Skip to content
2000
Volume 31, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Bis-chalcone compounds with symmetrical structures, either isolated from natural products or chemically synthesized, have multiple pharmacological activities. Asymmetric Bis-chalcone compounds have not been reported before, which might be attributed to the synthetic challenges involved, and it remains unknown whether these compounds possess any potential pharmacological activities.

Aims

The aim of this study is to investigate the synthesis route of asymmetric bis-chalcone compounds and identify potential candidates with efficient anti-tumor activity.

Methods

The two-step structural optimization of the bis-chalcone compounds was carried out sequentially, guided by the screening of the compounds for their growth inhibitory activity against gastric cancer cells by MTT assay. The QSAR model of compounds was established through random forest (RF) algorithm. The activities of the optimal compound J3 on growth inhibition, apoptosis, and apoptosis-inducing protein expression in gastric cancer cells were investigated sequentially by colony formation assay, flow cytometry, and western blotting. Further, the inhibitory effects of J3 on the FGFR1 signaling pathway were explored by Western Blotting, shRNA, and MTT assays. Finally, the anti-tumor activity and mechanism of J3 were studied through nude mice xenograft assay, western blotting.

Results

27 asymmetric bis-chalcone compounds, including two types (N and J) were sequentially designed and synthesized. Some N-class compounds have good inhibitory activity on the growth of gastric cancer cells. The vast majority of J-class compounds optimized on the basis of N3 exhibit excellent inhibitory activity on gastric cancer cell growth. We established a QSAR model (R2 = 0.851627) by applying random forest algorithms. The optimal compound J3, which had better activity, concentration-dependently inhibited the formation of gastric cancer cell colonies and led to cell apoptosis by inducing the expression of the pro-apoptotic protein cleaved PARP in a dose-dependent manner. J3 may exert anti-gastric cancer effects by inhibiting the activation of FGFR1/ERK pathway. Moreover, at a dose of 10 mg/kg/day, J3 inhibited tumor growth in nude mice by nearly 70% with no significant toxic effect on body weight and organs.

Conclusion

In summary, this study outlines a viable method for the synthesis of novel asymmetric bis-chalcone compounds. Furthermore, the compound J3 demonstrates substantial promise as a potential candidate for an anti-tumor drug.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673298420240530093525
2024-06-05
2025-01-15
Loading full text...

Full text loading...

