Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO- transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others.

Objective

In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed.

Conclusion

According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673249553231018070920
2023-10-31
2024-11-20
Loading full text...

Full text loading...

References

  1. SinghB. VarikutiS. HalseyG. VolpedoG. HamzaO.M. SatoskarA.R. Host-directed therapies for parasitic diseases.Future Med. Chem.201911151999201810.4155/fmc‑2018‑0439 31390889
    [Google Scholar]
  2. AndargieG. KassuA. MogesF. TirunehM. HuruyK. Prevalence of bacteria and intestinal parasites among food-handlers in Gondar town, Northwest Ethiopia.J. Health Popul. Nutr.2008264451455 19069624
    [Google Scholar]
  3. RobertsonL.J. SprongH. OrtegaY.R. van der GiessenJ.W.B. FayerR. Impacts of globalisation on foodborne parasites.Trends Parasitol.2014301375210.1016/j.pt.2013.09.005 24140284
    [Google Scholar]
  4. DornyP. PraetN. DeckersN. GabriëlS. Emerging food-borne parasites.Vet. Parasitol.2009163319620610.1016/j.vetpar.2009.05.026 19559535
    [Google Scholar]
  5. PicklesR.S.A. ThorntonD. FeldmanR. MarquesA. MurrayD.L. Predicting shifts in parasite distribution with climate change: A multitrophic level approach.Glob. Change Biol.20131992645265410.1111/gcb.12255 23666800
    [Google Scholar]
  6. AltizerS. OstfeldR. S. JohnsonP. T. J. KutzS. HarvellC. D. Climate change and infectious diseases: From evidence to a predictive framework.Science (80-.)20133416145514519
    [Google Scholar]
  7. OrganizationW.H. Vector-borne Diseases.WHO Regional Office for South-east Asia2014
    [Google Scholar]
  8. TorgersonP.R. One world health: Socioeconomic burden and parasitic disease control priorities.Vet. Parasitol.20131953-422323210.1016/j.vetpar.2013.04.004 23628712
    [Google Scholar]
  9. Beatriz VermelhoA. RodriguesG.C. NocentiniA. MansoldoF.R.P. SupuranC.T. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs?Expert Opin. Drug Discov.202217101147115810.1080/17460441.2022.2117295 36039500
    [Google Scholar]
  10. PanP. VermelhoA.B. ScozzafavaA. ParkkilaS. CapassoC. SupuranC.T. Anion inhibition studies of the α-carbonic anhydrase from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease.Bioorg. Med. Chem.201321154472447610.1016/j.bmc.2013.05.058 23790722
    [Google Scholar]
  11. ReungprapavutS. KrungkraiS.R. KrungkraiJ. Plasmodium falciparum carbonic anhydrase is a possible target for malaria chemotherapy.J. Enzyme Inhib. Med. Chem.200419324925610.1080/14756360410001689577 15499996
    [Google Scholar]
  12. Ozensoy GulerO. CapassoC. SupuranC.T. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization.J. Enzyme Inhib. Med. Chem.201631568969410.3109/14756366.2015.1059333 26118417
    [Google Scholar]
