Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

Nanocomposites comprised of a polymer matrix and various types of nanosized fillers have remained one of the most important engineering materials and continue to draw great interest in the research community and industry. In particular, graphene in nanocomposites that possess high thermal conductivity and excellent mechanical, electrical, and optical properties have turned out to be promising fillers for making the next generation of advanced high-performance materials.

Though large-scale production of graphene-based nanocomposites is a bit challenging due to the mechanical, functional, and interfacial properties of the graphene and polymer matrix under severe loading conditions, the automotive and off-highway machinery industries are expected to utilize the most modern composite materials, such as graphene-based nanocomposites, to create lighter, stronger, safer, and more energy-efficient cars in the future. Graphene-based material strategies have been investigated and demonstrated to be effective for structural applications in various industries, including electronics, electromechanical, and energy systems. However, currently, there is only limited research highlighting the specific knowledge available for design engineers and researchers involved in providing lightweight but strong solutions using graphene-based materials for automotive and off-highway vehicle applications.

The present review presents an overview of the latest studies that utilize graphene-based nanomaterials and their composites in automotive and off-highway machinery applications. First, the paper describes the concept of traditional composites used presently in the engineering industries by considering its advantages and limitations. Then, it highlights the key benefits of using nanostructured carbon materials, such as graphene, through some recent studies available in the literature. Subsequently, it depicts the various mechanisms of integrating graphene as polymer reinforcements within the composite materials based on the survey and their related modelling, designing, and manufacturing capabilities suitable for the automotive and off-highway machinery industry. Finally, it outlines the available experimental evidence for graphene-based composites. To lay the groundwork for future work in this exciting area, the paper discusses the current challenges as well as future prospects in the field.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184502666220429134113
2022-10-01
2025-03-10
Loading full text...

Full text loading...

References

  1. CheahL.W. Cars on a diet: The material and energy impacts of passenger vehicle weight reduction in the US.Massachusetts Institute of Technology2010
    [Google Scholar]
  2. De SciarraF.M. RussoP. Experimental characterization, predictive mechanical and thermal modeling of nanostructures and their polymer composites.William Andrew2018
    [Google Scholar]
  3. SinghV. JoungD. ZhaiL. DasS. KhondakerS.I. SealS. Graphene based materials: Past, present and future.Prog. Mater. Sci.20115681178127110.1016/j.pmatsci.2011.03.003
    [Google Scholar]
  4. PapageorgiouD.G. KinlochI.A. YoungR.J. Mechanical properties of graphene and graphene-based nanocomposites.Prog. Mater. Sci.2017907512710.1016/j.pmatsci.2017.07.004
    [Google Scholar]
  5. JunY.-S. Development of graphene-based electrically conductive polymer nano-compositesUWSpace.2018Avaialable from http://hdl.handle.net/10012/12828
    [Google Scholar]
  6. ZhaoH. DingJ. YuH. Variation of mechanical and thermal properties in sustainable graphene oxide/epoxy composites.Sci. Rep.2018811656010.1038/s41598‑018‑34976‑630410006
    [Google Scholar]
  7. ZhaoY-H. WuZ-K. BaiS-L. Study on thermal properties of graphene foam/graphene sheets filled polymer composites.Compos., Part A Appl. Sci. Manuf.20157220020610.1016/j.compositesa.2015.02.011
