Skip to content
2000
Volume 31, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

Mechanism of fibroblasts in skin melanoma (SKME) revealed by single-cell RNA sequencing data.

Background

SKME is responsible for more than 80% of skin-related cancer deaths. Cancer-associated fibroblasts (CAFs) generate inflammatory factors, growth factors and extracellular matrix proteins to facilitate cancer cell growth, metastasis, drug resistance and immune exclusion. However, molecular mechanisms of CAFs in SKME are still lacking.

Objective

Our goal was to reveal the role of CAFs in SKME.

Methods

We downloaded the single-cell RNA sequencing (scRNA-seq) dataset from the Gene Expression Omnibus (GSE215120) database. Then, the Seurat package was applied to analyze the single-cell atlas of SKME data, and cell subsets were annotated with the CellMarker database. The molecular mechanisms of CAFs in SKME were disclosed differential gene expression and enrichment analysis, Cellchat and SCENIC methods.

Results

Using scRNA-seq data, three SKME cases were used and downscaled and clustered to identify 11 cell subgroups and 5 CAF subsets. The enrichment of highly expressed genes among the 5 CAF subsets suggests that cell migration-inducing hyaluronan-binding protein (CEMIP) + fibroblasts and naked cuticle homolog 1 (NKD1)+ fibroblasts were closely associated with epithelial to mesenchymal transition. Cellchat analysis revealed that CAF subpopulations promoted melanocyte proliferation through Jagged1 (JAG1)-Notch homolog 1 (NOTCH1), JAG1-NOTCH3 and migration through pleiotrophin (PTN)-syndecan-3 (SDC3) receptor-ligand pairs. The SCENIC analysis identified that most of the transcription factors in each CAF subpopulation played a certain role in the metastasis of melanoma and were highly expressed in metastatic SKME samples. Specifically, we observed that CEMIP+ fibroblasts and NKD1+ fibroblasts had potential roles in participating in immune therapy resistance. Collectively, we uncovered a single-cell atlas of SKME and revealed the molecular mechanisms of CAFs in SKME development, providing a base for immune therapy and prognosis assessment.

Conclusion

Our study reveals that 5 CAFs in SKME have a promoting effect on melanocyte proliferation and metastasis. More importantly, CEMIP+ fibroblasts and NKD1+ fibroblasts displayed close connections with immune therapy resistance. These findings help provide a good basis for future immune therapy and prognosis assessment targeting CAFs in SKME.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673282799231211113347
2024-01-03
2024-11-22
Loading full text...

Full text loading...