  13. AspatwarA. BarkerH. TolvanenM. EmamehR.Z. ParkkilaS. Carbonic anhydrases from pathogens: protozoan cas and related inhibitors as potential antiprotozoal agents.Carbonic Anhydrases.Elsevier201944947510.1016/B978‑0‑12‑816476‑1.00020‑4
    [Google Scholar]
  14. CapassoC. SupuranC.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets.Expert Opin. Ther. Targets201519121689170410.1517/14728222.2015.1067685 26235676
    [Google Scholar]
  15. LomelinoC.L. AndringJ.T. McKennaR. Crystallography and its impact on carbonic anhydrase research.Int. J. Med. Chem.2018201812110.1155/2018/9419521 30302289
    [Google Scholar]
  16. CapassoC. SupuranC.T. Protozoan, fungal and bacterial carbonic anhydrases targeting for obtaining antiinfectives; Target. Carbon. anhydrases.London Futur. Sci. Ltd2014133141
    [Google Scholar]
  17. Protein Data Bank Available from: https://www.rcsb.org/
  18. SupuranC.T. Carbonic anhydrase inhibitors.Bioorg. Med. Chem. Lett.201020123467347410.1016/j.bmcl.2010.05.009 20529676
    [Google Scholar]
  19. SupuranC.T. CapassoC. The η-class carbonic anhydrases as drug targets for antimalarial agents.Expert Opin. Ther. Targets201519455156310.1517/14728222.2014.991312 25495426
    [Google Scholar]
  20. AkocakS. SupuranC.T. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review.J. Enzyme Inhib. Med. Chem.20193411652165910.1080/14756366.2019.1664501 31530034
    [Google Scholar]
  21. da Silva CardosoV. VermelhoA.B. Ricci JuniorE. Almeida RodriguesI. MazottoA.M. SupuranC.T. Antileishmanial activity of sulphonamide nanoemulsions targeting the β -carbonic anhydrase from Leishmania species.J. Enzyme Inhib. Med. Chem.201833185085710.1080/14756366.2018.1463221 29708476
    [Google Scholar]
  22. LlanosM.A. SbaragliniM.L. VillalbaM.L. RuizM.D. CarrilloC. Alba SotoC. TaleviA. AngeliA. ParkkilaS. SupuranC.T. GavernetL. A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors.J. Enzyme Inhib. Med. Chem.2020351213010.1080/14756366.2019.1677638 31619095
    [Google Scholar]
  23. KrungkraiJ. SupuranC. The alpha-carbonic anhydrase from the malaria parasite and its inhibition.Curr. Pharm. Des.200814763164010.2174/138161208783877901 18336308
    [Google Scholar]
  24. KrungkraiS.R. SuraveratumN. RochanakijS. KrungkraiJ. Characterisation of carbonic anhydrase in Plasmodium falciparum.Int. J. Parasitol.200131766166810.1016/S0020‑7519(01)00172‑2 11336746
    [Google Scholar]
  25. BasuS. SahiP.K. Malaria: An update.Indian J. Pediatr.201784752152810.1007/s12098‑017‑2332‑2 28357581
    [Google Scholar]
  26. KrungkraiS.R. KrungkraiJ. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential.Asian Pac. J. Trop. Biomed.20111323324210.1016/S2221‑1691(11)60034‑8 23569766
    [Google Scholar]
  27. World Health Organization. Available from: https://www. who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (Accessed on: 2022-02-03).