    [Google Scholar]
  8. WuY. LinY.M. BolA.A. JenkinsK.A. XiaF. FarmerD.B. ZhuY. AvourisP. High-frequency, scaled graphene transistors on diamond-like carbon.Nature20114727341747810.1038/nature0997921475197
    [Google Scholar]
  9. SchwierzF. Graphene transistors.Nat. Nanotechnol.20105748749610.1038/nnano.2010.8920512128
    [Google Scholar]
  10. JungY.U. OhS. ChoaS-H. KimH-K. KangS.J. Electromechanical properties of graphene transparent conducting films for flexible electronics.Curr. Appl. Phys.20131371331133410.1016/j.cap.2013.04.017
    [Google Scholar]
  11. BunchJ.S. van der ZandeA.M. VerbridgeS.S. FrankI.W. TanenbaumD.M. ParpiaJ.M. CraigheadH.G. McEuenP.L. Electromechanical resonators from graphene sheets.Science2007315581149049310.1126/science.113683617255506
    [Google Scholar]
  12. LiuX. ZhangG. ZhangY-W. Graphene-based thermal modulators.Nano Res.2015882755276210.1007/s12274‑015‑0782‑2
    [Google Scholar]
  13. StollerM.D. ParkS. ZhuY. AnJ. RuoffR.S. Graphene-based ultracapacitors.Nano Lett.20088103498350210.1021/nl802558y18788793
    [Google Scholar]
  14. AnX. JimmyC.Y. Graphene-based photocatalytic composites.RSC Advances2011181426143410.1039/c1ra00382h
    [Google Scholar]
  15. XiangQ. YuJ. JaroniecM. Graphene-based semiconductor photocatalysts.Chem. Soc. Rev.201241278279610.1039/C1CS15172J21853184
    [Google Scholar]
  16. BaeS-H. LeeY. SharmaB.K. LeeH-J. KimJ-H. AhnJ-H. Graphene-based transparent strain sensor.Carbon20135123624210.1016/j.carbon.2012.08.048
    [Google Scholar]
  17. JingZ. Guang-YuZ. Dong-XiaS. Review of graphene-based strain sensors.Chin. Phys. B201322505770110.1088/1674‑1056/22/5/057701
    [Google Scholar]
  18. JangH. ParkY.J. ChenX. DasT. KimM.S. AhnJ.H. Graphene based flexible and stretchable electronics.Adv. Mater.201628224184420210.1002/adma.20150424526728114
    [Google Scholar]
  19. VivekchandS. RoutC.S. SubrahmanyamK.S. GovindarajA. RaoC.N.R. Graphene-based electrochemical supercapacitors.J. Chem. Sci.2008120191310.1007/s12039‑008‑0002‑7
    [Google Scholar]
  20. LiuC. YuZ. NeffD. ZhamuA. JangB.Z. Graphene-based supercapacitor with an ultrahigh energy density.Nano Lett.201010124863486810.1021/nl102661q21058713
    [Google Scholar]
  21. HuangY. LiangJ. ChenY. An overview of the applications of graphene-based materials in supercapacitors.Small20128121805183410.1002/smll.20110263522514114
    [Google Scholar]
  22. SunY. WuQ. ShiG. Graphene based new energy materials.Energy Environ. Sci.2011441113113210.1039/c0ee00683a
    [Google Scholar]
  23. LinJ. HuangY. HuangP. Graphene-based nanomaterials in bioimaging. Biomedical Applications of Functionalized Nanomaterials.Elsevier2018247287
    [Google Scholar]
  24. LuY. LuY. NiuZ. ChenJ. Graphene based nanomaterials for sodium ion batteries.Adv. Energy Mater.2018817170246910.1002/aenm.201702469
    [Google Scholar]
  25. TohL.K.L. TingT.W. Thermal performance of automotive radiator with graphene nanoplatelets suspension. AIP Conference Proceedings 2059, 020012, 201910.1063/1.5085955
  26. ContrerasE.M.C. OliveiraG.A. Bandarra FilhoE.P. Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems.Int. J. Heat Mass Transf.201913237538710.1016/j.ijheatmasstransfer.2018.12.014
    [Google Scholar]
  27. Esquivel-GaonM. NguyenN.H.A. SgroiM.F. PulliniD. GiliF. MangheriniD. PrunaA.I. RosickaP. SevcuA. CastagnolaV. In vitro and environmental toxicity of reduced graphene oxide as an additive in automotive lubricants.Nanoscale201810146539654810.1039/C7NR08597D29577120
    [Google Scholar]
  28. ElmarakbiA. AzotiW. Mechanical prediction of graphene-based polymer nanocomposites for energy-efficient and safe vehicles. Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and their Polymer Composites.Elsevier201815917710.1016/B978‑0‑323‑48061‑1.00004‑X
    [Google Scholar]