References

  1. GuyG.P.Jr ThomasC.C. ThompsonT. WatsonM. MassettiG.M. RichardsonL.C. Centers for Disease Control and Prevention (CDC) Vital signs: melanoma incidence and mortality trends and projections - United States, 1982-2030.MMWR Morb. Mortal. Wkly. Rep.2015642159159626042651
    [Google Scholar]
  2. BolickN.L. GellerA.C. Epidemiology of melanoma.Hematol. Oncol. Clin. North Am.2021351577210.1016/j.hoc.2020.08.01133759773
    [Google Scholar]
  3. BozkurtI. YasarB. Baran UsluM. BozdoganN. A primary sacral melanoma of unknown origin: A case report.Oncologie202224116317110.32604/oncologie.2022.019263
    [Google Scholar]
  4. CostanzoR. ParmarV. MarroneS. Gerardo IacopinoD. Federico NicolettiG. Emmanuele UmanaG. ScaliaG. Differential diagnosis between primary intracranial melanoma and cerebral cavernoma in crohn’s disease: A case report and literature review.Oncologie202224493794210.32604/oncologie.2022.027155
    [Google Scholar]
  5. RashidS. ShaughnessyM. TsaoH. Melanoma classification and management in the era of molecular medicine.Dermatol. Clin.2023411496310.1016/j.det.2022.07.01736410983
    [Google Scholar]
  6. GarbeC. AmaralT. PerisK. HauschildA. ArenbergerP. Basset-SeguinN. BastholtL. BatailleV. del MarmolV. DrénoB. FargnoliM.C. ForseaA.M. GrobJ.J. HoellerC. KaufmannR. Kelleners-SmeetsN. LallasA. LebbéC. LytvynenkoB. MalvehyJ. Moreno-RamirezD. NathanP. PellacaniG. SaiagP. StratigosA.J. Van AkkooiA.C.J. VieiraR. ZalaudekI. LoriganP. European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO), and the European Organization for Research and Treatment of Cancer (EORTC) European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2022.Eur. J. Cancer202217025628410.1016/j.ejca.2022.04.01835623961
    [Google Scholar]
  7. LeonardiG.C. FalzoneL. SalemiR. ZanghìA. SpandidosD.A. MccubreyJ.A. CandidoS. LibraM. Cutaneous melanoma: From pathogenesis to therapy (Review).Int. J. Oncol.20185241071108010.3892/ijo.2018.428729532857
    [Google Scholar]
  8. GaoL. GuiR. ZhengX. WangY. GongY. Hua WangT. WangJ. HuangJ. LiaoX. Topical application of houttuynia cordata thunb ethanol extracts increases tumor infiltrating cd8+ /treg cells ratio and inhibits cutaneous squamous cell carcinoma in vivo.Oncologie202224356557710.32604/oncologie.2022.022454
    [Google Scholar]
  9. ArslanbaevaL.R. SantoroM.M. Adaptive redox homeostasis in cutaneous melanoma.Redox Biol.20203710175310.1016/j.redox.2020.10175333091721
    [Google Scholar]
  10. SahaiE. AstsaturovI. CukiermanE. DeNardoD.G. EgebladM. EvansR.M. FearonD. GretenF.R. HingoraniS.R. HunterT. HynesR.O. JainR.K. JanowitzT. JorgensenC. KimmelmanA.C. KoloninM.G. MakiR.G. PowersR.S. PuréE. RamirezD.C. Scherz-ShouvalR. ShermanM.H. StewartS. TlstyT.D. TuvesonD.A. WattF.M. WeaverV. WeeraratnaA.T. WerbZ. A framework for advancing our understanding of cancer-associated fibroblasts.Nat. Rev. Cancer202020317418610.1038/s41568‑019‑0238‑131980749
    [Google Scholar]
  11. GlabmanR.A. ChoykeP.L. SatoN. Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy.Cancers20221416390610.3390/cancers1416390636010899
    [Google Scholar]
  12. MonteranL. ErezN. The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment.Front. Immunol.201910183510.3389/fimmu.2019.0183531428105
    [Google Scholar]
