Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

As calcium phosphate micro/nano-structures (CPMNS) have been suggested, many protocols have been exploited to design new formulations. CPMNS are similar to a bone mineral from the point of view of structure and chemical composition. Some of them, such as hydroxyapatite (HAp), have been commercialized, and they demonstrated sufficient efficiency as hard tissue replacements for various purposes. Due to their biocompatibility, bioaccumulation, bioactivity, osteogenic activity, and anticancer properties, as well as great resemblance to body organs such as bones, these substances are suitable options for the diagnosis and treatment of various diseases. Therefore, recent advances of HAp applications in drug delivery for various diseases, such as cancer, bone disease, and tooth inflammation, are reviewed. Moreover, their implementation for several kinds of drugs, including anticancer, anti-inflammatory, antibiotics, growth factors and analgesics, is investigated.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184501999200420072949
2020-04-29
2025-05-13
Loading full text...

Full text loading...

References

  1. GinebraM-P. TraykovaT. PlanellJ.A. Calcium phosphate cements as bone drug delivery systems: a review.J. Control. Release2006113210211010.1016/j.jconrel.2006.04.00716740332
    [Google Scholar]
  2. KalkhoranA.H.Z. NaghibS.M. VahidiO. RahmanianM. Synthesis and characterization of graphene-grafted gelatin nanocomposite hydrogels as emerging drug delivery systemsBiomed. Phys. Eng. Express42018.05501710.1088/2057‑1976/aad745
    [Google Scholar]
  3. ArkfeldD.G. RubensteinE. Quest for the Holy Grail to cure arthritis and osteoporosis: emphasis on bone drug delivery systems.Adv. Drug Deliv. Rev.200557793994410.1016/j.addr.2005.02.00115876396
    [Google Scholar]
  4. KalantariE. NaghibS.M. A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic.Mater. Sci. Eng. C2019981087109610.1016/j.msec.2018.12.14030812992
    [Google Scholar]
  5. KalantariE. NaghibS.M. IravaniN.J. EsmaeiliR. Naimi-JamalM.R. MozafariM. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical application: Synthesis, characterization, and biological studiesMater. Sci. Eng. C20191052019.10991210.1016/j.msec.2019.10991231546348
    [Google Scholar]
  6. PeacockM. Calcium metabolism in health and disease.Clin. J. Am. Soc. Nephrol.20105S23S3010.2215/CJN.0591080920089499
    [Google Scholar]
  7. KhoshniatS. BourgineA. JulienM. WeissP. GuicheuxJ. BeckL. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals.Cell. Mol. Life Sci.201168220521810.1007/s00018‑010‑0527‑z20848155
    [Google Scholar]
  8. Goretti PenidoM. AlonU.S. Phosphate homeostasis and its role in bone health.Pediatr. Nephrol.201227112039204810.1007/s00467‑012‑2175‑z22552885
    [Google Scholar]
  9. HjertenS. LevinO. TiseliusA. Protein chromatography on calcium phosphate columns.Arch. Biochem. Biophys.195665113215510.1016/0003‑9861(56)90183‑713373414
    [Google Scholar]
  10. UristM.R. HuoY.K. BrownellA.G. HohlW.M. BuyskeJ. LietzeA. TempstP. HunkapillerM. DeLangeR.J. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography.Proc. Natl. Acad. Sci. USA198481237137510.1073/pnas.81.2.3716320184
    [Google Scholar]
  11. BrownW.E. A new calcium phosphate setting cement.J. Dent. Res.198363672
    [Google Scholar]
  12. SeyfooriA. EbrahimiS.A.S. OmidianS. NaghibS.M. Multifunctional magnetic ZnFe2O4-hydroxyapatite nanocomposite particles for local anti-cancer drug delivery and bacterial infection inhibition: an in vitro study.J. Taiwan Institute Chem. Eng.20199650350810.1016/j.jtice.2018.10.018
