Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

Background

As a common clinical disease, knee osteoarthritis (KOA) is characterized by chronic changes and articular cartilage wear, while the cartilage contact characteristics of the knee joint during walking are still unclear. It is difficult to implement real-time assistance and treatment for KOA patients accurately.

Objective

To investigate the contact biomechanics of knee cartilage during gait and predict the mechanism and location of cartilage damage, aiming to provide theoretical support for real-time rehabilitation assistance for KOA patients.

Methods

In this study, the subject-specific finite element (FE) method was used to predict the contact characteristics during the stance phase of the gait. A healthy volunteer prepared an intact geometric left knee model based on magnetic resonance scans. The kinematic and dynamic data were collected in a gait experiment and simulated using the personalized musculoskeletal model.

Results

Throughout the gait cycle, the contact pressure, contact area and principal Green-Lagrangian strain in the tibiofemoral joint show two obvious peaks concentrated on the 25% and 75% stance phase. The maximum values were 15.32 MPa, 400.607 mm2, and 24.35% on the tibial side, while 15.58 MPa, 683.538 mm2, and 29.68% on the femoral side, respectively. The contact characteristics were significantly greater in the medial compartment than in the lateral.

Conclusion

A FE simulation method was developed in this study to forecast the contact characteristics of the human knee joint. The prevention, rehabilitation, and treatment of KOA should focus more on the medial compartment close to the intercondylar eminence, both for the femoral and tibial cartilages.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184502666221130111007
2022-10-01
2025-07-12
Loading full text...

Full text loading...