  13. BelleiB. MiglianoE. PicardoM. A framework of major tumor-promoting signal transduction pathways implicated in melanoma-fibroblast dialogue.Cancers20201211340010.3390/cancers1211340033212834
    [Google Scholar]
  14. MoralesD. VigneronP. FerreiraI. HamitouW. MagnanoM. MahenthiranL. LokC. VayssadeM. Fibroblasts influence metastatic melanoma cell sensitivity to combined BRAF and MEK inhibition.Cancers20211319476110.3390/cancers1319476134638245
    [Google Scholar]
  15. PapalexiE. SatijaR. Single-cell RNA sequencing to explore immune cell heterogeneity.Nat. Rev. Immunol.2018181354510.1038/nri.2017.7628787399
    [Google Scholar]
  16. JoanitoI. WirapatiP. ZhaoN. NawazZ. YeoG. LeeF. EngC.L.P. MacalinaoD.C. KahramanM. SrinivasanH. LakshmananV. VerbandtS. TsantoulisP. GunnN. VenkateshP.N. PohZ.W. NaharR. OhH.L.J. LooJ.M. ChiaS. CheowL.F. CherubaE. WongM.T. KuaL. ChuaC. NguyenA. GolovanJ. GanA. LimW.J. GuoY.A. YapC.K. TayB. HongY. ChongD.Q. ChokA.Y. ParkW.Y. HanS. ChangM.H. Seow-EnI. FuC. MathewR. TohE.L. HongL.Z. SkanderupA.J. DasGuptaR. OngC.A.J. LimK.H. TanE.K.W. KooS.L. LeowW.Q. TejparS. PrabhakarS. TanI.B. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer.Nat. Genet.202254796397510.1038/s41588‑022‑01100‑435773407
    [Google Scholar]
  17. GongL. KwongD.L.W. DaiW. WuP. LiS. YanQ. ZhangY. ZhangB. FangX. LiuL. LuoM. LiuB. ChowL.K.Y. ChenQ. HuangJ. LeeV.H.F. LamK.O. LoA.W.I. ChenZ. WangY. LeeA.W.M. GuanX.Y. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma.Nat. Commun.2021121154010.1038/s41467‑021‑21795‑z33750785
    [Google Scholar]
  18. LiuY. ZhangH. MaoY. ShiY. WangX. ShiS. HuD. LiuS. Bulk and single-cell RNA-sequencing analyses along with abundant machine learning methods identify a novel monocyte signature in SKCM.Front. Immunol.202314109404210.3389/fimmu.2023.109404237304304
    [Google Scholar]
  19. ZhangC. ShenH. YangT. LiT. LiuX. WangJ. LiaoZ. WeiJ. LuJ. LiuH. XiangL. YangY. YangM. WangD. LiY. XingR. TengS. ZhaoJ. YangY. ZhaoG. ChenK. LiX. YangJ. A single-cell analysis reveals tumor heterogeneity and immune environment of acral melanoma.Nat. Commun.2022131725010.1038/s41467‑022‑34877‑336433984
    [Google Scholar]
  20. RiazN. HavelJ.J. MakarovV. DesrichardA. UrbaW.J. SimsJ.S. HodiF.S. Martín-AlgarraS. MandalR. SharfmanW.H. BhatiaS. HwuW.J. GajewskiT.F. SlingluffC.L.Jr ChowellD. KendallS.M. ChangH. ShahR. KuoF. MorrisL.G.T. SidhomJ.W. SchneckJ.P. HorakC.E. WeinholdN. ChanT.A. Tumor and microenvironment evolution during immunotherapy with nivolumab.Cell20171714934949.e1610.1016/j.cell.2017.09.02829033130
    [Google Scholar]
  21. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.409629608179
    [Google Scholar]
  22. HafemeisterC. SatijaR. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression.Genome Biol.201920129610.1186/s13059‑019‑1874‑131870423
    [Google Scholar]
  23. JinS. Guerrero-JuarezC.F. ZhangL. ChangI. RamosR. KuanC.H. MyungP. PlikusM.V. NieQ. Inference and analysis of cell-cell communication using Cell Chat.Nat. Commun.2021121108810.1038/s41467‑021‑21246‑933597522
    [Google Scholar]
  24. AibarS. González-BlasC.B. MoermanT. Huynh-ThuV.A. ImrichovaH. HulselmansG. RambowF. MarineJ.C. GeurtsP. AertsJ. van den OordJ. AtakZ.K. WoutersJ. AertsS. SCENIC: Single-cell regulatory network inference and clustering.Nat. Methods201714111083108610.1038/nmeth.446328991892