  29. ElmarakbiA. AzotiW. State of the art on graphene lightweighting nanocomposites for automotive applications. Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and their Polymer Composites.Elsevier201812310.1016/B978‑0‑323‑48061‑1.00001‑4
    [Google Scholar]
  30. SabaN. Nanocarbon: Preparation, properties, and applications.Nanocarbon and its Composites.Woodhead Publishing201932735410.1016/B978‑0‑08‑102509‑3.00009‑2
    [Google Scholar]
  31. BuzagloM. BarI.P. VarenikM. ShunakL. PevznerS. RegevO. Graphite-to-graphene: Total conversion.Adv. Mater.2017298160352810.1002/adma.20160352827991687
    [Google Scholar]
  32. GuptaA. SakthivelT. SealS. Recent development in 2D materials beyond graphene.Prog. Mater. Sci.2015734412610.1016/j.pmatsci.2015.02.002
    [Google Scholar]
  33. CelisA. NairM.N. Taleb-IbrahimiA. ConradE.H. BergerC. de HeerW.A. TejedaA. Graphene nanoribbons: Fabrication, properties and devices.J. Phys. D Appl. Phys.2016491414300110.1088/0022‑3727/49/14/143001
    [Google Scholar]
  34. BakS. KimD. LeeH. Graphene quantum dots and their possible energy applications: A review.Curr. Appl. Phys.20161691192120110.1016/j.cap.2016.03.026
    [Google Scholar]
  35. LiaoG. HuJ. ChenZ. ZhangR. WangG. KuangT. Preparation, properties, and applications of graphene-based hydrogels.Front Chem.2018645010.3389/fchem.2018.0045030327765
    [Google Scholar]
  36. IdowuA. BoeslB. AgarwalA. 3D graphene foam-reinforced polymer composites-A review.Carbon2018135527110.1016/j.carbon.2018.04.024
    [Google Scholar]
  37. MrazovaM. Advanced composite materials of the future in aerospace industry.Incas Bulletin20135313915010.13111/2066‑8201.2013.5.3.14
    [Google Scholar]
  38. HongboG.U. Introducing advanced composites and hybrid materialsAdvanced Composites and Hybrid Materials.20181510.1007/s42114‑017‑0017‑y
    [Google Scholar]
  39. GhoriS.W. The role of advanced polymer materials in aerospace.Sustainable Composites for Aerospace Applications.AmsterdamElsevier2018193410.1016/B978‑0‑08‑102131‑6.00002‑5
    [Google Scholar]
  40. LevchenkoI. BazakaK. BelmonteT. KeidarM. XuS. Advanced materials for next-generation spacecraft.Adv. Mater.20183050e180220110.1002/adma.20180220130302826
    [Google Scholar]
  41. ArifurrahmanF. BudimanB.A. AzizM. On the lightweight structural design for electric road and railway vehicles using fiber reinforced polymer composites-A review.Int. J. Sustain. Transp. Technol.201811212910.31427/IJSTT.2018.1.1.4
    [Google Scholar]
  42. BernadettS. BeleznaiR. Design and analysis of composite oil pan for automotive vehicle.Vehicle and Automotive Engineering.ChamSpringer201810.1007/978‑3‑319‑75677‑6_25
    [Google Scholar]
  43. CuiX. "Advanced composites for civil engineering infrastructures", Composites and advanced materials for industrial applications201821224810.4018/978‑1‑5225‑5216‑1.ch010
    [Google Scholar]
  44. VermaDeepak GohKheng Lim Natural fiber-reinforced polymer composites: Application in marine environments.Biomass, Biopolymer-Based Materials, and Bioenergy2019517310.1016/B978‑0‑08‑102426‑3.00003‑5
    [Google Scholar]
  45. ReddyJ.N. MiraveteA. Practical analysis of composite laminates.CRC Press201810.1201/9780203742594
    [Google Scholar]
  46. KandasamyR. DimitriR. TornabeneF. Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments.Compos. Struct.201615720722110.1016/j.compstruct.2016.08.037
    [Google Scholar]
  47. KostadinovaE. LiawC.D. HeringA.S. CameronA. GuytonF. MatthewsL.S. HydeT.W. Spectral approach to transport in a two-dimensional honeycomb lattice with substitutional disorder.Phys. Rev. B201999202411510.1103/PhysRevB.99.024115
    [Google Scholar]
  48. HelmenstineA.M. Why is graphene important?Available from: https://www.thoughtco.com/why-is-graphene-important-603950
    [Google Scholar]
  49. IannazzoD. PistoneA. GalvagnoS. Functionalization methods of graphene.Chemical Functionalization of Carbon Nanomaterials2015536563
    [Google Scholar]