References

  1. ChenW. ZhengR. BaadeP.D. ZhangS. ZengH. BrayF. JemalA. YuX.Q. HeJ. Cancer statistics in China, 2015.CA Cancer J. Clin.201666211513210.3322/caac.2133826808342
    [Google Scholar]
  2. MorganE. ArnoldM. CamargoM.C. GiniA. KunzmannA.T. MatsudaT. MeheusF. VerhoevenR.H.A. VignatJ. LaversanneM. FerlayJ. SoerjomataramI. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study.EClinical.Med.20224710140410.1016/j.eclinm.2022.10140435497064
    [Google Scholar]
  3. PatelT.H. CecchiniM. Targeted therapies in advanced gastric cancer.Curr. Treat. Options Oncol.20202197010.1007/s11864‑020‑00774‑432725377
    [Google Scholar]
  4. ParkS. NamC.M. KimS.G. MunJ.E. RhaS.Y. ChungH.C. Comparative efficacy and tolerability of third-line treatments for advanced gastric cancer: A systematic review with Bayesian network meta-analysis.Eur. J. Cancer2021144496010.1016/j.ejca.2020.10.03033338727
    [Google Scholar]
  5. ShigaT. HiraideM. Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines.Curr. Treat. Options Oncol.20202142710.1007/s11864‑020‑0719‑132266582
    [Google Scholar]
  6. OunR. MoussaY.E. WheateN.J. The side effects of platinum-based chemotherapy drugs: A review for chemists.Dalton Trans.201847196645665310.1039/C8DT00838H29632935
    [Google Scholar]
  7. ChenX.Y. WangJ.Q. YangY. LiJ. ChenZ.S. Natural product as substrates of ABC transporters: A review.Rec. Pat. Antican. Drug. Discov.202116222223810.2174/22123970MTE01Mzcvy33602076
    [Google Scholar]
  8. ZhaoY. ZhengZ. ZhangM. WangY. HuR. LinW. HuangC. XuC. WuJ. DengH. Design, synthesis, and evaluation of mono- carbonyl analogues of curcumin (MCACs) as potential antioxidants against periodontitis.J. Periodontal Res.202156465666610.1111/jre.1286233604902
    [Google Scholar]
  9. ChenJ. ZhengZ.W. LiM.Q. CaoC.K. ZhouX.L. WangB.Z. GanX. HuangZ.C. LiuY.G. HuangW.T. LiangF. ChenK.Y. ZhaoY.L. WangX. WuJ.Z. LinL. Design, synthesis and evaluation of curcumin analogues as novel potential Parkinson disease agents by suppressing ER stress via AKT.Bioorg. Chem.202313610654310.1016/j.bioorg.2023.10654337119784
    [Google Scholar]
  10. WuJ. LiJ. CaiY. PanY. YeF. ZhangY. ZhaoY. YangS. LiX. LiangG. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents.J. Med. Chem.201154238110812310.1021/jm200946h21988173
    [Google Scholar]
  11. WangJ. HuangL. ChengC. LiG. XieJ. ShenM. ChenQ. LiW. HeW. QiuP. WuJ. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents.Acta Pharm. Sin. B20199233535010.1016/j.apsb.2019.01.00330972281
    [Google Scholar]
  12. JiangL. LiuB. HouS. SuT. FanQ. AlyafeaiE. TangY. WuM. LiuX. LiJ. HuY. LiW. ZhengZ. LiuY. WuJ. Discovery and evaluation of chalcone derivatives as novel potential anti-Toxoplasma gondii agents.Eur. J. Med. Chem.202223411424410.1016/j.ejmech.2022.11424435278752
    [Google Scholar]
  13. LiuW. HeM. LiY. PengZ. WangG. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors.J. Enzyme Inhib. Med. Chem.202237193810.1080/14756366.2021.197677234894980
    [Google Scholar]
  14. DorababuA. VijayalaxmiS. SanjeevamurthyR. VidyaL. PrasannakumarR. RaghavendraM.M. Identification of quinoline-chalcones and heterocyclic chalcone-appended quinolines as broad-spectrum pharmacological agents.Bioorg. Chem.202010441910.1016/j.bioorg.2020
    [Google Scholar]
  15. WeiT. ZhengZ. WeiX. LiuY. LiW. FangB. YunD. DongZ. YiB. LiW. WuX. ChenD. ChenL. WuJ. Rational design, synthesis, and pharmacological characterisation of dicarbonyl curcuminoid analogues with improved stability against lung cancer via ROS and ER stress mediated cell apoptosis and pyroptosis.J. Enzyme Inhib. Med. Chem.20223712357236910.1080/14756366.2022.211601536039017
    [Google Scholar]