    [Google Scholar]
  25. QiX. ChenY. LiuS. LiuL. YuZ. YinL. FuL. DengM. LiangS. LüM. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway.Pharm. Biol.202361169670910.1080/13880209.2023.220078737092313
    [Google Scholar]
  26. DomaneggK. SleemanJ.P. SchmausA. CEMIP, a promising biomarker that promotes the progression and metastasis of colorectal and other types of cancer.Cancers20221420509310.3390/cancers1420509336291875
    [Google Scholar]
  27. KwaM.Q. HerumK.M. BrakebuschC. Cancer-associated fibroblasts: How do they contribute to metastasis?Clin. Exp. Metastasis2019362718610.1007/s10585‑019‑09959‑030847799
    [Google Scholar]
  28. BobosM. Histopathologic classification and prognostic factors of melanoma: A 2021 update.Ital. J. Dermatol. Venereol.2021156330032110.23736/S2784‑8671.21.06958‑333982546
    [Google Scholar]
  29. RomanoV. BelvisoI. VenutaA. RuoccoM.R. MasoneS. AliottaF. FiumeG. MontagnaniS. AvaglianoA. ArcucciA. Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape.Int. J. Mol. Sci.20212210528310.3390/ijms2210528334067929
    [Google Scholar]
  30. SunamiY. RebeloA. KleeffJ. Lipid metabolism and lipid droplets in pancreatic cancer and stellate cells.Cancers2017101310.3390/cancers1001000329295482
    [Google Scholar]
  31. SunamiY. HäußlerJ. KleeffJ. Cellular heterogeneity of pancreatic stellate cells, mesenchymal stem cells, and cancer-associated fibroblasts in pancreatic cancer.Cancers20201212377010.3390/cancers1212377033333727
    [Google Scholar]
  32. BuschS. AnderssonD. BomE. WalshC. StåhlbergA. LandbergG. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts.Mol. Cancer20171617310.1186/s12943‑017‑0642‑728372546
    [Google Scholar]
  33. PatelA.K. VipparthiK. ThatikondaV. ArunI. BhattacharjeeS. SharanR. ArunP. SinghS. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma.Oncogenesis20187107810.1038/s41389‑018‑0087‑x30287850
    [Google Scholar]
  34. SuS. ChenJ. YaoH. LiuJ. YuS. LaoL. WangM. LuoM. XingY. ChenF. HuangD. ZhaoJ. YangL. LiaoD. SuF. LiM. LiuQ. SongE. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness.Cell20181724841856.e1610.1016/j.cell.2018.01.00929395328
    [Google Scholar]
  35. Rigi-LadizM.A. DNA methylation and expression status of glutamate receptor genes in patients with oral squamous cell carcinoma.Meta Gene201920
    [Google Scholar]
  36. ZhangQ. TeowJ.Y. KerishnanJ.P. Abd HalimA.A. ChenY. Clusterin and its isoforms in oral squamous cell carcinoma and their potential as biomarkers: A comprehensive review.Biomedicines2023115145810.3390/biomedicines1105145837239129
    [Google Scholar]
  37. LiuQ. JiangJ. ZhangX. ZhangM. FuY. Comprehensive analysis of IGFBPs as biomarkers in gastric cancer.Front. Oncol.20211172313110.3389/fonc.2021.72313134745945
    [Google Scholar]
  38. DaiY. LiuJ. LiX. DengJ. ZengC. LuW. HouY. ShengY. WuH. LiuQ. Let-7b-5p inhibits colon cancer progression by prohibiting APC ubiquitination degradation and the Wnt pathway by targeting NKD1.Cancer Sci.202311451882189710.1111/cas.1567836445120
    [Google Scholar]
  39. CirriP. ChiarugiP. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression.Cancer Metastasis Rev.2012311-219520810.1007/s10555‑011‑9340‑x22101652