  28. NTD. World Health Organization. Available from: https://www.who.int/ (Accessed on: 2022-02-23).
  29. DrugBank. Available from: https://go.drugbank.com/ (Accessed on: 2021-02-03).
  30. VulloD. Del PreteS. FisherG.M. AndrewsK.T. PoulsenS.A. CapassoC. SupuranC.T. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum.Bioorg. Med. Chem.201523352653110.1016/j.bmc.2014.12.009 25533402
    [Google Scholar]
  31. FramptonJ.E. Tafenoquine: First global approval.Drugs201878141517152310.1007/s40265‑018‑0979‑2 30229442
    [Google Scholar]
  32. AdebayoJ.O. TijjaniH. AdegunloyeA.P. IsholaA.A. BalogunE.A. MalomoS.O. Enhancing the antimalarial activity of artesunate.Parasitol. Res.202011992749276410.1007/s00436‑020‑06786‑1 32638101
    [Google Scholar]
  33. DuffyP.E. Patrick GorresJ. Malaria Vaccines since 2000: Progress, priorities, products. NPJ.Vaccines (Basel)20205148 32012760
    [Google Scholar]
  34. Del PreteS. VulloD. FisherG.M. AndrewsK.T. PoulsenS.A. CapassoC. SupuranC.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum —The η-carbonic anhydrases.Bioorg. Med. Chem. Lett.201424184389439610.1016/j.bmcl.2014.08.015 25168745
    [Google Scholar]
  35. KrungkraiJ. KrungkraiS. SupuranC. Malarial parasite carbonic anhydrase and its inhibitors.Curr. Top. Med. Chem.20077990991710.2174/156802607780636744 17504136
    [Google Scholar]
  36. Del PreteS. VulloD. De LucaV. CarginaleV. di FonzoP. OsmanS.M. AlOthmanZ. SupuranC.T. CapassoC. Anion inhibition profiles of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.Bioorg. Med. Chem.201624184410441410.1016/j.bmc.2016.07.034 27480028
    [Google Scholar]
  37. Del PreteS. VulloD. De LucaV. CarginaleV. OsmanS.M. AlothmanZ. SupuranC.T. CapassoC. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.Bioorg. Med. Chem. Lett.201626174184419010.1016/j.bmcl.2016.07.060 27485387
    [Google Scholar]
  38. GiovannuzziS. De LucaV. NocentiniA. CapassoC. SupuranC.T. Coumarins inhibit η-class carbonic anhydrase from Plasmodium falciparum.J. Enzyme Inhib. Med. Chem.202237168068510.1080/14756366.2022.2036986 35139744
    [Google Scholar]
  39. RodriguesG.C. FeijóD.F. BozzaM.T. PanP. VulloD. ParkkilaS. SupuranC.T. CapassoC. AguiarA.P. VermelhoA.B. Design, synthesis, and evaluation of hydroxamic acid derivatives as promising agents for the management of Chagas disease.J. Med. Chem.201457229830810.1021/jm400902y 24299463
    [Google Scholar]
  40. PanP. VermelhoA.B. Capaci RodriguesG. ScozzafavaA. TolvanenM.E.E. ParkkilaS. CapassoC. SupuranC.T. Cloning, characterization, and sulfonamide and thiol inhibition studies of an α-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease.J. Med. Chem.20135641761177110.1021/jm4000616 23391336
    [Google Scholar]
  41. RobertsonL.J. DevleesschauwerB. Alarcón de NoyaB. Noya GonzálezO. TorgersonP.R. Trypanosoma cruzi: Time for international recognition as a foodborne parasite.PLoS Negl. Trop. Dis.2016106e000465610.1371/journal.pntd.0004656 27253136
    [Google Scholar]
  42. EchavarríaN.G. EcheverríaL.E. StewartM. GallegoC. SaldarriagaC. Chagas disease: Chronic chagas cardiomyopathy.Curr. Probl. Cardiol.202146310050710.1016/j.cpcardiol.2019.100507 31983471
    [Google Scholar]
  43. Güzel-AkdemirÖ. AkdemirA. PanP. VermelhoA.B. ParkkilaS. ScozzafavaA. CapassoC. SupuranC.T. A class of sulfonamides with strong inhibitory action against the α-carbonic anhydrase from Trypanosoma cruzi.J. Med. Chem.201356145773578110.1021/jm400418p 23815159
