Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Over the years, viruses have caused human illness and threatened human health. Therefore, it is pressing to develop anti-coronavirus infection drugs with clear function, low cost, and high safety. Anti-coronavirus peptide (ACVP) is a key therapeutic agent against coronavirus. Traditional methods for finding ACVP need a great deal of money and man power. Hence, it is a significant task to establish intelligent computational tools to able rapid, efficient and accurate identification of ACVP.

Methods

In this paper, we construct an excellent model named iACVP-MR to identify ACVP based on multiple features and recurrent neural networks. Multiple features are extracted by using reduced amino acid component and dipeptide component, compositions of -spaced amino acid pairs, BLOSUM62 encoder according to the N5C5 sequence, as well as second-order moving average approach based on 16 physicochemical properties. Then, two recurrent neural networks named long-short term memory (LSTM) and bidirectional gated recurrent unit (BiGRU) combined attention mechanism are used for feature fusion and classification, respectively.

Results

The accuracies of ENNAVIA-C and ENNAVIA-D datasets under the 10-fold cross-validation are 99.15% and 98.92%, respectively, and other evaluation indexes have also obtained satisfactory results. The experimental results show that our model is superior to other existing models.

Conclusion

The iACVP-MR model can be viewed as a powerful and intelligent tool for the accurate identification of ACVP. The datasets and source codes for iACVP-MR are freely downloaded at https://github.com/yunyunliang88/iACVP-MR.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673277663240101111507
2024-02-15
2025-03-31
Loading full text...

Full text loading...