    [Google Scholar]
  13. AnsariM. NaghibS.M. MoztarzadehF. SalatiA. Synthesis and characterisation of hydroxyapatite-calcium hydroxide for dental composites.Ceram. Silik.201155123126
    [Google Scholar]
  14. CuiX. LiangT. LiuC. YuanY. QianJ. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells.Mater. Sci. Eng. C20166745346010.1016/j.msec.2016.05.03427287142
    [Google Scholar]
  15. LiB. GuoB. FanH. ZhangX. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro.Appl. Surf. Sci.200825535736010.1016/j.apsusc.2008.06.114
    [Google Scholar]
  16. SudimackJ. LeeR.J. Targeted drug delivery via the folate receptor.Adv. Drug Deliv. Rev.200041214716210.1016/S0169‑409X(99)00062‑910699311
    [Google Scholar]
  17. Vivero-EscotoJ.L. SlowingI.I. WuC-W. LinV.S.Y. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere.J. Am. Chem. Soc.2009131103462346310.1021/ja900025f19275256
    [Google Scholar]
  18. SlowingI.I. TrewynB.G. GiriS. LinV.Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications.Adv. Funct. Mater.2007171225123610.1002/adfm.200601191
    [Google Scholar]
  19. ChenF.H. GaoQ. NiJ.Z. The grafting and release behavior of doxorubincin from Fe(3)O(4)@SiO(2) core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug deliveryNanotechnology200819162008.16510310.1088/0957‑4484/19/16/16510321825634
    [Google Scholar]
  20. KalantariE. NaghibS.M. Naimi-JamalM.R. AliahmadiA. IravaniN.J. MozafariM. Nanostructured monticellite for tissue engineering applications-Part I: Microstructural and physicochemical characteristics.Ceram. Int.201844127311273810.1016/j.ceramint.2018.04.076
    [Google Scholar]
  21. KalantariE. NaghibS.M. IravaniN.J. AliahmadiA. Naimi-JamalM.R. MozafariM. Nanostructured monticellite for tissue engineering applications-Part II: Molecular and biological characteristics.Ceram. Int.201844147041471110.1016/j.ceramint.2018.05.098
    [Google Scholar]
  22. RitterJ.A. EbnerA.D. DanielK.D. StewartK.L. Application of high gradient magnetic separation principles to magnetic drug targeting.J. Magn. Magn. Mater.200428018420110.1016/j.jmmm.2004.03.012
    [Google Scholar]
  23. SukhodubL.B. SukhodubL.F. PrylutskyyY.I. StrutynskaN.Y. VovchenkoL.L. SorocaV.M. SlobodyanikN.S. TsierkezosN.G. RitterU. Composite material based on hydroxyapatite and multi-walled carbon nanotubes filled by iron: preparation, properties and drug release ability.Mater. Sci. Eng. C20189360661410.1016/j.msec.2018.08.01930274092
    [Google Scholar]
  24. KolanthaiE. Abinaya SinduP. Thanigai ArulK. Sarath ChandraV. ManikandanE. Narayana KalkuraS. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.J. Photochem. Photobiol. B201716622023110.1016/j.jphotobiol.2016.12.00528012416
    [Google Scholar]
  25. NotholtA.J.G. SheldonR.P. DavidsonD. Phosphate deposits of the world: phosphate rock resources.Cambridge University PressNew York20052
    [Google Scholar]
  26. ZaninY.N. The classification of calcium phosphates of phosphorites.Lithol. Miner. Resour.20043928128210.1023/B:LIMI.0000027613.56744.c8
    [Google Scholar]
  27. ElorzaJ. AstibiaH. MurelagaX. Pereda-SuberbiolaX. Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Laño, Iberian Peninsula): microstructural, petrological and geochemical features.Cretac. Res.19992016918710.1006/cres.1999.0144
    [Google Scholar]
  28. ChakhmouradianA.R. MediciL. Clinohydroxylapatite: a new apatite-group mineral from northwestern Ontario (Canada), and new data on the extent of Na-S substitution in natural apatites.Eur. J. Mineral.20061810511210.1127/0935‑1221/2006/0018‑0105