    [Google Scholar]
  44. RibeiroV. DiasN. PaivaT. Hagström-BexL. NitzN. PratesiR. HechtM. Current trends in the pharmacological management of Chagas disease.Int. J. Parasitol. Drugs Drug Resist.20201271710.1016/j.ijpddr.2019.11.004 31862616
    [Google Scholar]
  45. CamposM.C.O. LeonL.L. TaylorM.C. KellyJ.M. Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert.Mol. Biochem. Parasitol.20141931171910.1016/j.molbiopara.2014.01.002 24462750
    [Google Scholar]
  46. MejiaA.M. HallB.S. TaylorM.C. Gómez-PalacioA. WilkinsonS.R. Triana-ChávezO. KellyJ.M. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population.J. Infect. Dis.2012206222022810.1093/infdis/jis331 22551809
    [Google Scholar]
  47. AdasmeM.F. BolzS.N. AdelmannL. SalentinS. HauptV.J. Moreno-RodríguezA. Nogueda-TorresB. Castillo-CamposV. Yepez-MuliaL. De Fuentes-VicenteJ.A. RiveraG. SchroederM. Repositioned drugs for chagas disease unveiled via structure-based drug repositioning.Int. J. Mol. Sci.20202122880910.3390/ijms21228809 33233837
    [Google Scholar]
  48. Vázquez-JiménezL.K. Moreno-HerreraA. Juárez-SaldivarA. González-GonzálezA. Ortiz-PérezE. Paz-GonzálezA.D. PalosI. Ramírez-MorenoE. RiveraG. Recent advances in the development of triose phosphate isomerase inhibitors as antiprotozoal agents.Curr. Med. Chem.202229142504252910.2174/0929867328666210913090928 34517794
    [Google Scholar]
  49. Lara-RamirezE.E. López-CedilloJ.C. Nogueda-TorresB. KashifM. Garcia-PerezC. Bocanegra-GarciaV. AgustiR. UhrigM.L. RiveraG. An in vitro and in vivo evaluation of new potential trans -sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method.Eur. J. Med. Chem.201713224926110.1016/j.ejmech.2017.03.063 28364659
    [Google Scholar]
  50. Vázquez-JiménezL.K. Paz-GonzálezA.D. Juárez-SaldivarA. UhrigM.L. AgustiR. Reyes-ArellanoA. Nogueda-TorresB. RiveraG. Structure-based virtual screening of new benzoic acid derivatives as Trypanosoma cruzi trans-sialidase inhibitors.Med. Chem.202117772473110.2174/1573406416666200506084611 32370720
    [Google Scholar]
  51. PalosI. Lara-RamirezE.E. Lopez-CedilloJ.C. Garcia-PerezC. KashifM. Bocanegra-GarciaV. Nogueda-TorresB. RiveraG. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: virtual screening, in vitro and in vivo studies.Molecules2017226101510.3390/molecules22061015 28629155
    [Google Scholar]
  52. Herrera-MayorgaV. Lara-RamírezE. Chacón-VargasK. Aguirre-AlvaradoC. Rodríguez-PáezL. Alcántara-FarfánV. Cordero-MartínezJ. Nogueda-TorresB. Reyes-EspinosaF. Bocanegra-GarcíaV. RiveraG. Structure-based virtual screening and in vitro evaluation of new Trypanosoma cruzi cruzain inhibitors.Int. J. Mol. Sci.2019207174210.3390/ijms20071742 30970549
    [Google Scholar]
  53. Juárez-SaldivarA. SchroederM. SalentinS. HauptV.J. SaavedraE. VázquezC. Reyes-EspinosaF. Herrera-MayorgaV. Villalobos-RochaJ.C. García-PérezC.A. CampilloN.E. RiveraG. Computational drug repositioning for chagas disease using protein-ligand interaction profiling.Int. J. Mol. Sci.20202112427010.3390/ijms21124270 32560043
    [Google Scholar]
  54. YepesA.F. Quintero-SaumethJ. Cardona-GaleanoW. Biologically active quinoline-hydrazone conjugates as potential Trypanosoma cruzi DHFR-TS inhibitors: Docking, molecular dynamics, MM/PBSA and drug-likeness studies.Chem. Select20216122928293810.1002/slct.202100238
    [Google Scholar]