References

  1. NicholS.T. ArikawaJ. KawaokaY. Emerging viral diseases.Proc. Natl. Acad. Sci.20009723124111241210.1073/pnas.210382297 11035785
    [Google Scholar]
  2. AgarwalG. GabraniR. Antiviral peptides: Identifcation and validation.Int. J. Pept. Res. Ther.202127114916810.1007/s10989‑020‑10072‑0 32427225
    [Google Scholar]
  3. BloomD.E. CadaretteD. Infectious disease threats in the twenty-first century: Strengthening the global response.Front. Immunol.20191054910.3389/fimmu.2019.00549 30984169
    [Google Scholar]
  4. GrubaughN.D. LadnerJ.T. LemeyP. PybusO.G. RambautA. HolmesE.C. AndersenK.G. Tracking virus outbreaks in the twenty-first century.Nat. Microbiol.201841101910.1038/s41564‑018‑0296‑2 30546099
    [Google Scholar]
  5. ZappaA. AmendolaA. RomanòL. ZanettiA. Emerging and re-emerging viruses in the era of globalisation.Blood Transfus.200973167171 19657478
    [Google Scholar]
  6. ElnagdyS. AlKhazindarM. The potential of antimicrobial peptides as an antiviral therapy against COVID-19.ACS Pharmacol. Transl. Sci.20203478078210.1021/acsptsci.0c00059 32821884
    [Google Scholar]
  7. SwaatiS. Review on corona virus disease (SARS-Cov-2).Int. J. Pharm. Res.2020S3347350
    [Google Scholar]
  8. WuD. WuT. LiuQ. YangZ. The SARS-CoV-2 outbreak: What we know.Int. J. Infect. Dis.202094444810.1016/j.ijid.2020.03.004 32171952
    [Google Scholar]
  9. ZhaoH. ZhouJ. ZhangK. ChuH. LiuD. PoonV.K.M. ChanC.C.S. LeungH.C. FaiN. LinY.P. ZhangA.J.X. JinD.Y. YuenK.Y. ZhengB.J. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses.Sci. Rep.2016612200810.1038/srep22008 26911565
    [Google Scholar]
  10. LiQ. ZhaoZ. ZhouD. ChenY. HongW. CaoL. YangJ. ZhangY. ShiW. CaoZ. WuY. YanH. LiW. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses.Peptides20113271518152510.1016/j.peptides.2011.05.015 21620914
    [Google Scholar]
  11. LuL. LiuQ. ZhuY. ChanK.H. QinL. LiY. WangQ. ChanJ.F.W. DuL. YuF. MaC. YeS. YuenK.Y. ZhangR. JiangS. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor.Nat. Commun.201451306710.1038/ncomms4067 24473083
    [Google Scholar]
  12. JhongJ.H. ChiY.H. LiW.C. LinT.H. HuangK.Y. LeeT.Y. dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data.Nucleic Acids Res.201947D1D285D29710.1093/nar/gky1030 30380085
    [Google Scholar]
  13. QureshiA. ThakurN. TandonH. KumarM. AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses.Nucleic Acids Res.201442D1D1147D115310.1093/nar/gkt1191 24285301
    [Google Scholar]
  14. KangX. DongF. ShiC. LiuS. SunJ. ChenJ. LiH. XuH. LaoX. ZhengH. DRAMP 2.0, an updated data repository of antimicrobial peptides.Sci. Data20196114810.1038/s41597‑019‑0154‑y 31409791
    [Google Scholar]
  15. PirtskhalavaM. AmstrongA.A. GrigolavaM. ChubinidzeM. AlimbarashviliE. VishnepolskyB. GabrielianA. RosenthalA. HurtD.E. TartakovskyM. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics.Nucleic Acids Res.202149D1D288D29710.1093/nar/gkaa991 33151284
    [Google Scholar]
  16. QureshiA. ThakurN. KumarM. HIPdb: A database of experimentally validated HIV inhibiting peptides.PLoS One201381e5490810.1371/journal.pone.0054908 23359817
    [Google Scholar]
  17. WangG. LiX. WangZ. APD3: the antimicrobial peptide database as a tool for research and education.Nucleic Acids Res.201644D1D1087D109310.1093/nar/gkv1278 26602694
    [Google Scholar]
  18. WaghuF.H. BaraiR.S. GurungP. Idicula-ThomasS. CAMP R3: A database on sequences, structures and signatures of antimicrobial peptides.Nucleic Acids Res.201644D1D1094D109710.1093/nar/gkv1051 26467475
    [Google Scholar]
  19. ZhaoX. WuH. LuH. LiG. HuangQ. Lamp: A database linking antimicrobial peptides.PLoS One201386e6655710.1371/journal.pone.0066557 23825543
    [Google Scholar]
  20. ThakurN. QureshiA. KumarM. AVPpred: Collection and prediction of highly effective antiviral peptides.Nucleic Acids Res.201240W1W199W20410.1093/nar/gks450 22638580
    [Google Scholar]
  21. ChangK.Y. YangJ.R. Analysis and prediction of highly effective antiviral peptides based on random forests.PLoS One201388e7016610.1371/journal.pone.0070166 23940542