    [Google Scholar]
  29. MathewM. TakagiS. Structures of biological minerals in dental research.J. Res. Natl. Inst. Stand. Technol.200110661035104410.6028/jres.106.05427500063
    [Google Scholar]
  30. KleinC. Brushite from the island of Mona (between Haiti and Puerto Rico)Sitzber. K. Preuss. Aka.19011901720725
    [Google Scholar]
  31. MerrillG.P. On the calcium phosphate in meteoric stonesAmerican J. Sci.1917322324
    [Google Scholar]
  32. FordW.E. A remarkable crystal of apatite from Mount Apatite, Auburn, Me.Am. J. Sci.19174424524610.2475/ajs.s4‑44.261.245
    [Google Scholar]
  33. HogarthD.D. The discovery of apatite on the Lievre River, Quebec.Mineral. Rec.19745178182
    [Google Scholar]
  34. PanY. FleetM.E. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors.Rev. Mineral. Geochem.482002134910.2138/rmg.2002.48.2
    [Google Scholar]
  35. WhiteT. FerrarisC. KimJ. MadhaviS. Apatite-an adaptive framework structure.Rev. Mineral. Geochem.57200530740110.2138/rmg.2005.57.10
    [Google Scholar]
  36. HughesJ.M. RakovanJ. The crystal structure of apatite, Ca5 (PO4) 3 (F, OH, Cl)Rev. Mineral. Geochem.20024811210.2138/rmg.2002.48.1
    [Google Scholar]
  37. MartinR.I. BrownP.W. Phase equilibria among acid calcium phosphates.J. Am. Ceram. Soc.1997801263126610.1111/j.1151‑2916.1997.tb02973.x
    [Google Scholar]
  38. WangL. NancollasG.H. Calcium orthophosphates: crystallization and dissolution.Chem. Rev.2008108114628466910.1021/cr078257418816145
    [Google Scholar]
  39. KienP.T. Dai PhuH. LinhN.V.V. QuyenT.N. HoaN.T. Recent Trends in Hydroxyapatite (HA) Synthesis and the Synthesis Report of Nanostructure HA by Hydrothermal Reaction.Adv. Exp. Med. Biol.2018107734335410.1007/978‑981‑13‑0947‑2_18
    [Google Scholar]
  40. PramanikS. AgarwalA.K. RaiK.N. GargA. Development of high strength hydroxyapatite by solid-state-sintering process.Ceram. Int.20073341942610.1016/j.ceramint.2005.10.025
    [Google Scholar]
  41. FihriA. LenC. VarmaR.S. SolhyA. Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis.Coord. Chem. Rev.2017347487610.1016/j.ccr.2017.06.009
    [Google Scholar]
  42. ZhangY. LuJ. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent.Cryst. Growth Des.200882101210710.1021/cg060880e
    [Google Scholar]
  43. CaiY. MeiD. JiangT. YaoJ. Synthesis of oriented hydroxyapatite crystals: effect of reaction conditions in the presence or absence of silk sericin.Mater. Lett.2010642676267810.1016/j.matlet.2010.08.071
    [Google Scholar]
  44. VeluG. GopalB. Preparation of nanohydroxyapatite by a sol-gel method using alginic acid as a complexing agent.J. Am. Ceram. Soc.2009922207221110.1111/j.1551‑2916.2009.03221.x
    [Google Scholar]
  45. HsiehM-F. PerngL-H. ChinT-S. PerngH-G. Phase purity of sol-gel-derived hydroxyapatite ceramic.Biomaterials200122192601260710.1016/S0142‑9612(00)00448‑811519779
    [Google Scholar]
  46. KimI-S. KumtaP.N. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder.Mater. Sci. Eng. B2004111232236
    [Google Scholar]
  47. EthirajanA. ZienerU. ChuvilinA. KaiserU. CölfenH. LandfesterK. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process.Adv. Funct. Mater.2008182221222710.1002/adfm.200800048
    [Google Scholar]
  48. SahaS.K. BanerjeeA. BanerjeeS. BoseS. Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: role of templates in controlling morphology.Mater. Sci. Eng. C2009292294230110.1016/j.msec.2009.05.019
    [Google Scholar]
  49. GuoG. SunY. WangZ. GuoH. Preparation of hydroxyapatite nanoparticles by reverse microemulsion.Ceram. Int.20053186987210.1016/j.ceramint.2004.10.003