    [Google Scholar]
  40. DudaD.G. DuyvermanA.M.M.J. KohnoM. SnuderlM. StellerE.J.A. FukumuraD. JainR.K. Malignant cells facilitate lung metastasis by bringing their own soil.Proc. Natl. Acad. Sci.201010750216772168210.1073/pnas.101623410721098274
    [Google Scholar]
  41. PetersenO.W. NielsenH.L. GudjonssonT. VilladsenR. RankF. NiebuhrE. BissellM.J. Rønnov-JessenL. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma.Am. J. Pathol.2003162239140210.1016/S0002‑9440(10)63834‑512547698
    [Google Scholar]
  42. DingY. TanX. AbasiA. DaiY. WuR. ZhangT. LiK. YanM. HuangX. LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5p to release SDC3 mRNA.Aging20211356832684810.18632/aging.20254133621194
    [Google Scholar]
  43. SunJ. PanS. CuiH. LiH. CircRNA SCARB1 promotes renal cell carcinoma progression via Mir- 510-5p/SDC3 Axis.Curr. Cancer Drug Targets202020646147010.2174/156800962066620040913003232271695
    [Google Scholar]
  44. YaoJ. LiW.Y. LiS.G. FengX.S. GaoS.G. Midkine promotes perineural invasion in human pancreatic cancer.World J. Gastroenterol.201420113018302410.3748/wjg.v20.i11.301824659893
    [Google Scholar]
  45. OwenJ.S. ClaytonA. PearsonH.B. Cancer-associated fibroblast heterogeneity, activation and function: Implications for prostate cancer.Biomolecules20221316710.3390/biom1301006736671452
    [Google Scholar]
  46. PancewiczJ. NicotC. Current views on the role of notch signaling and the pathogenesis of human leukemia.BMC Cancer201111150210.1186/1471‑2407‑11‑50222128846
    [Google Scholar]
  47. KunanopparatA. HirankarnN. Issara-AmphornJ. TangkijvanichP. SanpavatA. The expression profile of Jagged1 and Delta-like 4 in hepatocellular carcinoma.Asian Pac. J. Allergy Immunol.2021391445230660174
    [Google Scholar]
  48. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.PLoS Med.200967e100009710.1371/journal.pmed.100009719621072
    [Google Scholar]
  49. JubbA.M. BrowningL. CampoL. TurleyH. SteersG. ThurstonG. HarrisA.L. AnsorgeO. Expression of vascular notch ligands delta-like 4 and Jagged-1 in glioblastoma.Histopathology201260574074710.1111/j.1365‑2559.2011.04138.x22296176
    [Google Scholar]
  50. PancewiczJ. NiklinskaW. EljaszewiczA. Anti-Jagged-1 immunotherapy in cancer.Adv. Med. Sci.202267219620210.1016/j.advms.2022.04.00135421813
    [Google Scholar]
  51. StrellC. PaulssonJ. JinS.B. TobinN.P. MezheyeuskiA. RoswallP. MutganC. MitsiosN. JohanssonH. WickbergS.M. SvedlundJ. NilssonM. HallP. MulderJ. RadiskyD.C. PietrasK. BerghJ. LendahlU. WärnbergF. ÖstmanA. Impact of epithelial–stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ.J. Natl. Cancer Inst.2019111998399510.1093/jnci/djy23430816935
    [Google Scholar]
  52. DaiY. WilsonG. HuangB. PengM. TengG. ZhangD. ZhangR. EbertM.P.A. ChenJ. WongB.C.Y. ChanK.W. GeorgeJ. QiaoL. Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer.Cell Death Dis.201454e117010.1038/cddis.2014.13724722295
    [Google Scholar]
  53. HuangB. HanW. ShengZ.F. ShenG.L. Identification of immune-related biomarkers associated with tumorigenesis and prognosis in cutaneous melanoma patients.Cancer Cell Int.202020119510.1186/s12935‑020‑01271‑232508531
    [Google Scholar]
