
  245. OzerovI.V. LezhninaK.V. IzumchenkoE. ArtemovA.V. MedintsevS. VanhaelenQ. AliperA. VijgJ. OsipovA.N. LabatI. WestM.D. BuzdinA. CantorC.R. NikolskyY. BorisovN. IrincheevaI. KhokhlovichE. SidranskyD. CamargoM.L. ZhavoronkovA. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development.Nat. Commun.2016711342710.1038/ncomms1342727848968
    [Google Scholar]
  246. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  247. Lozano-DiezA. ZazoR. ToledanoD.T. Gonzalez-RodriguezJ. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.PLoS One2017128e018258010.1371/journal.pone.018258028796806
    [Google Scholar]
  248. KadurinA. NikolenkoS. KhrabrovK. AliperA. ZhavoronkovA. druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties In silico.Mol. Pharm.20171493098310410.1021/acs.molpharmaceut.7b0034628703000
    [Google Scholar]
  249. LeeJ.G. JunS. ChoY.W. LeeH. KimG.B. SeoJ.B. KimN. Deep learning in medical imaging: General overview.Korean J. Radiol.201718457058410.3348/kjr.2017.18.4.57028670152
    [Google Scholar]
  250. GrysB.T. LoD.S. SahinN. KrausO.Z. MorrisQ. BooneC. AndrewsB.J. Machine learning and computer vision approaches for phenotypic profiling.J. Cell Biol.20172161657110.1083/jcb.20161002627940887
    [Google Scholar]
  251. ZhengP. WangS. WangX. ZengX. Editorial: Artificial intelligence in bioinformatics and drug repurposing: Methods and applications.Front. Genet.20221387079510.3389/fgene.2022.87079535368698
    [Google Scholar]
  252. TingD.S.W. CarinL. DzauV. WongT.Y. Digital technology and COVID-19.Nat. Med.202026445946110.1038/s41591‑020‑0824‑532284618
    [Google Scholar]
  253. MohantyS. Harun AI RashidM. MridulM. MohantyC. SwayamsiddhaS. Application of artificial intelligence in COVID-19 drug repurposing.Diabetes Metab. Syndr.20201451027103110.1016/j.dsx.2020.06.06832634717
    [Google Scholar]
  254. TaleviA. BelleraC.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics.Expert Opin. Drug Discov.202015439740110.1080/17460441.2020.170472931847616
    [Google Scholar]
  255. Masoudi-SobhanzadehY. OmidiY. AmanlouM. Masoudi-NejadA. DrugR. DrugR+: A comprehensive relational database for drug repurposing, combination therapy, and replacement therapy.Comput. Biol. Med.201910925426210.1016/j.compbiomed.2019.05.00631096089
    [Google Scholar]
  256. BednarF. SimeoneD.M. Metformin and cancer stem cells: Old drug, new targets.Cancer Prev. Res.20125335135410.1158/1940‑6207.CAPR‑12‑002622389436
    [Google Scholar]
  257. El ArbiM. ThéolierJ. PigeonP. JellaliK. TriguiF. TopS. AifaS. FlissI. JaouenG. HammamiR. Antibacterial properties and mode of action of new triaryl butene citrate compounds.Eur. J. Med. Chem.20147640841310.1016/j.ejmech.2014.02.03724602786
    [Google Scholar]
  258. PaganF. HebronM. ValadezE.H. Torres-YaghiY. HuangX. MillsR.R. WilmarthB.M. HowardH. DunnC. CarlsonA. LawlerA. RogersS.L. FalconerR.A. AhnJ. LiZ. MoussaC. Nilotinib Effects in Parkinson’s disease and Dementia with Lewy bodies.J. Parkinsons Dis.20166350351710.3233/JPD‑16086727434297
    [Google Scholar]
  259. D’AmelioP. IsaiaG.C. The use of raloxifene in osteoporosis treatment.Expert Opin. Pharmacother.201314794995610.1517/14656566.2013.78200223521229
    [Google Scholar]
  260. CandeiasE.M. SebastiãoI.C. CardosoS.M. CorreiaS.C. CarvalhoC.I. PlácidoA.I. SantosM.S. OliveiraC.R. MoreiraP.I. DuarteA.I. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide.World J. Diabetes20156680782710.4239/wjd.v6.i6.80726131323
    [Google Scholar]