    [Google Scholar]
  50. DurucanC. BrownP.W. α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature.J. Mater. Sci. Mater. Med.200011636537110.1023/A:100893402444015348018
    [Google Scholar]
  51. ZhangG. ChenJ. YangS. YuQ. WangZ. ZhangQ. Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method.Mater. Lett.20116557257410.1016/j.matlet.2010.10.078
    [Google Scholar]
  52. GuoX. XiaoP. LiuJ. ShenZ. Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering.J. Am. Ceram. Soc.2005881026102910.1111/j.1551‑2916.2005.00198.x
    [Google Scholar]
  53. TsiourvasD. TsetsekouA. KammenouM.I. BoukosN. Controlling the formation of hydroxyapatite nanorods with dendrimers.J. Am. Ceram. Soc.2011942023202910.1111/j.1551‑2916.2010.04342.x
    [Google Scholar]
  54. MyungS.W. KoY.M. KimB.H. Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface.Appl. Surf. Sci.2013287626810.1016/j.apsusc.2013.09.064
    [Google Scholar]
  55. GhoshS.K. RoyS.K. KunduB. DattaS. BasuD. Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions.Mater. Sci. Eng. B2011176142110.1016/j.mseb.2010.08.006
    [Google Scholar]
  56. SasikumarS. VijayaraghavanR. Synthesis and characterization of bioceramic calcium phosphates by rapid combustion synthesis.J. Mater. Sci. Technol.2010261114111810.1016/S1005‑0302(11)60010‑8
    [Google Scholar]
  57. AizawaM. HanazawaT. ItataniK. HowellF.S. KishiokaA. Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique.J. Mater. Sci.1999342865287310.1023/A:1004635418655
    [Google Scholar]
  58. SzcześA. HołyszL. ChibowskiE. Synthesis of hydroxyapatite for biomedical applications.Adv. Colloid Interface Sci.201724932133010.1016/j.cis.2017.04.00728457501
    [Google Scholar]
  59. GibaldiM. PharmacokineticsD.P. Drugs and the Pharmaceutical Sciences: A Series of Textbooks and Monographs.Marcel DekkerNew York1982
    [Google Scholar]
  60. MuC-F. ShenJ. LiangJ. ZhengH-S. XiongY. WeiY-H. LiF. Targeted drug delivery for tumor therapy inside the bone marrow.Biomaterials201815519120210.1016/j.biomaterials.2017.11.02929182960
    [Google Scholar]
  61. KozluS. SahinA. UltavG. YerlikayaF. CalisS. CapanY. Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles.J. Drug Deliv. Sci. Technol.20184521321910.1016/j.jddst.2018.02.004
    [Google Scholar]
  62. LiD. ZhuY. LiangZ. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery.Mater. Res. Bull.2013482201220410.1016/j.materresbull.2013.02.049
    [Google Scholar]
  63. Ramírez-AgudeloR. ScheuermannK. Gala-GarcíaA. MonteiroA.P.F. Pinzón-GarcíaA.D. CortésM.E. SinisterraR.D. Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxy-apatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity.Mater. Sci. Eng. C201883253410.1016/j.msec.2017.08.01229208285
    [Google Scholar]
  64. ZhangY. ZhangL. BanQ. LiJ. LiC-H. GuanY-Q. Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery.Nanomedicine201814235336410.1016/j.nano.2017.11.01229157980
    [Google Scholar]
  65. FarrellK.B. KarpeiskyA. ThammD.H. ZinnenS. Bisphosphonate conjugation for bone specific drug targeting.Bone Rep.201839476010.1016/j.bonr.2018.06.007
    [Google Scholar]
  66. EliazN. MetokiN. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications.Materials (Basel)201710433410.3390/ma1004033428772697
    [Google Scholar]
  67. BoseS. TarafderS. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review.Acta Biomater.2012841401142110.1016/j.actbio.2011.11.01722127225
    [Google Scholar]
  68. OfudjeE.A. RajendranA. AdeogunA.I. IdowuM.A. KareemS.O. PattanayakD.K. Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications.Adv. Powder Technol.2018291810.1016/j.apt.2017.09.008