  54. HassanZ. SchneeweisC. WirthM. MüllerS. GeismannC. NeußT. SteigerK. KrämerO.H. SchmidR.M. RadR. ArltA. ReichertM. SaurD. SchneiderG. Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas.Pancreatology202121591291910.1016/j.pan.2021.03.01233824054
    [Google Scholar]
  55. IshibashiK. KoguchiT. MatsuokaK. OnagiA. TanjiR. Takinami-HondaR. HoshiS. OnodaM. KurimuraY. HataJ. SatoY. KataokaM. OgawsaS. HagaN. KojimaY. Interleukin-6 induces drug resistance in renal cell carcinoma.Fukushima J. Med. Sci.201864310311010.5387/fms.2018‑1530369518
    [Google Scholar]
  56. WangT. FahrmannJ.F. LeeH. LiY.J. TripathiS.C. YueC. ZhangC. LifshitzV. SongJ. YuanY. SomloG. JandialR. AnnD. HanashS. JoveR. YuH. JAK/STAT3-Regulated Fatty Acid β-Oxidation is critical for breast cancer stem cell self-renewal and chemoresistance.Cell Metab.2018271136150.e510.1016/j.cmet.2017.11.00129249690
    [Google Scholar]
  57. PriegoN. ZhuL. MonteiroC. MuldersM. WasilewskiD. BindemanW. DoglioL. MartínezL. Martínez-SaezE. Ramón y CajalS. MegíasD. Hernández-EncinasE. Blanco-AparicioC. MartínezL. ZarzuelaE. MuñozJ. Fustero-TorreC. Piñeiro-YáñezE. Hernández-LaínA. BerteroL. PoliV. Sanchez-MartinezM. MenendezJ.A. SoffiettiR. Bosch-BarreraJ. ValienteM. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis.Nat. Med.20182471024103510.1038/s41591‑018‑0044‑429892069
    [Google Scholar]
  58. AlbrenguesJ. BerteroT. GrassetE. BonanS. MaielM. BourgetI. PhilippeC. Herraiz SerranoC. BenamarS. CroceO. Sanz-MorenoV. MeneguzziG. FeralC.C. CristofariG. GaggioliC. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts.Nat. Commun.2015611020410.1038/ncomms1020426667266
    [Google Scholar]
  59. YangX. LinY. ShiY. LiB. LiuW. YinW. DangY. ChuY. FanJ. HeR. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling.Cancer Res.201676144124413510.1158/0008‑5472.CAN‑15‑297327216177
    [Google Scholar]
  60. LiX. XuQ. WuY. LiJ. TangD. HanL. FanQ. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma.Carcinogenesis20143561362137010.1093/carcin/bgu04624531940
    [Google Scholar]
  61. HeichlerC. ScheibeK. SchmiedA. GeppertC.I. SchmidB. WirtzS. ThomaO.M. KramerV. WaldnerM.J. BüttnerC. FarinH.F. PešićM. KnielingF. MerkelS. GrüneboomA. GunzerM. GrützmannR. Rose-JohnS. KoralovS.B. KolliasG. ViethM. HartmannA. GretenF.R. NeurathM.F. NeufertC. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis.Gut20206971269128210.1136/gutjnl‑2019‑31920031685519
    [Google Scholar]
  62. HirataE. GirottiM.R. VirosA. HooperS. Spencer-DeneB. MatsudaM. LarkinJ. MaraisR. SahaiE. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling.Cancer Cell201527457458810.1016/j.ccell.2015.03.00825873177
    [Google Scholar]
  63. JaysonG.C. KerbelR. EllisL.M. HarrisA.L. Antiangiogenic therapy in oncology: Current status and future directions.Lancet20163881004351852910.1016/S0140‑6736(15)01088‑026853587
    [Google Scholar]
  64. FeigC. JonesJ.O. KramanM. WellsR.J.B. DeonarineA. ChanD.S. ConnellC.M. RobertsE.W. ZhaoQ. CaballeroO.L. TeichmannS.A. JanowitzT. JodrellD.I. TuvesonD.A. FearonD.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer.Proc. Natl. Acad. Sci.201311050202122021710.1073/pnas.132031811024277834
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673282799231211113347
Loading
/content/journals/cmc/10.2174/0109298673282799231211113347
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test