  55. Espinosa-BustosC. Ortiz PérezM. Gonzalez-GonzalezA. ZarateA.M. RiveraG. Belmont-DíazJ.A. SaavedraE. CuellarM.A. VázquezK. SalasC.O. New amino naphthoquinone derivatives as anti-trypanosoma cruzi agents targeting trypanothione reductase.Pharmaceutics2022146112110.3390/pharmaceutics14061121 35745694
    [Google Scholar]
  56. BattistaT. ColottiG. IlariA. FiorilloA. Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases.Molecules2020258192410.3390/molecules25081924 32326257
    [Google Scholar]
  57. MansoldoF.R.P. CartaF. AngeliA. CardosoV.S. SupuranC.T. VermelhoA.B. Chagas disease: Perspectives on the past and present and challenges in drug discovery.Molecules20202522548310.3390/molecules25225483 33238613
    [Google Scholar]
  58. NocentiniA. CadoniR. DumyP. SupuranC.T. WinumJ.Y. Carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani chagasi are inhibited by benzoxaboroles.J. Enzyme Inhib. Med. Chem.201833128628910.1080/14756366.2017.1414808 29278948
    [Google Scholar]
  59. SupuranC.T. Inhibition of carbonic anhydrase from Trypanosoma cruzi for the management of Chagas disease: an underexplored therapeutic opportunity.Future Med. Chem.20168331132410.4155/fmc.15.185 26898220
    [Google Scholar]
  60. WinumJ.Y. SupuranC.T. Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors.J. Enzyme Inhib. Med. Chem.201530232132410.3109/14756366.2014.913587 24939097
    [Google Scholar]
  61. VermelhoA.B. da Silva CardosoV. Ricci JuniorE. dos SantosE.P. SupuranC.T. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi.J. Enzyme Inhib. Med. Chem.201833113914610.1080/14756366.2017.1405264 29192555
    [Google Scholar]
  62. AlafeefyA.M. CerusoM. Al-JaberN.A. ParkkilaS. VermelhoA.B. SupuranC.T. A new class of quinazoline-sulfonamides acting as efficient inhibitors against the α-carbonic anhydrase from Trypanosoma cruzi.J. Enzyme Inhib. Med. Chem.201530458158510.3109/14756366.2014.956309 25373503
    [Google Scholar]
  63. AlterioV. CadoniR. EspositoD. VulloD. FioreA.D. MontiS.M. CaporaleA. RuvoM. SechiM. DumyP. SupuranC.T. SimoneG.D. WinumJ.Y. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition.Chem. Commun. (Camb.)20165280119831198610.1039/C6CC06399C 27722534
    [Google Scholar]
  64. NocentiniA. OsmanS.M. RodriguesI.A. CardosoV.S. AlasmaryF.A.S. AlOthmanZ. VermelhoA.B. GratteriP. SupuranC.T. Appraisal of anti-protozoan activity of nitroaromatic benzenesulfonamides inhibiting carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani.J. Enzyme Inhib. Med. Chem.20193411164117110.1080/14756366.2019.1626375 31219348
    [Google Scholar]
  65. BonardiA. ParkkilaS. SupuranC.T. Inhibition studies of the protozoan α-carbonic anhydrase from Trypanosoma cruzi with phenols.J. Enzyme Inhib. Med. Chem.20223712417242210.1080/14756366.2022.2119965 36065959
    [Google Scholar]
  66. PalD.S. MondalD.K. DattaR. Identification of metal dithiocarbamates as a novel class of antileishmanial agents.Antimicrob. Agents Chemother.20155942144215210.1128/AAC.05146‑14 25624329
    [Google Scholar]
  67. SyrjänenL. VermelhoA.B. de Almeida RodriguesI. Corte-RealS. SalonenT. PanP. VulloD. ParkkilaS. CapassoC. SupuranC.T. Cloning, characterization, and inhibition studies of a β-carbonic anhydrase from Leishmania donovani chagasi, the protozoan parasite responsible for leishmaniasis.J. Med. Chem.201356187372738110.1021/jm400939k 23977960
    [Google Scholar]