    [Google Scholar]
  69. GaihreB. UswattaS. JayasuriyaA.C. Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair.Colloids Surf. B Biointerfaces201816515816410.1016/j.colsurfb.2018.02.03429477936
    [Google Scholar]
  70. Gooneh-FarahaniS. Naimi-JamalM.R. NaghibS.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review.Expert Opin. Drug Deliv.2019161799910.1080/17425247.2019.155625730514124
    [Google Scholar]
  71. BanerjeeS. BagchiB. BhandaryS. KoolA. HoqueN.A. BiswasP. PalK. ThakurP. DasK. KarmakarP. DasS. Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications.Colloids Surf. B Biointerfaces201817130030710.1016/j.colsurfb.2018.07.02830048905
    [Google Scholar]
  72. RenB. ChenX. DuS. MaY. ChenH. YuanG. LiJ. XiongD. TanH. LingZ. ChenY. HuX. NiuX. Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineeringInt. J. Biol. Macromol.2018118Pt A1257126610.1016/j.ijbiomac.2018.06.20030021396
    [Google Scholar]
  73. SukhodubL.F. SukhodubL.B. LitsisO. PrylutskyyY. Synthesis and characterization of hydroxyapatite-alginate nanostructured composites for the controlled drug release.Mater. Chem. Phys.201821722823410.1016/j.matchemphys.2018.06.071
    [Google Scholar]
  74. PadmanabhanV.P. KulandaiveluR. NellaiappanS.N.T.S. New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications.Mater. Sci. Eng. C20189268569310.1016/j.msec.2018.07.01830184795
    [Google Scholar]
  75. FarokhiM. MottaghitalabF. SamaniS. ShokrgozarM.A. KunduS.C. ReisR.L. FatahiY. KaplanD.L. Silk fibroin/hydroxyapatite composites for bone tissue engineering.Biotechnol. Adv.2018361689110.1016/j.biotechadv.2017.10.00128993220
    [Google Scholar]
  76. ZhangJ. ShishatskayaE.I. VolovaT.G. da SilvaL.F. ChenG-Q. Polyhydroxyalkanoates (PHA) for therapeutic applications.Mater. Sci. Eng. C20188614415010.1016/j.msec.2017.12.03529525089
    [Google Scholar]
  77. SongF. LiX. WangQ. LiaoL. ZhangC. Nanocomposite hydrogels and their applications in drug delivery and tissue engineering.J. Biomed. Nanotechnol.2015111405210.1166/jbn.2015.196226301299
    [Google Scholar]
  78. PooniaN. LatherV. PanditaD. Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer.Drug Discov. Today201823231533210.1016/j.drudis.2017.10.02229128658
    [Google Scholar]
  79. CaoZ. AdnanN.N.M. WangG. RawalA. LiuR. LiangK. ZhaoL. GoodingJ.J. BoyerC. Conjugating layered double hydroxide nanoparticles with phosphonic acid terminated polyethylene glycol for improved particle stability.J. Colloid Interface Sci.201852124225110.1016/j.jcis.2018.03.00629574343
    [Google Scholar]
  80. ChenL. MccrateJ.M. LeeJ.C. LiH. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cellsNanotechnology2011.105708221010.1088/0957‑4484/22/10/10570821289408
    [Google Scholar]
  81. BoseS. SarkarN. BanerjeeD. Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration.Mater. Today Chem.2018811012010.1016/j.mtchem.2018.03.005
    [Google Scholar]
  82. PawarA. ThakkarS. MisraM. A bird’s eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field.J. Control. Release201828286179200
    [Google Scholar]
  83. Sobczak-KupiecA. PlutaK. DrabczykA. WłośM. TyliszczakB. Synthesis and characterization of ceramic-polymer composites containing bioactive synthetic hydroxyapatite for biomedical applications.Ceram. Int.201844136301363810.1016/j.ceramint.2018.04.199
    [Google Scholar]
  84. ZhangY. DongK. WangF. WangH. WangJ. JiangZ. DiaoS. Three dimensional macroporous hydroxyapatite/chitosan foam-supported polymer micelles for enhanced oral delivery of poorly soluble drugs.Colloids Surf. B Biointerfaces201817049750410.1016/j.colsurfb.2018.06.05329960950
