Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

Soft materials, including elastomers and gels, are pervasive in biological systems and technological applications. Despite the rapid developments of soft materials in the recent decades, it is still challenging to theoretically model and predict the large-deformation behaviors of soft structures.

The goal of this work is to give a general theoretical model to investigate the large deformation of a cantilevered soft beam under various loads. In particular, the applicability of the inextensibility assumption of the beam centerline is explored.

The governing equations of the soft beam system are derived according to the principle of minimum potential energy. In order to investigate the large deformation of the soft beam, the curvature of the beam centerline is exactly considered and the Yeoh model is utilized to account for the hyperelasticity of the soft beam. The derived ordinary differential equations are discretized by the Galerkin method and then solved by the iterative algorithm.

Based on the proposed theoretical model, large bending deformations of the cantilevered soft beam are analyzed for various types of external loads, including uniformly distributed force, tip-end concentrated force, and non-uniformly distributed force. Different values of the amplitude of the external loads are considered and fruitful deformed configurations are presented.

The proposed model is able to study the large deformation of the soft beam effectively. The inextensibility assumption of the beam centerline is applicable when the amplitude of the external load is relatively small. When the amplitude of the external load is sufficiently large, the extension of the centerline needs to be considered.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184501999200909151326
2020-09-09
2025-05-10
Loading full text...

Full text loading...