  16. ReddyM.V.B. ShenY.C. YangJ.S. HwangT.L. BastowK.F. QianK. LeeK.H. WuT.S. New bichalcone analogs as NF-κB inhibitors and as cytotoxic agents inducing Fas/CD95-dependent apoptosis.Bioorg. Med. Chem.20111961895190610.1016/j.bmc.2011.02.00421377368
    [Google Scholar]
  17. WinterE. Devantier NeuenfeldtP. Chiaradia-DelatorreL.D. GauthierC. YunesR.A. NunesR.J. Creczynski- PasaT.B. Di PietroA. Symmetric bis-chalcones as a new type of breast cancer resistance protein inhibitors with a mechanism different from that of chromones.J. Med. Chem.20145772930294110.1021/jm401879z24611893
    [Google Scholar]
  18. PoloE. Ibarra-ArellanoN. Prent-PeñalozaL. Morales-BayueloA. HenaoJ. GaldámezA. GutiérrezM. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors.Bioorg. Chem.20199010303410.1016/j.bioorg.2019.10303431280015
    [Google Scholar]
  19. SansaloneL. VelizE. MyrthilN. StathiasV. WaltersW. TorrensI. SchürerS. VanniS. LeblancR. GrahamR. Novel Curcumin Inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death.Cancers201911335710.3390/cancers1103035730871215
    [Google Scholar]
  20. LiZ. TianM. MaJ. XiaS. LvX. XiaP. XuX. JiangY. WangJ. LiZ. Synthesis and biological evaluation of bis-chalcone conjugates containing lysine linker as potential anticancer agents.J. Mol. Struct.2023128813578510.1016/j.molstruc.2023.135785
    [Google Scholar]
  21. YangJ. MuW.W. LiuG.Y. Synthesis and evaluation of the anticancer activity of bischalcone analogs in human lung carcinoma (A549) cell line.Eur. J. Pharmacol.202088817339610.1016/j.ejphar.2020.17339632798508
    [Google Scholar]
  22. BurmaogluS. GobekA. AydinB.O. YurtogluE. AydinB.N. OzkatG.Y. HepokurC. OzekN.S. AysinF. AltundasR. AlgulO. Design, synthesis and biological evaluation of novel bischalcone derivatives as potential anticancer agents.Bioorg. Chem.202111110488210.1016/j.bioorg.2021.10488233839582
    [Google Scholar]
  23. LuppiG. CozziP.G. MonariM. KapteinB. BroxtermanQ.B. TomasiniC. Dipeptide-catalyzed asymmetric aldol condensation of acetone with (N-alkylated) isatins.J. Org. Chem.200570187418742110.1021/jo050257l16122267
    [Google Scholar]
  24. XuX.Y. TangZ. WangY.Z. LuoS.W. CunL.F. GongL.Z. Asymmetric organocatalytic direct aldol reactions of ketones with alpha-keto acids and their application to the synthesis of 2-hydroxy-gamma-butyrolactones.J. Org. Chem.200772269905991310.1021/jo701868t18004868
    [Google Scholar]
  25. WuJ. DuX. LiW. ZhouY. BaiE. KangY. ChenQ. FuW. YunD. XuQ. QiuP. JinR. CaiY. LiangG. A novel non-ATP competitive FGFR1 inhibitor with therapeutic potential on gastric cancer through inhibition of cell proliferation, survival and migration.Apoptosis201722685286410.1007/s10495‑017‑1361‑728315172
    [Google Scholar]
  26. WilckenR. ZimmermannM.O. LangeA. JoergerA.C. BoecklerF.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology.J. Med. Chem.20135641363138810.1021/jm301206823145854
    [Google Scholar]
  27. MargiottaE. van der LubbeS.C.C. de Azevedo SantosL. ParagiG. MoroS. BickelhauptF.M. Fonseca GuerraC. Halogen bonds in ligand–protein systems: Molecular orbital theory for drug design.J. Chem. Inf. Model.20206031317132810.1021/acs.jcim.9b0094632003997
    [Google Scholar]
  28. LudovicoG.S. BarrosI.H.S. SallumL.O. LimaR.S. ValverdeC. CamargoA.J. BaseiaB. NapolitanoH.B. A new isostructural halogenated chalcone with optical properties.J. Mol. Model.20212725210.1007/s00894‑021‑04673‑933502611
    [Google Scholar]
  29. GillisE.P. EastmanK.J. HillM.D. DonnellyD.J. MeanwellN.A. Applications of fluorine in medicinal chemistry.J. Med. Chem.201558218315835910.1021/acs.jmedchem.5b0025826200936
    [Google Scholar]
  30. FangW.Y. RavindarL. RakeshK.P. ManukumarH.M. ShantharamC.S. AlharbiN.S. QinH.L. Synthetic approaches and pharmaceutical applications of chloro- containing molecules for drug discovery: A critical review.Eur. J. Med. Chem.201917311715310.1016/j.ejmech.2019.03.06330995567