References

  1. Dell’IsolaA. SmithS.L. AndersenM.S. SteultjensM. Knee internal contact force in a varus malaligned phenotype in knee osteoarthritis (KOA).Osteoarthr. Cartil.201725122007201310.1016/j.joca.2017.08.01028882753
    [Google Scholar]
  2. BennettH.J. ShenG. CatesH.E. ZhangS. Effects of toe-in and toe-in with wider step width on level walking knee biomechanics in varus, valgus, and neutral knee alignments.Knee20172461326133410.1016/j.knee.2017.08.05828970124
    [Google Scholar]
  3. HuangA. HullM.L. HowellS.M. DonahueT.H. Identification of cross-sectional parameters of lateral meniscal allografts that predict tibial contact pressure in human cadaveric knees.J. Biomech. Eng.2002124548148910.1115/1.150306112405589
    [Google Scholar]
  4. BinghamJ.T. PapannagariR. Van de VeldeS.K. GrossC. GillT.J. FelsonD.T. RubashH.E. LiG. In vivo cartilage contact deformation in the healthy human tibiofemoral joint.Rheumatology (Oxford)200847111622162710.1093/rheumatology/ken34518775967
    [Google Scholar]
  5. LiG. DeFrateL.E. ParkS.E. GillT.J. RubashH.E. In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models.Am. J. Sports Med.200533110210710.1177/036354650426557715611005
    [Google Scholar]
  6. LiuF. KozanekM. HosseiniA. Van de VeldeS.K. GillT.J. RubashH.E. LiG. In vivo tibiofemoral cartilage deformation during the stance phase of gait.J. Biomech.201043465866510.1016/j.jbiomech.2009.10.02819896131
    [Google Scholar]
  7. Abdel-RahmanE.M. HefzyM.S. Three-dimensional dynamic behaviour of the human knee joint under impact loading.Med. Eng. Phys.199820427629010.1016/S1350‑4533(98)00010‑19728679
    [Google Scholar]
  8. ParkS. LeeS. YoonJ. ChaeS.W. Finite element analysis of knee and ankle joint during gait based on motion analysis.Med. Eng. Phys.201963334110.1016/j.medengphy.2018.11.00330482441
    [Google Scholar]
  9. AdouniM. Shirazi-AdlA. Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait.J. Biomech.201346361962410.1016/j.jbiomech.2012.09.03523123074
    [Google Scholar]
  10. AdouniM. Shirazi-AdlA. Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment.J. Biomech.20144771696170310.1016/j.jbiomech.2014.02.02824636718
    [Google Scholar]
  11. ShuL. YamamotoK. YoshizakiR. YaoJ. SatoT. SugitaN. Multiscale finite element musculoskeletal model for intact knee dynamics.Comput. Biol. Med.202214110502310.1016/j.compbiomed.2021.10502334772508
    [Google Scholar]
  12. BaldwinM.A. ClaryC.W. FitzpatrickC.K. DeacyJ.S. MaletskyL.P. RullkoetterP.J. Dynamic finite element knee simulation for evaluation of knee replacement mechanics.J. Biomech.201245347448310.1016/j.jbiomech.2011.11.05222209313
    [Google Scholar]
  13. Naghibi BeidokhtiH. JanssenD. van de GroesS. HazratiJ. Van den BoogaardT. VerdonschotN. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.J. Biomech.20176511110.1016/j.jbiomech.2017.08.03028917580
    [Google Scholar]
  14. PeñaE. CalvoB. MartínezM.A. DoblaréM. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint.J. Biomech.20063991686170110.1016/j.jbiomech.2005.04.03015993414
    [Google Scholar]
  15. BeillasP. BegemanP.C. YangK.H. KingA.I. ArnouxP.J. KangH.S. KayvantashK. BrunetC. CavalleroC. PrasadP. Lower Limb: Advanced FE model and new experimental data.Stapp Car Crash J.20014546949410.4271/2001‑22‑002217458759
    [Google Scholar]
  16. BeillasP. PapaioannouG. TashmanS. YangK.H. A new method to investigate in vivo knee behavior using a finite element model of the lower limb.J. Biomech.200437710193010.1016/j.jbiomech.2003.11.022
    [Google Scholar]
  17. YoonJ. HaS. LeeS. ChaeS.W. Analysis of contact pressure at knee cartilage during gait with respect to foot progression angle.Int. J. Precis. Eng. Manuf.201819576176610.1007/s12541‑018‑0091‑2
    [Google Scholar]
  18. ZhangL. LiuG. HanB. YanY. FeiJ. MaJ. ZhangY. A comparison of dynamic and static hip-knee-ankle angle during gait in knee osteoarthritis patients and healthy individuals.Appl. Bionics Biomech.2021202111110.1155/2021/623140634853606
    [Google Scholar]
  19. (a DoweidarM.H. CalvoB. AlfaroI. GroenenboomP. DoblaréM. A comparison of implicit and explicit natural element methods in large strains problems: Application to soft biological tissues modeling.Comput. Methods Appl. Mech. Eng.201019925-281691170010.1016/j.cma.2010.01.022
    [Google Scholar]
  20. (b WalkerP.S. LowryM.T. KumarA. The effect of geometric variations in posterior-stabilized knee designs on motion characteristics measured in a knee loading machine.Clin. Orthop. Relat. Res.2014472123824710.1007/s11999‑013‑3088‑223917990
    [Google Scholar]
  21. (c JohnsonK.L. Contact mechanics.New YorkCambrige University Press19858410410.1017/CBO9781139171731.005