  261. LeeH.M. KimY. Drug repurposing is a new opportunity for developing drugs against neuropsychiatric disorders.Schizophr. Res. Treatment2016201611210.1155/2016/637813727073698
    [Google Scholar]
  262. VermaU. SharmaR. GuptaP. KapoorB. BanoG. SawhneyV. New uses for old drugs: Novel therapeutic options.Indian J. Pharmacol.200537527910.4103/0253‑7613.16850
    [Google Scholar]
  263. ClouserC.L. PattersonS.E. ManskyL.M. Exploiting drug repositioning for discovery of a novel HIV combination therapy.J. Virol.201084189301930910.1128/JVI.01006‑1020610712
    [Google Scholar]
  264. OgundejiA.O. PohlC.H. SebolaiO.M. Repurposing of aspirin and ibuprofen as candidate anti-cryptococcus drugs.Antimicrob. Agents Chemother.20166084799480810.1128/AAC.02810‑1527246782
    [Google Scholar]
  265. KarthikL. KumarG. KeswaniT. BhattacharyyaA. ChandarS.S. Bhaskara RaoK.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound.PLoS One201493e9097210.1371/journal.pone.009097224618707
    [Google Scholar]
  266. AllarakhiaM. Open-source approaches for the repurposing of existing or failed candidate drugs: Learning from and applying the lessons across diseases.Drug Des. Devel. Ther.2013775376610.2147/DDDT.S4628923966771
    [Google Scholar]
  267. KarakP. KumarK.A. MazumdarK. MookerjeeM. DastidarS.G. Antibacterial potential of an antispasmodic drug dicyclomine hydrochloride.Indian J. Med. Res.200311819219614723484
    [Google Scholar]
  268. ThangamaniS. YounisW. SeleemM.N. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections.Sci. Rep.2015511159610.1038/srep1159626111644
    [Google Scholar]
  269. Rangel-VegaA. BernsteinL.R. Mandujano-TinocoE.A. García-ContrerasS.J. García-ContrerasR. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections.Front. Microbiol.2015628210.3389/fmicb.2015.0028225914685
    [Google Scholar]
  270. ThangamaniS. MohammadH. AbushahbaM.F.N. SobreiraT.J.P. HedrickV.E. PaulL.N. SeleemM.N. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens.Sci. Rep.2016612257110.1038/srep2257126936660
    [Google Scholar]
  271. KhodaverdianV. PeshoM. TruittB. BollingerL. PatelP. NithiananthamS. YuG. DelaneyE. JankowskyE. ShohamM. Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus.Antimicrob. Agents Chemother.20135783645365210.1128/AAC.00269‑1323689713
    [Google Scholar]
  272. WalzJ.M. AvelarR.L. LongtineK.J. CarterK.L. MermelL.A. HeardS.O. Anti-infective external coating of central venous catheters: A randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization.Crit. Care Med.201038112095210210.1097/CCM.0b013e3181f265ba20711070
    [Google Scholar]
  273. RoschJ.W. BoydA.R. HinojosaE. PestinaT. HuY. PersonsD.A. OrihuelaC.J. TuomanenE.I. Statins protect against fulminant pneumococcal infection and cytolysin toxicity in a mouse model of sickle cell disease.J. Clin. Invest.2010120262763510.1172/JCI3984320093777
    [Google Scholar]
  274. PerlmutterJ.I. ForbesL.T. KrysanD.J. Ebsworth-MojicaK. ColquhounJ.M. WangJ.L. DunmanP.M. FlahertyD.P. Repurposing the antihistamine terfenadine for antimicrobial activity against Staphylococcus aureus.J. Med. Chem.201457208540856210.1021/jm501068225238555
    [Google Scholar]
  275. PinaultL. HanJ.S. KangC.M. FrancoJ. RonningD.R. Zafirlukast inhibits complexation of Lsr2 with DNA and growth of Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20135752134214010.1128/AAC.02407‑1223439641
    [Google Scholar]
  276. CamachoL. DasguptaA. JiralerspongS. Metformin in breast cancer - an evolving mystery.Breast Cancer Res.20151718810.1186/s13058‑015‑0598‑826111812
    [Google Scholar]