    [Google Scholar]
  31. LudewigH. MolyneuxS. FerrinhoS. GuoK. LynchR. GkotsiD.S. GossR.J.M. Halogenases: Structures and functions.Curr. Opin. Struct. Biol.202065516010.1016/j.sbi.2020.05.01232619660
    [Google Scholar]
  32. RehumanN.A. OhJ.M. NathL.R. KhamesA. AbdelgawadM.A. GambacortaN. NicolottiO. JatR.K. KimH. MathewB. Halogenated coumarin–chalcones as multifunctional monoamine oxidase-B and butyrylcholinesterase inhibitors.ACS Omega2021642281822819310.1021/acsomega.1c0425234723016
    [Google Scholar]
  33. ZhuM. WangJ. XieJ. ChenL. WeiX. JiangX. BaoM. QiuY. ChenQ. LiW. JiangC. ZhouX. JiangL. QiuP. WuJ. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-Unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis.Eur. J. Med. Chem.20181571395140510.1016/j.ejmech.2018.08.07230196062
    [Google Scholar]
  34. SvetnikV. LiawA. TongC. CulbersonJ.C. SheridanR.P. FeustonB.P. Random forest: A classification and regression tool for compound classification and QSAR modeling.J. Chem. Inf. Comput. Sci.20034361947195810.1021/ci034160g14632445
    [Google Scholar]
  35. MohamedS.M. Abou-GhadirO.M.F. El-MokhtarM.A. AboraiaA.S. Abdel-AalA.B.M. Fatty acid conjugated chalcones as tubulin polymerization inhibitors: Design, synthesis, QSAR, and apoptotic and antiproliferative activity.J. Nat. Prod.20238651150115810.1021/acs.jnatprod.2c0079337098901
    [Google Scholar]
  36. PistrittoG. TrisciuoglioD. CeciC. GarufiA. D’OraziG. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies.Aging20168460361910.18632/aging.10093427019364
    [Google Scholar]
  37. QianS. WeiZ. YangW. HuangJ. YangY. WangJ. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy.Front. Oncol.20221298536310.3389/fonc.2022.98536336313628
    [Google Scholar]
  38. TurnerN. GroseR. Fibroblast growth factor signalling: From development to cancer.Nat. Rev. Cancer201010211612910.1038/nrc278020094046
    [Google Scholar]
  39. LiangG. LiuZ. WuJ. CaiY. LiX. Anticancer molecules targeting fibroblast growth factor receptors.Trends Pharmacol. Sci.2012331053154110.1016/j.tips.2012.07.00122884522
    [Google Scholar]
  40. YingS. DuX. FuW. YunD. ChenL. CaiY. XuQ. WuJ. LiW. LiangG. Synthesis, biological evaluation, QSAR and molecular dynamics simulation studies of potential fibroblast growth factor receptor 1 inhibitors for the treatment of gastric cancer.Eur. J. Med. Chem.201712788589910.1016/j.ejmech.2016.10.06627829519
    [Google Scholar]
  41. YinF. ZhaoR. GorjaD.R. FuX. LuN. HuangH. XuB. ChenH. ShimJ.H. LiuK. LiZ. LasterK.V. DongZ. LeeM.H. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm. Sin. B202212114122413710.1016/j.apsb.2022.07.00536386480
    [Google Scholar]
  42. SharmaU.K. MohanakrishnanD. SharmaN. EqubalD. SahalD. SinhaA.K. Facile synthesis of vanillin-based novel bischalcones identifies one that induces apoptosis and displays synergy with Artemisinin in killing chloroquine resistant Plasmodium falciparum.Eur. J. Med. Chem.201815562363810.1016/j.ejmech.2018.06.02529929118
    [Google Scholar]
  43. CaiC.Y. RaoL. RaoY. GuoJ.X. XiaoZ.Z. CaoJ.Y. HuangZ.S. WangB. Analogues of xanthones-Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates.Eur. J. Med. Chem.2017130515910.1016/j.ejmech.2017.02.00728242551
    [Google Scholar]
  44. JiangB. HanF. LüM.H. WangZ.P. LiuW. ZhangY.X. XuJ. LiR.J. Bis-chalcone polyphenols with potential preventive and therapeutic effects on PD: Design, synthesis and in vitro disaggregation activity against α-synuclein oligomers and fibrils.Eur. J. Med. Chem.202223911452910.1016/j.ejmech.2022.11452935728509
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673298420240530093525
Loading
/content/journals/cmc/10.2174/0109298673298420240530093525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test