References

  1. KimS. LaschiC. TrimmerB. Soft robotics: a bioinspired evolution in robotics.Trends Biotechnol.201331528729410.1016/j.tibtech.2013.03.00223582470
    [Google Scholar]
  2. RusD. TolleyM.T. Design, fabrication and control of soft robots.Nature2015521755346747510.1038/nature1454326017446
    [Google Scholar]
  3. GatesB.D. Materials science. Flexible electronics.Sci.200932359211566156710.1126/science.117123019299605
    [Google Scholar]
  4. NathanA. AhnoodA. ColeM.T. LeeS. SuzukiY. HiralalP. BonaccorsoF. HasanT. Garcia-GancedoL. DyadyushaA. HaqueS. AndrewP. HofmannS. MoultrieJ. ChuD. FlewittA.J. FerrariA.C. KellyM.J. RobertsonJ. AmaratungaG.A.J. MilneW.I. Flexible electronics: the next ubiquitous platform.Proc. IEEE20121001486151710.1109/JPROC.2012.2190168
    [Google Scholar]
  5. YanZ.G. WangB.L. WangK.F. ZhangC. A novel cellular substrate for flexible electronics with negative Poisson ratios under large stretching.Int. J. Mech. Sci.201915131432110.1016/j.ijmecsci.2018.11.026
    [Google Scholar]
  6. BillinghurstM. StarnerT. Wearable devices: new ways to manage information.Computer199932576410.1109/2.738305
    [Google Scholar]
  7. SonD. LeeJ. QiaoS. GhaffariR. KimJ. LeeJ.E. SongC. KimS.J. LeeD.J. JunS.W. YangS. ParkM. ShinJ. DoK. LeeM. KangK. HwangC.S. LuN. HyeonT. KimD.H. Multifunctional wearable devices for diagnosis and therapy of movement disorders.Nat. Nanotechnol.20149539740410.1038/nnano.2014.3824681776
    [Google Scholar]
  8. BoseS. VahabzadehS. BandyopadhyayA. Bone tissue engineering using 3D printing.Mater. Today20131649650410.1016/j.mattod.2013.11.017
    [Google Scholar]
  9. SchubertC. van LangeveldM.C. DonosoL.A. Innovations in 3D printing: a 3D overview from optics to organs.Br. J. Ophthalmol.201498215916110.1136/bjophthalmol‑2013‑30444624288392
    [Google Scholar]
  10. SydneyG.A. MatsumotoE.A. NuzzoR.G. Mahadevan. L.; Lewis, J. A. Biomimetic 4D printing.Nat. Mater.20161541341810.1038/nmat4544
    [Google Scholar]
  11. MomeniF. LiuX. NiJ. A review of 4D printing.Mater. Des.2017122427910.1016/j.matdes.2017.02.068
    [Google Scholar]
  12. KatzJ.S. BurdickJ.A. Light-responsive biomaterials: development and applications.Macromol. Biosci.201010433934810.1002/mabi.20090029720014197
    [Google Scholar]
  13. YoshidaR. SakaiK. OkanoT. SakuraiY. YouH.B. SungW.K. Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: I. Drug release.J. Biomater. Sci. Polym. Ed.19923155162
    [Google Scholar]
  14. MiyajimaD. TashiroK. AraokaF. TakezoeH. KimJ. KatoK. TakataM. AidaT. Liquid crystalline corannulene responsive to electric field.J. Am. Chem. Soc.20091311444510.1021/ja808396b19128171
    [Google Scholar]
  15. KimY. YukH. ZhaoR. ChesterS.A. ZhaoX. Printing ferromagnetic domains for untethered fast-transforming soft materials.Nature2018558770927427910.1038/s41586‑018‑0185‑029899476
    [Google Scholar]
  16. GongM. WanP. MaD. ZhongM. LiaoM. YeJ. ShiR. ZhangL. Flexible breathable nanomesh electronic devices for on-demand therapy.Adv. Funct. Mater201929190212710.1002/adfm.201902127
    [Google Scholar]
  17. LiT. LiG. LiangY. ChengT. DaiJ. YangX. LiuB. ZengZ. HuangZ. LuoY. XieT. YangW. Fast-moving soft electronic fish.Sci. Adv.201734e160204510.1126/sciadv.160204528435879
    [Google Scholar]
  18. PamplonaD.C. WeberH.I. SampaioG.R. Analytical, numerical and experimental analysis of continuous indentation of a flat hyperelastic circular membrane by a rigid cylindrical indenter.Int. J. Mech. Sci.201487182510.1016/j.ijmecsci.2014.05.028
    [Google Scholar]
  19. JinC. DavoodabadiA. LiJ. WangY. SinglerT. Spherical indentation of a freestanding circular membrane revisited: analytical solutions and experiments.J. Mech. Phys. Solids20171008510210.1016/j.jmps.2017.01.005
    [Google Scholar]
  20. ZhangC. FanL. TanY. Sequential limit analysis for clamped circular membranes involving large deformation subjected to pressure load.Int. J. Mech. Sci.201915544044910.1016/j.ijmecsci.2019.03.011
    [Google Scholar]
  21. AnaniY. RahimiG.H. Stress analysis of rotating cylindrical shell composed of functionally graded incompressible hyperelastic materials.Int. J. Mech. Sci.201610812212810.1016/j.ijmecsci.2016.02.003
    [Google Scholar]
  22. AlmasiA. BaghaniM. MoallemiA. Thermomechanical analysis of hyperelastic thick-walled cylindrical pressure vessels, analytical solutions and FEM.Int. J. Mech. Sci.201713042643610.1016/j.ijmecsci.2017.06.033
    [Google Scholar]
  23. SoaresR.M. AmaralP.F.T. SilvaF.M.A. GonçalvesP.B. Non-linear breathing motions and instabilities of a pressure-loaded spherical hyperelastic membrane.Nonlinear Dyn.20209935137210.1007/s11071‑019‑04855‑4
    [Google Scholar]
  24. JungS.P. ParkT.W. ChungW.S. Dynamic analysis of rubber-like material using absolute nodal coordinate formulation based on the non-linear constitutive law.Nonlinear Dyn.20116314915710.1007/s11071‑010‑9792‑5
    [Google Scholar]
  25. XuQ. LiuJ. An improved dynamic model for a silicone material beam with large deformation.Lixue Xuebao20183474475310.1007/s10409‑018‑0759‑y
    [Google Scholar]
  26. ReissnerE. On one-dimensional finite-strain beam theory: the plane problem.Z. Angew. Math. Phys.19722379580410.1007/BF01602645
    [Google Scholar]
  27. SimoJ.C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I.Comput. Methods Appl. Math.1985495570
    [Google Scholar]
  28. AttardM.M. Finite strain-beam theory.Int. J. Solids Struct.2003404563458410.1016/S0020‑7683(03)00216‑6
    [Google Scholar]
  29. HeL. LouJ. DongY. KitipornchaiS. YangJ. Variational modeling of plane-strain hyperelastic thin beams with thickness-stretching effect.Acta Mech.20182294845486110.1007/s00707‑018‑2258‑4
    [Google Scholar]
  30. AmabiliM. BalasubramanianP. BreslavskyI.D. FerrariG. GarzieraR. RiabovaK. Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate.J. Sound Vibrat.2016385819210.1016/j.jsv.2016.09.015
    [Google Scholar]
  31. BalasubramanianP. FerrariG. AmabiliM. Del PradoZ.J.G.N. “Experimental and theoretical study on large amplitude vibrations of clamped rubber plates”, Int. J. Non-Lin.Mech.2017943645
    [Google Scholar]
  32. AmabiliM. BreslavskyI.D. ReddyJ.N. Nonlinear higher-order shell theory for incompressible biological hyperelastic materials.Comput. Methods Appl. Math.2019346841861
    [Google Scholar]
  33. MarckmannG. VerronE. Comparison of hyperelastic models for rubber-like materials.Rubber Chem. Technol.20067983585810.5254/1.3547969
    [Google Scholar]
  34. SemlerC. LiG.X. PaïdoussisM.P. The non-linear equations of motion of pipes conveying fluid.J. Sound Vibrat.199416957759910.1006/jsvi.1994.1035
    [Google Scholar]
  35. YeohO.H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates.Rubber Chem. Technol.19906379280510.5254/1.3538289
    [Google Scholar]
  36. ChenW. WangL. Theoretical modeling and exact solution for extreme bending deformation of hard-magnetic soft beamsASME J. Appl. Mech.2020.0410028710.1115/1.4045716
    [Google Scholar]
  37. ChenW. YanZ. WangL. Complex transformations of hard-magnetic soft beams by designing residual magnetic flux densitySoft Matter20201663796388 https://pubs.rsc.org/en/content/articlelanding/2020/sm/c9sm02529d
    [Google Scholar]
/content/journals/cmam/10.2174/2666184501999200909151326
Loading
/content/journals/cmam/10.2174/2666184501999200909151326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test