    [Google Scholar]
  85. YeF. GuoH. ZhangH. HeX. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system.Acta Biomater.2010662212221810.1016/j.actbio.2009.12.01420004747
    [Google Scholar]
  86. ChenF. HuangP. ZhuY-J. WuJ. ZhangC-L. CuiD-X. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.Biomaterials201132349031903910.1016/j.biomaterials.2011.08.03221875748
    [Google Scholar]
  87. ChenL-j. TianC. JunC.A.O. LiuB-l. ShaoC-s. ZhouK-c. ZhangD. Effect of Tb/Mg doping on composition and physical properties of hydroxyapatite nanoparticles for gene vector application.Trans. Nonferrous Met. Soc. China20182812513610.1016/S1003‑6326(18)64645‑X
    [Google Scholar]
  88. O’NeillE. AwaleG. DaneshmandiL. UmerahO. LoK.W.H. The roles of ions on bone regeneration.Drug Discov. Today201823487989010.1016/j.drudis.2018.01.04929407177
    [Google Scholar]
  89. SezerN. EvisZ. KayhanS.M. TahmasebifarA. KoçM. Review of magnesium-based biomaterials and their applicationsJournal of magnesium and alloys20186234310.1016/j.jma.2018.02.003
    [Google Scholar]
  90. KimH. MondalS. JangB. ManivasaganP. MoorthyM.S. OhJ. Biomimetic synthesis of metal-hydroxyapatite (Au-HAp, Ag-HAp, Au-Ag-HAp): structural analysis, spectroscopic characterization and biomedical application.Ceram. Int.201844204902050010.1016/j.ceramint.2018.08.045
    [Google Scholar]
  91. KimH. MondalS. BharathirajaS. ManivasaganP. MoorthyM.S. OhJ. Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application.Ceram. Int.2018446062607110.1016/j.ceramint.2017.12.235
    [Google Scholar]
  92. FathyA.A. ButlerI.S. ElrahmanM.A. Jean-ClaudeB.J. MostafaS.I. Anticancer evaluation and drug delivery of new palladium (II) complexes based on the chelate of alendronate onto hydroxyapatite nanoparticles.Inorg. Chim. Acta2018473445010.1016/j.ica.2017.12.015
    [Google Scholar]
  93. RamadasM. BharathG. PonpandianN. BallamuruganA.M. Investigation on biophysical properties of Hydroxyapatite/Graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications.Mater. Chem. Phys.201719917918410.1016/j.matchemphys.2017.07.001
    [Google Scholar]
  94. El-MeliegyE. MabroukM. KamalG.M. AwadS.M. El-TohamyA.M. El GoharyM.I. Anticancer drug carriers using dicalcium phosphate/dextran/CMCnanocomposite scaffolds.J. Drug Deliv. Sci. Technol.20184531532210.1016/j.jddst.2018.03.026
    [Google Scholar]
  95. SherjeA.P. JadhavM. DravyakarB.R. KadamD. Dendrimers: A versatile nanocarrier for drug delivery and targeting.Int. J. Pharm.2018548170772010.1016/j.ijpharm.2018.07.03030012508
    [Google Scholar]
  96. PlacenteD. BenediniL.A. BaldiniM. LaiuppaJ.A. SantillánG.E. MessinaP.V. Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations.Int. J. Pharm.2018548155957010.1016/j.ijpharm.2018.07.03630016671
    [Google Scholar]
  97. GonzalezG. SagarzazuA. CordovaA. GomesM.E. SalasJ. ContrerasL. Noris-SuarezK. LascanoL. Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery.Microporous Mesoporous Mater.201825625126510.1016/j.micromeso.2017.07.021
    [Google Scholar]
  98. LiD. HuangX. WuY. LiJ. ChengW. HeJ. TianH. HuangY. Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug.Biomater. Sci.20164227228010.1039/C5BM00228A26484364
    [Google Scholar]
  99. MunirM.U. IhsanA. SarwarY. BajwaS.Z. BanoK. TehseenB. ZebN. HussainI. AnsariM.T. SaeedM. LiJ. IqbalM.Z. WuA. KhanW.S. Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features.Int. J. Pharm.2018544111212010.1016/j.ijpharm.2018.04.02929678543