  50. DasS. A review on Carbon nano-tubes-A new era of nanotechnology.Int. J. Emerg. Technol. Adv. Eng.201333774783
    [Google Scholar]
  51. CaoX. YinZ. ZhangH. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors.Energy Environ. Sci.2014761850186510.1039/C4EE00050A
    [Google Scholar]
  52. KumarA. SharmaK. DixitA.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications.J. Mater. Sci.201954813510.1007/s10853‑018‑03244‑3
    [Google Scholar]
  53. GhanyN.A.A. ElsherifS.A. HandalH.T. Revolution of Graphene for different applications: State-of-the-art.Surf. Interfaces201799310610.1016/j.surfin.2017.08.004
    [Google Scholar]
  54. ShapiraP. GökA. SalehiF. Graphene enterprise: mapping innovation and business development in a strategic emerging technology.J. Nanopart. Res.201618926910.1007/s11051‑016‑3572‑127656105
    [Google Scholar]
  55. FalcaoE.H. WudlF. Carbon allotropes: Beyond graphite and diamond.J. Chem. Technol. Biotechnol.2007826524531
    [Google Scholar]
  56. RayS. Applications of graphene and graphene-oxide based nanomaterials.William Andrew2015
    [Google Scholar]
  57. BurchellT.D. Carbon materials for advanced technologies.Elsevier1999
    [Google Scholar]
  58. SoldanoC. MahmoodA. DujardinE. Production, properties and potential of graphene.Carbon20104882127215010.1016/j.carbon.2010.01.058
    [Google Scholar]
  59. ZhangR-S. JiangJ-W. The art of designing carbon allotropes.Front. Phys.20191411340110.1007/s11467‑018‑0836‑5
    [Google Scholar]
  60. BauerJ. SchroerA. SchwaigerR. KraftO. Approaching theoretical strength in glassy carbon nanolattices.Nat. Mater.201615443844310.1038/nmat456126828314
    [Google Scholar]
  61. KinlochI.A. SuhrJ. LouJ. YoungR.J. AjayanP.M. Composites with carbon nanotubes and graphene: An outlook.Science2018362641454755310.1126/science.aat743930385571
    [Google Scholar]
  62. DasT.K. PrustyS. Graphene-based polymer composites and their applications.Polym. Plast. Technol. Eng.201352431933110.1080/03602559.2012.751410
    [Google Scholar]
  63. ChoiW. LahiriI. SeelaboyinaR. KangY.S. Synthesis of graphene and its applications: A review.Crit. Rev. Solid State Mater. Sci.2010351527110.1080/10408430903505036
    [Google Scholar]
  64. LiuW-W. ChaiS-P. MohamedA.R. HashimU. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments.J. Ind. Eng. Chem.20142041171118510.1016/j.jiec.2013.08.028
    [Google Scholar]
  65. LayekR.K. NandiA.K. A review on synthesis and properties of polymer functionalized graphene.Polymer (Guildf.)201354195087510310.1016/j.polymer.2013.06.027
    [Google Scholar]
  66. MuñozR. GómezAleixandreC. Review of CVD synthesis of grapheneChem. Vap. Deposition20131910-11-12297322
    [Google Scholar]
  67. AllenM.J. TungV.C. KanerR.B. Honeycomb carbon: A review of graphene.Chem. Rev.2010110113214510.1021/cr900070d19610631
    [Google Scholar]
  68. HakimiM. AlimardP. Graphene: Synthesis and applications in biotechnology-a review.World Appl. Program.201226377388
    [Google Scholar]
  69. ZhuY. MuraliS. CaiW. LiX. SukJ.W. PottsJ.R. RuoffR.S. Graphene and graphene oxide: synthesis, properties, and applications.Adv. Mater.201022353906392410.1002/adma.20100106820706983
    [Google Scholar]
  70. ShamsS.S. ZhangR. ZhuJ. Graphene synthesis: A review.Mater. Sci. Pol.201533356657810.1515/msp‑2015‑0079
    [Google Scholar]
  71. GongJ.R. Graphene-Synthesis, characterization, properties and applications.InTech201110.5772/1742
    [Google Scholar]
  72. DasariB.L. NouriJ.M. BrabazonD. NaherS. Graphene and derivatives-synthesis techniques, properties and their energy applications.Energy201714076677810.1016/j.energy.2017.08.048
    [Google Scholar]
  73. LópezM.P.L. Optimization of the synthesis procedures of graphene and graphite oxide.Recent Advances in Graphene Research.London, United Kingdom: IntechOpen2016[Online]10.5772/63752
    [Google Scholar]
  74. AvourisP. DimitrakopoulosC. Graphene: Synthesis and applications.Mater. Today2012153869710.1016/S1369‑7021(12)70044‑5
