Skip to content
2000
Volume 31, Issue 39
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Lung adenocarcinoma (LUAD) represents a significant global health issue. Smoking contributes to the development of periodontitis and LUAD. The connections between the two are still ambiguous.

Methods

Based on RNA expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, differentially expressed genes (DEGs) in Periodontitis and LUAD were collected. Protein-protein interaction (PPI) networks were produced by mining genes intersecting with crossover DEGs. Genes in the subnetwork and the top 15 genes of the topology score were defined as the crosstalk gene. Feature selection and diagnostic model construction were conducted based on Recursive Feature Elimination (RFE) and support vector machines (SVM). Additionally, we analyzed the immune cells and signaling pathways influenced by the crosstalk gene.

Results

A total of 29 crossover DEGs between Periodontitis and LUAD were filtered, with 20 genes interacting with them in the PPI network. Five subnetworks with similar interaction patterns in the PPI network were detected. Based on the network topology analysis, genes ranking in the top 15 were used to take the intersection with those genes in the 5 subnetworks. Twelve intersecting genes were identified. Based on RFE and SVM algorithms, FKBP11 and MMP13 were considered as the Crosstalk genes for both Periodontitis and LUAD. The diagnostic model composed of FKBP11 and MMP13 showed excellent diagnostic potential. In addition, we found that FKBP11 and MMP13 influenced Macrophages, M1, T cells, CD8 activity, immune-related pathways, and cell cycle pathways.