    [Google Scholar]
  100. ParentM. BaradariH. ChampionE. DamiaC. Viana-TrecantM. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: a review of the parameters affecting the loading and release of the therapeutic substance.J. Control. Release201725211710.1016/j.jconrel.2017.02.01228232225
    [Google Scholar]
  101. YangY-H. LiuC-H. LiangY-H. LinF-H. WuK.C.W. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery.J. Mater. Chem. B Mater. Biol. Med.201312447245010.1039/c3tb20365d
    [Google Scholar]
  102. SubhapradhaN. AbudhahirM. AathiraA. SrinivasanN. MoorthiA. Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering.Int. J. Biol. Macromol.2018110657310.1016/j.ijbiomac.2017.11.14629197570
    [Google Scholar]
  103. ZhangQ. HuaY. Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids.Mater. Chem. Phys.2010119576410.1016/j.matchemphys.2009.07.035
    [Google Scholar]
  104. SistanipourE. MeshkiniA. OveisiH. Catechin-conjugated mesoporous hydroxyapatite nanoparticle: a novel nano-antioxidant with enhanced osteogenic property.Colloids Surf. B Biointerfaces201816932933910.1016/j.colsurfb.2018.05.04629800908
    [Google Scholar]
  105. MartinV. BettencourtA. Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties.Mater. Sci. Eng. C20188236337110.1016/j.msec.2017.04.03829025670
    [Google Scholar]
  106. ChenS. LiR. LiX. XieJ. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.Adv. Drug Deliv. Rev.201813218821310.1016/j.addr.2018.05.00129729295
    [Google Scholar]
  107. SridharR. LakshminarayananR. MadhaiyanK. Amutha BarathiV. LimK.H.C. RamakrishnaS. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals.Chem. Soc. Rev.201544379081410.1039/C4CS00226A25408245
    [Google Scholar]
  108. MokwenaM.G. KrugerC.A. IvanM-T. HeidiA. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.Photodiagn. Photodyn. Ther.20182214715410.1016/j.pdpdt.2018.03.00629588217
    [Google Scholar]
  109. LoperaA.A. MontoyaA. VélezI.D. RobledoS.M. GarciaC.P. Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis.Photodiagn. Photodyn. Ther.20182113814610.1016/j.pdpdt.2017.11.01729198762
    [Google Scholar]
  110. CalejoM.T. IlmarinenT. SkottmanH. KellomäkiM. Breath figures in tissue engineering and drug delivery: state-of-the-art and future perspectives.Acta Biomater.201866446610.1016/j.actbio.2017.11.04329183847
    [Google Scholar]
  111. TrofimovA.D. IvanovaA.A. ZyuzinM.V. TiminA.S. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: fresh outlook and future perspectives.Pharmaceutics201810416710.3390/pharmaceutics1004016730257514
    [Google Scholar]
  112. LimS.H. KathuriaH. TanJ.J.Y. KangL. 3D printed drug delivery and testing systems - a passing fad or the future?Adv. Drug Deliv. Rev.201813213916810.1016/j.addr.2018.05.00629778901
    [Google Scholar]
  113. LiM. ZhangF. SuY. ZhouJ. WangW. Nanoparticles designed to regulate tumor microenvironment for cancer therapy.Life Sci.2018201374410.1016/j.lfs.2018.03.04429577880
    [Google Scholar]
  114. RotmanS.G. GrijpmaD.W. RichardsR.G. MoriartyT.F. EglinD. GuillaumeO. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics.J. Control. Release2018269889910.1016/j.jconrel.2017.11.00929127000
    [Google Scholar]
  115. TruongN.P. WhittakerM.R. MakC.W. DavisT.P. The importance of nanoparticle shape in cancer drug delivery.Expert Opin. Drug Deliv.201512112914210.1517/17425247.2014.95056425138827
    [Google Scholar]
/content/journals/cmam/10.2174/2666184501999200420072949
Loading
/content/journals/cmam/10.2174/2666184501999200420072949
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test