    [Google Scholar]
  75. BonaccorsoF. LombardoA. HasanT. SunZ. ColomboL. FerrariA.C. Production and processing of graphene and 2D crystals.Mater. Today2012151256458910.1016/S1369‑7021(13)70014‑2
    [Google Scholar]
  76. BaeS. KimH. LeeY. XuX. ParkJ.S. ZhengY. BalakrishnanJ. LeiT. KimH.R. SongY.I. KimY.J. KimK.S. OzyilmazB. AhnJ.H. HongB.H. IijimaS. Roll-to-roll production of 30-inch graphene films for transparent electrodes.Nat. Nanotechnol.20105857457810.1038/nnano.2010.13220562870
    [Google Scholar]
  77. RenW. ChengH-M. The global growth of graphene.Nat. Nanotechnol.201491072673010.1038/nnano.2014.22925286256
    [Google Scholar]
  78. SpasenovicM. The price of grapheneAvailable from: https://www.graphenea.com/pages/graphene-price#.XHPPFKJKhaQ
    [Google Scholar]
  79. SmithS.C. RodriguesD.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications.Carbon20159112214310.1016/j.carbon.2015.04.043
    [Google Scholar]
  80. ResearchZ.M. Global graphene market set for rapid growth, to reach USD 193.68 million by 2022Available from: https://www.zionmarketresearch.com/news/graphene-market
    [Google Scholar]
  81. ZhongY. ZhenZ. ZhuH. Graphene: Fundamental research and potential applications.FlatChem20174203210.1016/j.flatc.2017.06.008
    [Google Scholar]
  82. KronsbergM. Hyped miracle material graphene is realizing its promise as ‘Pixie Dust’Available from: https://www.bloomberg.com/news/articles/2018-11-13/miracle-material-graphene-reinvented-as-pixie-dust
    [Google Scholar]
  83. (NIMS), N.I.f.M.S., World’s first success in making a graphene product with 3D strutted structureAvailable from: https://www.nims.go.jp/eng/news/press/2014/01/p201312160.html
    [Google Scholar]
  84. PelegR. The world’s first graphene-enhanced fishing rods by G-RODSAvailable from: https://www.graphene-info.com/worlds-first-graphene-enhanced-fishing-rods-g-rods
    [Google Scholar]
  85. News, Dongxu Optoelectronic Co., Ltd. releases world’s first graphene - based lithium - ion batteryAvailable from: http://www.dongxu.com/e_com/index.aspx?nodeid=101&page=ContentPage&contentid=718
    [Google Scholar]
  86. BuscaN. Graphene frames are coming, and they could weigh just 350gAvailable from: https://www.cyclingweekly.com/news/product-news/dassi-graphene-frame-260002
    [Google Scholar]
  87. LloydS. Graphene motorcycle helmet launched by flagship partner IIT and momodesignAvailable from: http://graphene-flagship.eu/graphene-motorcycle-helmet
    [Google Scholar]
  88. ReleaseN. The graphene company - exclusive distributor of graphenstone paintsAvailable from: http://www.thegraphene.co.uk/
    [Google Scholar]
  89. ORA introduce the world’s first graphene headphonesAvailable from: https://www.soundonsound.com/news/ora-introduce-worlds-first-graphene-headphones
    [Google Scholar]
  90. NanotechnologiesGraphenano A company in yecla builds the first boat in the worrld with graphene [Online]Available from: https://www.graphenano.com/en/una-empresa-yeclana-fabrica-el-primer-barco-del-mundo-con-grafeno/
    [Google Scholar]
  91. CoxworthB. World’s first graphene-skinned airplane unveiled in the UKAvailable from: https://newatlas.com/graphene-skinned-aircraft/55817/
  92. ElmarakbiA. World’s first Graphene for vehicles prototype unveiledAvailable from: https://www.sunderland.ac.uk/more/news/story/worlds-first-graphene-for-vehicles-prototype-unveiled--376
    [Google Scholar]
  93. Graphenest unveils the world's lightest kayak [Online]Available from: https://www.graphene-info.com/graphenest-unveils-worlds-lightest-kayak
    [Google Scholar]
  94. RobinsonB. University collaboration reveals world’s first-ever graphene sports shoesAvailable from: https://www.manchester.ac.uk/discover/news/university-collaboration-reveals-worlds-first-ever-graphene-sports-shoes/?ga=2.176164645.1688175233.1529515163-1407960520.1529515163
    [Google Scholar]