    [Google Scholar]
  22. ZareM. MohabatkarH. FaramarziF.K. BeigiM.M. BehbahaniM. Using chou’s pseudo amino acid composition and machine learning method to predict the antiviral peptides.Open Bioinform. J.201591131910.2174/1875036201509010013
    [Google Scholar]
  23. QureshiA. TandonH. KumarM. AVP‐IC50 Pred: Multiple machine learning techniques‐based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).Biopolymers2015104675376310.1002/bip.22703 26213387
    [Google Scholar]
  24. Beltrán LissabetJ.F. BelénL.H. FariasJ.G. AntiVPP 1.0: A portable tool for prediction of antiviral peptides.Comput. Biol. Med.201910712713010.1016/j.compbiomed.2019.02.011 30802694
    [Google Scholar]
  25. SchaduangratN. NantasenamatC. PrachayasittikulV. ShoombuatongW. Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation.Int. J. Mol. Sci.20192022574310.3390/ijms20225743 31731751
    [Google Scholar]
  26. ChowdhuryA.S. ReehlS.M. Kehn-HallK. BishopB. Webb-RobertsonB.J.M. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance.Sci. Rep.20201011926010.1038/s41598‑020‑76161‑8 33159146
    [Google Scholar]
  27. LiJ.W. PuY.Q. TangJ.J. ZouQ. DeepAVP: A dual-channel deep neural network for identifying variable-length antiviral peptides.IEEE J. Biomed. Health Inform.2019241021682194 32142462
    [Google Scholar]
  28. SharmaR. ShrivastavaS. SinghS.K. KumarA. SinghA.K. SaxenaS. Deep-AVPpred: Artificial intelligence driven discovery of peptide drugs for viral infections.IEEE J. Biomed. Health Inform.202226105067507410.1109/JBHI.2021.3130825 34822333
    [Google Scholar]
  29. PangY. YaoL. JhongJ.H. WangZ. LeeT.Y. AVPIden: A new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches.Brief. Bioinform.2021226bbab26310.1093/bib/bbab263 34279599
    [Google Scholar]
  30. PangY. WangZ. JhongJ.H. LeeT.Y. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies.Brief. Bioinform.20212221085109510.1093/bib/bbaa423 33497434
    [Google Scholar]
  31. TimmonsP.B. HewageC.M. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides.Brief. Bioinform.2021226bbab25810.1093/bib/bbab258
    [Google Scholar]
  32. KurataH. TsukiyamaS. ManavalanB. iACVP: Markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model.Brief. Bioinform.2022234bbac26510.1093/bib/bbac265 35772910
    [Google Scholar]
  33. ChenS. LiaoY. ZhaoJ. BinY. ZhengC. PACVP: Prediction of anti-coronavirus peptides using a stacking learning strategy with effective feature representation.IEEE/ACM Trans. Comput. Biol. Bioinformatics202320511210.1109/TCBB.2023.3238370 37022025
    [Google Scholar]
  34. LiuM. LiuH. WuT. ZhuY. ZhouY. HuangZ. XiangC. HuangJ. ACP-Dnnel: Anti-coronavirus peptides’ prediction based on deep neural network ensemble learning.Amino Acids20235591121113610.1007/s00726‑023‑03300‑6 37402073
    [Google Scholar]
  35. HochreiterS. SchmidhuberJ. Long short-term memory.Neural Comput.1997981735178010.1162/neco.1997.9.8.1735 9377276
    [Google Scholar]
  36. ZhouR. HuX. YuanB. Lithology classification system for well logging based on bidirectional gated recurrent unit.International Conference on Artificial Intelligence and Big Data (ICAIBD)202159960310.1109/ICAIBD51990.2021.9459000
    [Google Scholar]
  37. ChenZ. ZhaoP. LiF. LeierA. Marquez-LagoT.T. WangY. WebbG.I. SmithA.I. DalyR.J. ChouK.C. SongJ. iFeature: A Python package and web server for features extraction and selection from protein and peptide sequences.Bioinformatics201834142499250210.1093/bioinformatics/bty140 29528364
    [Google Scholar]
  38. HeW. JuY. ZengX. LiuX. ZouQ. Sc-ncDNA pred: A sequence-based predictor for identifying non-coding DNA in Saccharomyces cerevisiae.Front. Microbiol.20189217410.3389/fmicb.2018.02174 30258427
    [Google Scholar]
  39. KimC.S. WinnM.D. SachdevaV. JordanK.E. K-mer clustering algorithm using a mapreduce framework: Application to the parallelization of the Inchworm module of Trinity.BMC Bioinformatics201718146710.1186/s12859‑017‑1881‑8 29100493
    [Google Scholar]