  277. ChanA.T. OginoS. FuchsC.S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2.N. Engl. J. Med.2007356212131214210.1056/NEJMoa06720817522398
    [Google Scholar]
  278. KimuraT. TakabatakeY. TakahashiA. IsakaY. Chloroquine in cancer therapy: A double-edged sword of autophagy.Cancer Res.20137313710.1158/0008‑5472.CAN‑12‑246423288916
    [Google Scholar]
  279. CauleyJ.A. NortonL. LippmanM.E. EckertS. KruegerK.A. PurdieD.W. FarreronsJ. KarasikA. MellstromD. NgK.W. StepanJ.J. PowlesT.J. MorrowM. CostaA. SilfenS.L. WallsE.L. SchmittH. MuchmoreD.B. JordanV.C. Ste-MarieL.G. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation.Breast Cancer Res. Treat.200165212513410.1023/A:100647831717311261828
    [Google Scholar]
  280. ThomasD.A. KantarjianH.M. Current role of thalidomide in cancer treatment.Curr. Opin. Oncol.200012656457310.1097/00001622‑200011000‑0000911085456
    [Google Scholar]
  281. PadhyB.M. GuptaY.K. Drug repositioning: Re-investigating existing drugs for new therapeutic indications.J. Postgrad. Med.201157215316010.4103/0022‑3859.8187021654146
    [Google Scholar]
  282. HubsherG. HaiderM. OkunM.S. Amantadine: The journey from fighting flu to treating Parkinson disease.Neurology201278141096109910.1212/WNL.0b013e31824e8f0d22474298
    [Google Scholar]
  283. LiX. RousseauJ.F. DingY. SongM. LuW. Understanding drug repurposing from the perspective of biomedical entities and their evolution: Bibliographic research using aspirin.JMIR Med. Inform.202086e1673910.2196/1673932543442
    [Google Scholar]
  284. ColomboD. AmmiratiE. Cyclosporine in transplantation - A history of converging timelines.J. Biol. Regul. Homeost. Agents201125449350422217983
    [Google Scholar]
  285. VarothaiS. BergfeldW.F. Androgenetic alopecia: An evidence-based treatment update.Am. J. Clin. Dermatol.201415321723010.1007/s40257‑014‑0077‑524848508
    [Google Scholar]
  286. RossD.M. HughesT.P. Cancer treatment with kinase inhibitors: What have we learnt from imatinib?Br. J. Cancer2004901121910.1038/sj.bjc.660150714710199
    [Google Scholar]
  287. ZhouJ. ZhuJ. YuS.J. MaH.L. ChenJ. DingX.F. ChenG. LiangY. ZhangQ. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway.Biomed. Pharmacother.202013211082111082110.1016/j.biopha.2020.11082133068934
    [Google Scholar]
  288. XuD. ZhouY. XieX. HeL. DingJ. PangS. ShenB. ZhouC. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A.Int. J. Oncol.20205751223123310.3892/ijo.2020.512032901837
    [Google Scholar]
  289. JangJ.H. BaertsL. WaumansY. De MeesterI. YamadaY. LimaniP. Gil-BazoI. WederW. JungraithmayrW. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice.Clin. Exp. Metastasis201532767768710.1007/s10585‑015‑9736‑z26233333
    [Google Scholar]
  290. DhirN. JainA. MahendruD. PrakashA. MedhiB. Drug repurposing and orphan disease therapeutics.Drug Repurposing - Hypothesis, Molecular Aspects and Therapeutic Applications.IntechOpen202010.5772/intechopen.91941
    [Google Scholar]
  291. MuthyalaR. Orphan/rare drug discovery through drug repositioning.Drug Discov. Today Ther. Strateg.201183-4717610.1016/j.ddstr.2011.10.003
    [Google Scholar]
  292. SundarS. JhaT.K. ThakurC.P. BhattacharyaS.K. RaiM. Oral miltefosine for the treatment of Indian visceral leishmaniasis.Trans. R. Soc. Trop. Med. Hyg.2006100Suppl. 1S26S3310.1016/j.trstmh.2006.02.01116730038
    [Google Scholar]
  293. MiguelD.C. Yokoyama-YasunakaJ.K.U. AndreoliW.K. MortaraR.A. UlianaS.R.B. Tamoxifen is effective against Leishmania and induces a rapid alkalinization of parasitophorous vacuoles harbouring Leishmania (Leishmania) amazonensis amastigotes.J. Antimicrob. Chemother.200760352653410.1093/jac/dkm21917584801