Conclusion

We identified the crosstalk genes (FKBP11 and MMP13) between periodontitis and LUAD. The two genes affected the comorbidity status between the two diseases through immune cell activity.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673273414231101082153
2024-01-03
2025-01-15
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. ChenY. WuH. JiaoA. TongJ. ZhuJ. ZhangM. LiZ. LiP. Chinese herbal prescription QYSL prevents progression of lung cancer by targeting tumor microenvironment.Oncologie202224229530710.32604/oncologie.2022.022116
    [Google Scholar]
  3. WangH. FangJ. WangY. LiS. WangZ. HeW. WangN. LuoS. ZouH. ZhangF. Gene editing in non-small cell lung cancer: Current application and future perspective.Oncologie2022241658310.32604/oncologie.2022.021863
    [Google Scholar]
  4. LiuJ. GuM. XueY. WangQ. RenY. HuangW. Clinical significance of PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in patients with cavitary lung adenocarcinoma.Oncologie202123343945210.32604/oncologie.2021.017220
    [Google Scholar]
  5. HirschF.R. ScagliottiG.V. MulshineJ.L. KwonR. CurranW.J.Jr WuY.L. Paz-AresL. Lung cancer: Current therapies and new targeted treatments.Lancet20173891006629931110.1016/S0140‑6736(16)30958‑827574741
    [Google Scholar]
  6. KwonT. LamsterI.B. LevinL. Current concepts in the management of periodontitis.Int. Dent. J.202171646247610.1111/idj.1263034839889
    [Google Scholar]
  7. RayR.R. Periodontitis: An oral disease with severe consequences.Appl. Biochem. Biotechnol.20231951173210.1007/s12010‑022‑04127‑936098930
    [Google Scholar]
  8. PaiS.I. MatheusH.R. GuastaldiF.P.S. Effects of periodontitis on cancer outcomes in the era of immunotherapy.Lancet Healthy Longev.202344e166e17510.1016/S2666‑7568(23)00021‑137003275
    [Google Scholar]
  9. FigueiraE.A. de RezendeM.L.R. TorresS.A. GarletG.P. LaraV.S. SantosC.F. Avila-CamposM.J. da SilvaJ.S. CampanelliA.P. Inhibitory signals mediated by programmed death-1 are involved with T-cell function in chronic periodontitis.J. Periodontol.200980111833184410.1902/jop.2009.09005719905953
    [Google Scholar]
  10. DaiZ. ZhangJ. WuQ. FangH. ShiC. LiZ. LinC. TangD. WangD. Intestinal microbiota: A new force in cancer immunotherapy.Cell Commun. Signal.20201819010.1186/s12964‑020‑00599‑632522267
    [Google Scholar]
  11. SchullerH.M. The impact of smoking and the influence of other factors on lung cancer.Expert Rev. Respir. Med.201913876176910.1080/17476348.2019.164501031311354
    [Google Scholar]
  12. SiasosG. TsigkouV. KokkouE. OikonomouE. VavuranakisM. VlachopoulosC. VerveniotisA. LimperiM. GenimataV. PapavassiliouA. StefanadisC. TousoulisD. Smoking and atherosclerosis: Mechanisms of disease and new therapeutic approaches.Curr. Med. Chem.201421343936394810.2174/09298673213414101516153925174928
    [Google Scholar]
  13. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.36
    [Google Scholar]
  14. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  15. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  16. YuG. WangL.G. YanG.R. HeQ.Y. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis.Bioinformatics201531460860910.1093/bioinformatics/btu68425677125
    [Google Scholar]
  17. FranzM. RodriguezH. LopesC. ZuberiK. MontojoJ. BaderG.D. MorrisQ. GeneMANIA update 2018.Nucleic Acids Res.201846W1W60W6410.1093/nar/gky31129912392
    [Google Scholar]
  18. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  19. KuhnM. The caret package.R Foundation for Statistical ComputingVienna, Austria2012
    [Google Scholar]
  20. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_1229344893
    [Google Scholar]
  21. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature0846019847166
    [Google Scholar]
  22. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  23. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  24. WangX. JiaY. WenL. MuW. WuX. LiuT. LiuX. FangJ. LuanY. ChenP. GaoJ. NguyenK.A. CuiJ. ZengG. LanP. ChenQ. ChengB. WangZ. Porphyromonas gingivalis promotes colorectal carcinoma by activating the hematopoietic NLRP3 inflammasome.Cancer Res.202181102745275910.1158/0008‑5472.CAN‑20‑382734003774
    [Google Scholar]
  25. SungC.E. LinF.G. HuangR.Y. FangW.H. ChengW.C. TsaiY.W.C. ChenW.L. Periodontitis, Helicobacter pylori infection, and gastrointestinal tract cancer mortality.J. Clin. Periodontol.202249321022010.1111/jcpe.1359034961943
    [Google Scholar]
  26. KavarthapuA. GurumoorthyK. Linking chronic periodontitis and oral cancer: A review.Oral Oncol.202112110537510.1016/j.oraloncology.2021.10537534140233
    [Google Scholar]
  27. GaoX. JiangC. YaoS. MaL. WangX. CaoZ. Identification of hub genes related to immune cell infiltration in periodontitis using integrated bioinformatic analysis.J. Periodontal Res.202257239240110.1111/jre.1297034993975
    [Google Scholar]
  28. WangC.C. ShenW.J. AnuragaG. HsiehY.H. Khoa TaH. XuanD. ShenC.F. WangC.Y. WangW.J. Penetrating exploration of prognostic correlations of the FKBP gene family with lung adenocarcinoma.J. Pers. Med.20221314910.3390/jpm1301004936675710
    [Google Scholar]
  29. ZhangX. DengQ. WanX. ZhaoJ. ZhengX. WangH. WangH.Q. YangW. Pan-cancer analysis reveals the associations between MMP13 high expression and carcinogenesis and its value as a serum diagnostic marker.Aging20231562115213510.18632/aging.20459937000142
    [Google Scholar]
  30. ShihD.J.H. NayyarN. BihunI. Dagogo-JackI. GillC.M. AquilantiE. BertalanM. KaplanA. D’AndreaM.R. ChukwuekeU. IppenF.M. Alvarez-BreckenridgeC. CamardaN.D. LastrapesM. McCabeD. KuterB. KaufmanB. StricklandM.R. Martinez-GutierrezJ.C. NagabhushanD. De SauvageM. WhiteM.D. CastroB.A. HoangK. KanebA. BatchelorE.D. PaekS.H. ParkS.H. Martinez-LageM. BerghoffA.S. MerrillP. GerstnerE.R. BatchelorT.T. FroschM.P. FrazierR.P. BorgerD.R. IafrateA.J. JohnsonB.E. SantagataS. PreusserM. CahillD.P. CarterS.L. BrastianosP.K. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma.Nat. Genet.202052437137710.1038/s41588‑020‑0592‑732203465
    [Google Scholar]
  31. ChenX. LeiH. ChengY. FangS. SunW. ZhangX. JinZ. CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma.Oral Dis.2022odi.1441910.1111/odi.1441936321868
    [Google Scholar]
  32. LamR.S. O’Brien-SimpsonN.M. LenzoJ.C. HoldenJ.A. BrammarG.C. WalshK.A. McNaughtanJ.E. RowlerD.K. Van RooijenN. ReynoldsE.C. Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice.J. Immunol.201419352349236210.4049/jimmunol.140085325070844
    [Google Scholar]
  33. WangT. HeX. LiuX. LiuY. ZhangW. HuangQ. LiuW. XiongL. TanR. WangH. ZengH. Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-kb dependent pathway.Front. Physiol.20178101010.3389/fphys.2017.0101029255427
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673273414231101082153
Loading
/content/journals/cmc/10.2174/0109298673273414231101082153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test