  68. CerusoM. CartaF. OsmanS.M. AlothmanZ. MontiS.M. SupuranC.T. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties.Bioorg. Med. Chem.201523154181418710.1016/j.bmc.2015.06.050 26145821
    [Google Scholar]
  69. NocentiniA. CadoniR. del PreteS. CapassoC. DumyP. GratteriP. SupuranC.T. WinumJ.Y. Benzoxaboroles as efficient inhibitors of the β-carbonic anhydrases from pathogenic fungi: activity and modeling study.ACS Med. Chem. Lett.20178111194119810.1021/acsmedchemlett.7b00369 29152053
    [Google Scholar]
  70. Al-TamimiA.M.S. Etxebeste-MitxeltorenaM. SanmartínC. Jiménez-RuizA. SyrjänenL. ParkkilaS. SelleriS. CartaF. AngeliA. SupuranC.T. Discovery of new organoselenium compounds as antileishmanial agents.Bioorg. Chem.20198633934510.1016/j.bioorg.2019.01.069 30743174
    [Google Scholar]
  71. AngeliA. Etxebeste-MitxeltorenaM. SanmartínC. EspuelasS. MorenoE. AzquetaA. ParkkilaS. CartaF. SupuranC.T. Tellurides bearing sulfonamides as novel inhibitors of leishmanial carbonic anhydrase with potent antileishmanial activity.J. Med. Chem.20206384306431410.1021/acs.jmedchem.0c00211 32223141
    [Google Scholar]
  72. BuaS. HaapanenS. KuuslahtiM. ParkkilaS. SupuranC. Sulfonamide inhibition studies of a new β-carbonic anhydrase from the pathogenic protozoan Entamoeba histolytica.Int. J. Mol. Sci.20181912394610.3390/ijms19123946 30544802
    [Google Scholar]
  73. HaapanenS. BuaS. KuuslahtiM. ParkkilaS. SupuranC. Cloning, characterization and anion inhibition studies of a β-carbonic anhydrase from the pathogenic protozoan Entamoeba histolytica.Molecules20182312311210.3390/molecules23123112 30486513
    [Google Scholar]
  74. Zolfaghari EmamehR. BarkerH. TolvanenM.E.E. OrtutayC. ParkkilaS. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans.Parasit. Vectors2014713810.1186/1756‑3305‑7‑38 24447594
    [Google Scholar]
  75. Zolfaghari EmamehR. BarkerH. HytönenV.P. TolvanenM.E.E. ParkkilaS. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry.Parasit. Vectors20147140310.1186/1756‑3305‑7‑403 25174433
    [Google Scholar]
  76. UrbańskiL.J. Di FioreA. AziziL. HytönenV.P. KuuslahtiM. BuonannoM. MontiS.M. AngeliA. Zolfaghari EmamehR. SupuranC.T. De SimoneG. ParkkilaS. Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from Trichomonas vaginalis.J. Enzyme Inhib. Med. Chem.20203511292129910.1080/14756366.2020.1774572 32515610
    [Google Scholar]
  77. Van GerwenO.T. MuznyC.A. Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection.F1000 Res.20198166610.12688/f1000research.19972.1 31583080
    [Google Scholar]
  78. UrbańskiL.J. AngeliA. HytönenV.P. Di FioreA. ParkkilaS. De SimoneG. SupuranC.T. Inhibition of the newly discovered β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules.J. Inorg. Biochem.202021311127410.1016/j.jinorgbio.2020.111274 33068968
    [Google Scholar]
  79. UrbańskiL.J. AngeliA. MykuliakV.V. AziziL. KuuslahtiM. HytönenV.P. SupuranC.T. ParkkilaS. Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis.J. Mol. Med. (Berl.)2022100111512410.1007/s00109‑021‑02148‑1 34652457
    [Google Scholar]
  80. UrbańskiL.J. AngeliA. HytönenV.P. Di FioreA. De SimoneG. ParkkilaS. SupuranC.T. Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides.J. Enzyme Inhib. Med. Chem.202136133033510.1080/14756366.2020.1863958 33356653
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673249553231018070920
Loading
/content/journals/cmc/10.2174/0109298673249553231018070920
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test