  40. ChungC.R. KuoT.R. WuL.C. LeeT.Y. HorngJ.T. Characterization and identification of antimicrobial peptides with different functional activities.Brief. Bioinform.20202131098111410.1093/bib/bbz043 31155657
    [Google Scholar]
  41. WangY. ZhangQ. SunM. GuoD. High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles.Bioinformatics201127677778410.1093/bioinformatics/btr021 21233168
    [Google Scholar]
  42. ZhangS. LiX. Pep-CNN: An improved convolutional neural network for predicting therapeutic peptides.Chemom. Intell. Lab. Syst.202222110449010.1016/j.chemolab.2022.104490
    [Google Scholar]
  43. DangT.H. LeH.Q. NguyenT.M. VuS.T. D3NER: Biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information.Bioinformatics201834203539354610.1093/bioinformatics/bty356 29718118
    [Google Scholar]
  44. LataS. MishraN.K. RaghavaG.P.S. AntiBP2: Improved version of antibacterial peptide prediction.BMC Bioinformatics201011S1S1910.1186/1471‑2105‑11‑S1‑S19 20122190
    [Google Scholar]
  45. WangM. CuiX. LiS. YangX. MaA. ZhangY. YuB. DeepMal: Accurate prediction of protein malonylation sites by deep neural networks.Chemom. Intell. Lab. Syst.202020710417510.1016/j.chemolab.2020.104175
    [Google Scholar]
  46. LiF.M. WangX.Q. Identifying anticancer peptides by using improved hybrid compositions.Sci. Rep.2016613391010.1038/srep33910 27670968
    [Google Scholar]
  47. ChenK. KurganL.A. RuanJ. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs.BMC Struct. Biol.2007712510.1186/1472‑6807‑7‑25 17437643
    [Google Scholar]
  48. HasanM. KhatunM. MollahM. YongC. DianjingG. NTyroSite: Computational identification of protein nitrotyrosine sites using sequence evolutionary features.Molecules2018237166710.3390/molecules23071667 29987232
    [Google Scholar]
  49. SongJ. WangY. LiF. AkutsuT. RawlingsN.D. WebbG.I. ChouK.C. iProt-Sub: A comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.Brief. Bioinform.201920263865810.1093/bib/bby028 29897410
    [Google Scholar]
  50. HasanM.M. ZhouY. LuX. LiJ. SongJ. ZhangZ. Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs.PLoS One2015106e012963510.1371/journal.pone.0129635 26080082
    [Google Scholar]
  51. JuZ. CaoJ.Z. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.Anal. Biochem.2017534404510.1016/j.ab.2017.07.011 28709899
    [Google Scholar]
  52. FuH. YangY. WangX. WangH. XuY. DeepUbi: A deep learning framework for prediction of ubiquitination sites in proteins.BMC Bioinformatics20192018610.1186/s12859‑019‑2677‑9 30777029
    [Google Scholar]
  53. LvH. DaoF.Y. GuanZ.X. YangH. LiY.W. LinH. Deep-Kcr: Accurate detection of lysine crotonylation sites using deep learning method.Brief. Bioinform.2021224bbaa25510.1093/bib/bbaa255 33099604
    [Google Scholar]
  54. JuZ. WangS.Y. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou’s 5-steps rule and general pseudo components.Genomics2020112185986610.1016/j.ygeno.2019.05.027 31175975
    [Google Scholar]
  55. YuB. YuZ. ChenC. MaA. LiuB. TianB. MaQ. DNNAce: Prediction of prokaryote lysine acetylation sites through deep neural networks with multi-information fusion.Chemom. Intell. Lab. Syst.202020010399910.1016/j.chemolab.2020.103999
    [Google Scholar]
  56. WangX. LiC. LiF. SharmaV.S. SongJ. WebbG.I. SIMLIN: A bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.BMC Bioinformatics201920160210.1186/s12859‑019‑3178‑6 30606105
    [Google Scholar]
  57. LiangY. MaX. iACP-GE: Accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree.SAR QSAR Environ. Res.202334111910.1080/1062936X.2022.2160011 36562289
    [Google Scholar]
  58. BinY. ZhangW. TangW. DaiR. LiM. ZhuQ. XiaJ. Prediction of neuropeptides from sequence information using ensemble classifier and hybrid features.J. Proteome Res.20201993732374010.1021/acs.jproteome.0c00276 32786686
    [Google Scholar]
  59. AlessioE. CarboneA. CastelliG. FrappietroV. Second-order moving average and scaling of stochastic time series.Eur. Phys. J. B200227219720010.1140/epjb/e20020150
    [Google Scholar]
  60. YuH. LuoX. IPPF-FE: An integrated peptide and protein function prediction framework based on fused features and ensemble models.Brief. Bioinform.2023241bbac47610.1093/bib/bbac476 36403184
