Skip to content
2000
Volume 31, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Metastasis is a major cause of death in UM, highlighting the need to use highly specific and sensitive prognostic markers to identify patients with a risk of developing metastasis.

Aims

The aim of this study was to improve the current precision treatment for patients with metastatic uveal melanoma (UM).

Objective

The objective of this work was to investigate the heterogeneity between primary human UM and metastatic UM at the single-cell level and to discover potential molecules regulating UM metastasis.

Methods

Seurat R toolkit was employed to analyze single-cell sequencing data of UM and to identify differentially expressed genes (DEGs) between primary and metastatic UM. Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were performed on the DEGs from the bulk RNA-seq cohort to develop a prognostic model. Based on the model, patients were divided into high and low groups. The correlations among the risk score, immune indicators, immune checkpoint blockade (ICB) therapy, and anti-tumor drug therapy were analyzed.

Results

Cell types in primary UM and metastatic UM tumors include B/plasma cells, endothelial cells, melanocytes, monocytes/macrophages, photoreceptor cells, and T cells. Among 157 DEGs between the two tumor types, S100A4, PDE4B, CHCHD10, NSG1, and C4orf48 were selected to construct a prognostic model. The model could accurately and independently predict response to ICB treatment and sensitivity to antineoplastic drugs for UM patients as well as their immune infiltration levels, risk of death, and metastasis possibility.

Conclusions

This study analyzed the tumor ecosystem of primary and metastatic UM, providing a metastasis-related model that could be used to evaluate the prognosis, risk of metastasis, immunotherapy, and efficacy of antineoplastic drug treatment of UM.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673286355231222054226
2024-01-03
2024-11-26
Loading full text...

Full text loading...