    [Google Scholar]
  294. OpreaT.I. BaumanJ.E. BologaC.G. BurandaT. ChigaevA. EdwardsB.S. JarvikJ.W. GreshamH.D. HaynesM.K. HjelleB. HromasR. HudsonL. MackenzieD.A. MullerC.Y. ReedJ.C. SimonsP.C. SmagleyY. StrouseJ. SurviladzeZ. ThompsonT. UrsuO. WallerA. Wandinger-NessA. WinterS.S. WuY. YoungS.M. LarsonR.S. WillmanC. SklarL.A. Drug repurposing from an academic perspective.Drug Discov. Today Ther. Strateg.201183-4616910.1016/j.ddstr.2011.10.00222368688
    [Google Scholar]
  295. RobinsonP. MartinP.Jr GarzaA. D’SouzaM. MastrangeloM.A. TweardyD. SubstanceP. Substance P receptor antagonism for treatment of cryptosporidiosis in immunosuppressed mice.J. Parasitol.20089451150115410.1645/GE‑1458.118576802
    [Google Scholar]
  296. OldfieldE. Targeting isoprenoid biosynthesis for drug discovery: Bench to bedside.Acc. Chem. Res.20104391216122610.1021/ar100026v20560544
    [Google Scholar]
  297. ChongC.R. ChenX. ShiL. LiuJ.O. SullivanD.J.Jr A clinical drug library screen identifies astemizole as an antimalarial agent.Nat. Chem. Biol.20062841541610.1038/nchembio80616816845
    [Google Scholar]
  298. ShahinasD. LiangM. DattiA. PillaiD.R. A repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90.J. Med. Chem.20105393552355710.1021/jm901796s20349996
    [Google Scholar]
  299. PetersonS.A. KlabundeT. LashuelH.A. PurkeyH. SacchettiniJ.C. KellyJ.W. Inhibiting transthyretin conformational changes that lead to amyloid fibril formation.Proc. Natl. Acad. Sci.19989522129561296010.1073/pnas.95.22.129569789022
    [Google Scholar]
  300. SonayeH.V. SheikhR.Y. DoifodeC.A. Drug repurposing: Iron in the fire for older drugs.Biomed. Pharmacother.202114111163811163810.1016/j.biopha.2021.11163834153846
    [Google Scholar]
  301. RanaD. MandalB.M. BhattacharyyaS.N. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends.Polymer19933471454145910.1016/0032‑3861(93)90861‑4
    [Google Scholar]
  302. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetry of polymer blends: Poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate).Polymer199637122439244310.1016/0032‑3861(96)85356‑0
    [Google Scholar]
  303. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylates.Macromolecules19962951579158310.1021/ma950954n
    [Google Scholar]
  304. Abd-algaleelS.A. Abdel-BarH.M. MetwallyA.A. HathoutR.M. Evolution of the computational pharmaceutics approaches in the modeling and prediction of drug payload in lipid and polymeric nanocarriers.Pharmaceuticals202114764510.3390/ph1407064534358071
    [Google Scholar]
  305. YazdaniS. MozaffarianM. PazukiG. HadidiN. Application of Flory-huggins model in experimental and theoretical study of stability of amphotericin B on nanocarrier based on functionalized carbon nanotube.J. Mol. Liq.202236011951910.1016/j.molliq.2022.119519
    [Google Scholar]
  306. NainA.K. Inversion of the kirkwood-buff theory of solutions: Application to tetrahydrofuran + aromatic hydrocarbon binary liquid mixtures.J. Solution Chem.200837111541155910.1007/s10953‑008‑9326‑7
    [Google Scholar]
  307. Cortes-HuertoR. KremerK. PotestioR. Communication: Kirkwood-Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations.J. Chem. Phys.20161451414110310.1063/1.496477927782513
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673266470231023110841
Loading
/content/journals/cmc/10.2174/0109298673266470231023110841
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test