    [Google Scholar]
  61. GravesA. SchmidhuberJ. SchmidhuberJ. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.Neural Netw.2005185-660261010.1016/j.neunet.2005.06.042 16112549
    [Google Scholar]
  62. YiH.C. YouZ.H. ZhouX. ChengL. LiX. JiangT.H. ChenZ.H. ACP-DL: A deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation.Mol. Ther. Nucleic Acids2019171910.1016/j.omtn.2019.04.025 31173946
    [Google Scholar]
  63. ChungJ.Y. GulcehreC. ChoK.H. Empirical evaluation of gated recurrent neural networks on sequence modeling.Comput. Sci.2014 https://arxiv.org/abs/1412.3555v1
    [Google Scholar]
  64. RaffelC EllisD P W Feed-forward networks with attention can solve some long-term memory problems.Workshop track-ICLR20161610.48550/arXiv.1512.08756
    [Google Scholar]
  65. KhanalJ. TayaraH. ZouQ. To ChongK. DeepCap-Kcr: Accurate identification and investigation of protein lysine crotonylation sites based on capsule network.Brief. Bioinform.2022231bbab49210.1093/bib/bbab492 34882222
    [Google Scholar]
  66. ZhangM. GaoH. LiaoX. NingB. GuH. YuB. DBGRU-SE: Predicting drug–drug interactions based on double BiGRU and squeeze-and-excitation attention mechanism.Brief. Bioinform.2023244bbad18410.1093/bib/bbad184 37225428
    [Google Scholar]
  67. ChouK.C. ZhangC.T. Prediction of protein structural classes.Crit. Rev. Biochem. Mol. Biol.199530427534910.3109/10409239509083488 7587280
    [Google Scholar]
  68. ManavalanB. BasithS. ShinT.H. WeiL. LeeG. mAHTPred: A sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation.Bioinformatics201935162757276510.1093/bioinformatics/bty1047 30590410
    [Google Scholar]
  69. JiaJ. LiuZ. XiaoX. LiuB. ChouK.C. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC.J. Theor. Biol.2015377475610.1016/j.jtbi.2015.04.011 25908206
    [Google Scholar]
  70. LiuB. LiK. HuangD.S. ChouK.C. iEnhancer-EL: Identifying enhancers and their strength with ensemble learning approach.Bioinformatics201834223835384210.1093/bioinformatics/bty458 29878118
    [Google Scholar]
  71. ShiH. ZhangS. Accurate prediction of anti-hypertensive peptides based on convolutional neural network and gated recurrent unit.Interdiscip. Sci.202214487989410.1007/s12539‑022‑00521‑3 35474167
    [Google Scholar]
  72. WeiL. ZhouC. ChenH. SongJ. SuR. ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides.Bioinformatics201834234007401610.1093/bioinformatics/bty451 29868903
    [Google Scholar]
  73. ArifM. AhmedS. GeF. KabirM. KhanY.D. YuD-J. ThafarM. StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach.Chemom. Intell. Lab. Syst.202222010445810.1016/j.chemolab.2021.104458
    [Google Scholar]
  74. FawcettT. An introduction to ROC analysis.Pattern Recognit. Lett.200627886187410.1016/j.patrec.2005.10.010
    [Google Scholar]
  75. ChenS. LiQ. ZhaoJ. BinY. ZhengC. NeuroPred-CLQ: Incorporating deep temporal convolutional networks and multi-head attention mechanism to predict neuropeptides.Brief. Bioinform.2022235bbac31910.1093/bib/bbac319 35988921
    [Google Scholar]
  76. CollatzM. MockF. BarthE. HölzerM. SachseK. MarzM. EpiDope: A deep neural network for linear B-cell epitope prediction.Bioinformatics202137444845510.1093/bioinformatics/btaa773 32915967
    [Google Scholar]
  77. JingY. ZhangS. WangH. DapNet-HLA: Adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites.Anal. Biochem.202366611507510.1016/j.ab.2023.115075 36740003
    [Google Scholar]
  78. VacicV. IakouchevaL.M. RadivojacP. Two sample logo: A graphical representation of the differences between two sets of sequence alignments.Bioinformatics200622121536153710.1093/bioinformatics/btl151 16632492
    [Google Scholar]
  79. RajputA. GuptaA.K. KumarM. Prediction and analysis of quorum sensing peptides based on sequence features.PLoS One2015103e012006610.1371/journal.pone.0120066 25781990
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673277663240101111507
Loading
/content/journals/cmc/10.2174/0109298673277663240101111507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test