References

  1. SmitK.N. JagerM.J. de KleinA. KiliҫE. Uveal melanoma: Towards a molecular understanding.Prog. Retin. Eye Res.20207510080010.1016/j.preteyeres.2019.10080031563544
    [Google Scholar]
  2. SajanA. FordyceS. SiderisA. LiouC. ToorZ. FiltesJ. KrishnasamyV. AhmadN. ReisS. BrejtS. BaigA. KhanS. CaplanM. SperlingD. WeintraubJ. Minimally invasive treatment options for hepatic uveal melanoma metastases.Diagnostics20231311183610.3390/diagnostics1311183637296688
    [Google Scholar]
  3. BanouL. TsaniZ. ArvanitogiannisK. PavlakiM. DastiridouA. AndroudiS. Radiotherapy in uveal melanoma: A review of ocular complications.Curr. Oncol.20233076374639610.3390/curroncol3007047037504330
    [Google Scholar]
  4. CostanzoR. ParmarV. MarroneS. GerardoI.D. FedericoN.G. EmmanueleU.G. ScaliaG. Differential diagnosis between primary intracranial melanoma and cerebral cavernoma in Crohn’s disease: A case report and literature review.Oncologie202224493794210.32604/oncologie.2022.027155
    [Google Scholar]
  5. ChattopadhyayC. KimD.W. GombosD.S. ObaJ. QinY. WilliamsM.D. EsmaeliB. GrimmE.A. WargoJ.A. WoodmanS.E. PatelS.P. Uveal melanoma: From diagnosis to treatment and the science in between.Cancer2016122152299231210.1002/cncr.2972726991400
    [Google Scholar]
  6. PašalićD. Nikuševa-MartićT. SekovanićA. KaštelanS. Genetic and epigenetic features of uveal melanoma - an overview and clinical implications.Int. J. Mol. Sci.202324161280710.3390/ijms24161280737628989
    [Google Scholar]
  7. RantalaE.S. HernbergM.M. Piperno-NeumannS. GrossniklausH.E. KiveläT.T. Metastatic uveal melanoma: The final frontier.Prog. Retin. Eye Res.20229010104110.1016/j.preteyeres.2022.10104134999237
    [Google Scholar]
  8. JagerM.J. ShieldsC.L. CebullaC.M. Abdel-RahmanM.H. GrossniklausH.E. SternM.H. CarvajalR.D. BelfortR.N. JiaR. ShieldsJ.A. DamatoB.E. Author correction: Uveal melanoma.Nat. Rev. Dis. Primers202281410.1038/s41572‑022‑00339‑935039549
    [Google Scholar]
  9. KaštelanS. Mrazovac ZimakD. IvankovićM. MarkovićI. Gverović AntunicaA. Liver metastasis in uveal melanoma - treatment options and clinical outcome.Front. Biosci.-Landmark202227207210.31083/j.fbl270207235227015
    [Google Scholar]
  10. WangM.M. ChenC. LynnM.N. FigueiredoC.R. TanW.J. LimT.S. CouplandS.E. ChanA.S.Y. Applying single-cell technology in uveal melanomas: Current trends and perspectives for improving uveal melanoma metastasis surveillance and tumor profiling.Front. Mol. Biosci.2021761158410.3389/fmolb.2020.61158433585560
    [Google Scholar]
  11. ChenY.N. WangY.N. ChenM.X. ZhangK. ChenR.T. FangR. WangH. ZhangH.H. HuangY.N. FengY. LuoJ.T. LanY.J. LiuY.M. LiY. WeiW.B. Machine learning models for outcome prediction of Chinese uveal melanoma patients: A 15-year follow-up study.Cancer Commun.202242327327610.1002/cac2.1225335001563
    [Google Scholar]
  12. WangY. XieM. LinF. ShengX. ZhaoX. ZhuX. WangY. LuB. ChenJ. ZhangT. WanX. LiuW. SunX. Nomogram of uveal melanoma as prediction model of metastasis risk.Heliyon202398e1895610.1016/j.heliyon.2023.e1895637609406
    [Google Scholar]
  13. HeL. MouP. YangC. HuangC. ShenY. ZhangJ. WeiR. Single-cell sequencing in primary intraocular tumors: Understanding heterogeneity, the microenvironment, and drug resistance.Front. Immunol.202314119459010.3389/fimmu.2023.119459037359513
    [Google Scholar]
  14. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.409629608179
    [Google Scholar]
  15. ZhangX. LanY. XuJ. QuanF. ZhaoE. DengC. LuoT. XuL. LiaoG. YanM. PingY. LiF. ShiA. BaiJ. ZhaoT. LiX. XiaoY. CellMarker: A manually curated resource of cell markers in human and mouse.Nucleic Acids Res.201947D1D721D72810.1093/nar/gky90030289549
    [Google Scholar]
  16. DuranteM.A. RodriguezD.A. KurtenbachS. KuznetsovJ.N. SanchezM.I. DecaturC.L. SnyderH. FeunL.G. LivingstoneA.S. HarbourJ.W. Single-cell analysis reveals new evolutionary complexity in uveal melanoma.Nat. Commun.202011149610.1038/s41467‑019‑14256‑131980621
    [Google Scholar]
  17. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  18. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑527765066
    [Google Scholar]
  19. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  20. HuF.F. LiuC.J. LiuL.L. ZhangQ. GuoA.Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response.Brief. Bioinform.2021223bbaa17610.1093/bib/bbaa17632814346
    [Google Scholar]
  21. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  22. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  23. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci.200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  24. BrănişteanuD.E. Porumb-AndreseE. PorumbV. StăricăA. MoraruA.D. NicolescuA.C. ZembaM. BrănişteanuC.I. BrănişteanuG. BrănişteanuD.C. New treatment horizons in uveal and cutaneous melanoma.Life2023138166610.3390/life1308166637629523
    [Google Scholar]
  25. BustamanteP. PiquetL. LandrevilleS. BurnierJ.V. Uveal melanoma pathobiology: Metastasis to the liver.Semin. Cancer Biol.202171658510.1016/j.semcancer.2020.05.00332450140
    [Google Scholar]
  26. KoseogluN.D. CorrêaZ.M. LiuT.Y.A. Artificial intelligence for ocular oncology.Curr. Opin. Ophthalmol.202334543744010.1097/ICU.000000000000098237326226
    [Google Scholar]
  27. KrishnaY. McCarthyC. KaliraiH. CouplandS.E. Inflammatory cell infiltrates in advanced metastatic uveal melanoma.Hum. Pathol.20176615916610.1016/j.humpath.2017.06.00528655639
    [Google Scholar]
  28. DoakG.R. SchwertfegerK.L. WoodD.K. Distant relations: Macrophage functions in the metastatic niche.Trends Cancer20184644545910.1016/j.trecan.2018.03.01129860988
    [Google Scholar]
  29. QianB.Z. Inflammation fires up cancer metastasis.Semin. Cancer Biol.20174717017610.1016/j.semcancer.2017.08.00628838845
    [Google Scholar]
  30. GuY. LiuY. FuL. ZhaiL. ZhuJ. HanY. JiangY. ZhangY. ZhangP. JiangZ. ZhangX. CaoX. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG.Nat. Med.201925231232210.1038/s41591‑018‑0309‑y30643287
    [Google Scholar]
  31. PreussS.F. GrieshoberD. AugustinH.G. Systemic reprogramming of endothelial cell signaling in metastasis and cachexia.Physiology2023384010.1152/physiol.00001.2023
    [Google Scholar]
  32. DahlmannM. KobeltD. WaltherW. MudduluruG. SteinU. S100A4 in cancer metastasis: Wnt signaling-driven interventions for metastasis restriction.Cancers2016865910.3390/cancers806005927331819
    [Google Scholar]
  33. SuY. DingJ. YangF. HeC. XuY. ZhuX. ZhouH. LiH. The regulatory role of PDE4B in the progression of inflammatory function study.Front. Pharmacol.20221398213010.3389/fphar.2022.98213036278172
    [Google Scholar]
  34. ZhengQ. ZhangL. TuM. YinX. CaiL. ZhangS. YuL. PanX. HuangY. Development of a panel of autoantibody against NSG1 with CEA, CYFRA21-1, and SCC-Ag for the diagnosis of esophageal squamous cell carcinoma.Clin. Chim. Acta202152012613210.1016/j.cca.2021.06.01334119530
    [Google Scholar]
  35. SauraC. OliveiraM. FengY.H. DaiM.S. ChenS.W. HurvitzS.A. KimS.B. MoyB. DelalogeS. GradisharW. MasudaN. PalacovaM. TrudeauM.E. MattsonJ. YapY.S. HouM.F. De LaurentiisM. YehY.M. ChangH.T. YauT. WildiersH. HaleyB. FagnaniD. LuY.S. CrownJ. LinJ. TakahashiM. TakanoT. YamaguchiM. FujiiT. YaoB. BebchukJ. KeyvanjahK. BryceR. BrufskyA. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: Phase III NALA trial.J. Clin. Oncol.202038273138314910.1200/JCO.20.0014732678716
    [Google Scholar]
  36. RodriguesL.L.V. MouraY.B.F. VianaJ.V.S. OliveiraL.R.M. PraxedesÉ.A. Vieira NetoJ.B. SalesS.L.A. SilvaH.V.R. LucianoM.C.S. PessoaC. PereiraA.F. Full confluency, serum starvation, and roscovitine for inducing arrest in the G0/G1 phase of the cell cycle in puma skin-derived fibroblast lines.Anim. Reprod.2023201e2023001710.1590/1984‑3143‑ar2023‑001737101424
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673286355231222054226
Loading
/content/journals/cmc/10.2174/0109298673286355231222054226
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test