    [Google Scholar]
  22. GrossS. AbelE.W. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur.J. Biomech.2001348995100310.1016/S0021‑9290(01)00072‑011448691
    [Google Scholar]
  23. HirokawaS. TsurunoR. Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament.J. Biomech.20003391069107710.1016/S0021‑9290(00)00073‑710854879
    [Google Scholar]
  24. ArmstrongC.G. LaiW.M. MowV.C. An analysis of the unconfined compression of articular cartilage.J. Biomech. Eng.1984106216517310.1115/1.31384756738022
    [Google Scholar]
  25. EberhardtA.W. KeerL.M. LewisJ.L. VithoontienV. An analytical model of joint contact.J. Biomech. Eng.1990112440741310.1115/1.28912042273867
    [Google Scholar]
  26. YangN.H. CanavanP.K. Nayeb-HashemiH. NajafiB. VaziriA. Protocol for constructing subject-specific biomechanical models of knee joint.Comput. Methods Biomech. Biomed. Engin.201013558960310.1080/1025584090338998920521186
    [Google Scholar]
  27. WeissJ.A. GardinerJ.C. Bonifasi-ListaC. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading.J. Biomech.200235794395010.1016/S0021‑9290(02)00041‑612052396
    [Google Scholar]
  28. ButlerD.L. ShehM.Y. StoufferD.C. SamaranayakeV.A. LevyM.S. Surface strain variation in human patellar tendon and knee cruciate ligaments.J. Biomech. Eng.19901121384510.1115/1.28911242308302
    [Google Scholar]
  29. GardinerJ.C. WeissJ.A. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.J. Orthop. Res.20032161098110610.1016/S0736‑0266(03)00113‑X14554224
    [Google Scholar]
  30. Haut DonahueT.L. HullM.L. RashidM.M. JacobsC.R. A finite element model of the human knee joint for the study of tibio-femoral contact.J. Biomech. Eng.2002124327328010.1115/1.147017112071261
    [Google Scholar]
  31. BergmannG. BenderA. GraichenF. DymkeJ. RohlmannA. TrepczynskiA. HellerM.O. KutznerI. Standardized loads acting in knee implants.PLoS One201491e8603510.1371/journal.pone.008603524465856
    [Google Scholar]
  32. GilbertS. ChenT. HutchinsonI.D. ChoiD. VoigtC. WarrenR.F. MaherS.A. Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living.J. Biomech.20144792006201210.1016/j.jbiomech.2013.11.00324296275
    [Google Scholar]
  33. ShriramD. YamakoG. ChosaE. SubburajK. "Biomechanical evaluation of isotropic and shell-core composite meniscal implants for total meniscus replacement: a nonlinear finite element study", IEEE Access20197201914008414010110.1109/ACCESS.2019.2943689
    [Google Scholar]
  34. JeffreyJ.E. GregoryD.W. AspdenR.M. Matrix damage and chondrocyte viability following a single impact load on articular cartilage.Arch. Biochem. Biophys.19953221879610.1006/abbi.1995.14397574698
    [Google Scholar]
  35. WilsonW. van BurkenC. van DonkelaarC. BumaP. van RietbergenB. HuiskesR. Causes of mechanically induced collagen damage in articular cartilage.J. Orthop. Res.200624222022810.1002/jor.2002716435355
    [Google Scholar]
  36. RepoR.U. FinlayJ.B. Survival of articular cartilage after controlled impact.J. Bone Joint Surg., Am.19775981068107610.2106/00004623‑197759080‑00012591538
    [Google Scholar]
  37. WangerinS.D. Development and validation of a human knee joint finite element model for tissue stress and strain predictions during exerciseM.S. thesis, California Polytechnic State University, San Luis Obispo, California, USA201310.15368/theses.2013.209
    [Google Scholar]
  38. YangN.H. Nayeb-HashemiH. CanavanP.K. VaziriA. Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait.J. Orthop. Res.201028121539154710.1002/jor.2117420973057
    [Google Scholar]
  39. RobinsonD.L. KershM.E. WalshN.C. AcklandD.C. de SteigerR.N. PandyM.G. Mechanical properties of normal and osteoarthritic human articular cartilage.J. Mech. Behav. Biomed. Mater.2016619610910.1016/j.jmbbm.2016.01.01526851527
    [Google Scholar]
  40. YangN.H. CanavanP.K. Nayeb-HashemiH. The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage.J. Appl. Biomech.201026443244310.1123/jab.26.4.43221245503
    [Google Scholar]
  41. DaszkiewiczK. ŁuczkiewiczP. Biomechanics of the medial meniscus in the osteoarthritic knee joint.PeerJ20219e1250910.7717/peerj.1250934900428
    [Google Scholar]
  42. HauchK.N. VillegasD.F. Haut DonahueT.L. Geometry, time-dependent and failure properties of human meniscal attachments.J. Biomech.201043346346810.1016/j.jbiomech.2009.09.04319896669
    [Google Scholar]
/content/journals/cmam/10.2174/2666184502666221130111007
Loading
/content/journals/cmam/10.2174/2666184502666221130111007
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): articular cartilage; biomechanics; finite element; gait; knee; Osteoarthritis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test