  95. VollebakThe Graphene Jacket is the very first step towards our end goal of creating bionic clothing that is both bulletproof and intelligentAvailable from: https://www.vollebak.com/graphene-jacket-bionic-clothing/
    [Google Scholar]
  96. RazaS. SUPERSTAR: The world’s lightest wheelchair made from grapheneAvailable from: https://www.valuewalk.com/2018/09/kuschall-superstar-graphene-wheelchair/
    [Google Scholar]
  97. RazaY. RazaH. AhmadA. QuaziM.M. AbidM. KazmiM.R. RahmanS.M.A. ZulfattahZ.M. FattahI.M.R. Production and investigation of mechanical properties of graphene/polystyrene nano composites.J. Polym. Res.202128611210.1007/s10965‑021‑02560‑8
    [Google Scholar]
  98. Pena-PereiraF. RomeroV. de la CalleI. LavillaI. BendichoC. Graphene-based nanocomposites in analytical extraction processes.Trends Analyt. Chem.202114211630310.1016/j.trac.2021.116303
    [Google Scholar]
  99. RanjanR. BajpaiV. Graphene-based metal matrix nanocomposites: Recent development and challenges.J. Compos. Mater.202155172369241310.1177/0021998320988566
    [Google Scholar]
  100. Díez-PascualA.M. Development of graphene-based polymeric nanocomposites: A Brief Overview.Polymers (Basel)20211317297810.3390/polym1317297834503017
    [Google Scholar]
  101. LawalA.T. Recent progress in graphene based polymer nanocomposites.Cogent Chem.202061183347610.1080/23312009.2020.1833476
    [Google Scholar]
  102. GoyalR. SharmaM. AmberiyaU.K. Innovative nano composite materials and applications in automobiles.Int. J. Eng. Res. Technol. (Ahmedabad)201431
    [Google Scholar]
  103. How Toyota brought nanocomposite materials to the worldAvailable from: https://blog.toyota.co.uk/toyota-brought-nanocomposite-materials-world
    [Google Scholar]
  104. SharmaK.R. Polymer Thermodynamics: Blends, Copolymers and Reversible Polymerization.CRC Press201110.1201/b11198
    [Google Scholar]
  105. GalimbertiM. CipollettiV.R. CoombsM. Applications of clay-polymer nanocomposites.Developments in Clay Science2013539586
    [Google Scholar]
  106. Automotive DesignMarch 2015, 19-22. Available from: https://www.sae.org/magazines/pdf/15ADESP03.pdf
    [Google Scholar]
  107. NickelsL. Improving composites with ‘wonder material’Available from: https://www.materialstoday.com/carbon-fiber/features/improving-composites-with-wonder-material/ 10.1016/j.repl.2016.06.004
    [Google Scholar]
  108. Improving composites with ‘wonder material’Available from: https://www.usonline.co.uk/news/improving-composites-%E2%80%98wonder-material%E2%80%99
    [Google Scholar]
  109. A prototype of a car bumper made of graphene compositeAvailable from: http://www.jeccomposites.com/knowledge/international-composites-news/prototype-car-bumper-made-graphene-composite
    [Google Scholar]
  110. Graphene composites for carsMobility Engineering3739Available from: https://www.sae.org/magazines/pdf/14MEIP12.pdf
    [Google Scholar]
  111. LinY-M. DimitrakopoulosC. JenkinsK.A. FarmerD.B. ChiuH.Y. GrillA. AvourisP. 100-GHz transistors from wafer-scale epitaxial graphene.Science2010327596666266210.1126/science.118428920133565
    [Google Scholar]
  112. ChengR. BaiJ. LiaoL. ZhouH. ChenY. LiuL. LinY.C. JiangS. HuangY. DuanX. High-frequency self-aligned graphene transistors with transferred gate stacks.Proc. Natl. Acad. Sci. USA201210929115881159210.1073/pnas.120569610922753503
    [Google Scholar]
  113. LiuS. WangA. LiQ. WuJ. ChiouK. HuangJ. LuoJ. Crumpled graphene balls stabilized dendrite-free lithium metal anodes.Joule20182118419310.1016/j.joule.2017.11.004
    [Google Scholar]
  114. SonI.H. ParkJ.H. ParkS. ParkK. HanS. ShinJ. DooS.G. HwangY. ChangH. ChoiJ.W. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities.Nat. Commun.201781156110.1038/s41467‑017‑01823‑729146973
    [Google Scholar]
  115. World first Adgero hybrid technology in new Fraikin truck fleet trialAvailable from: http://adgero.eu/world-first-adgero-hybrid-technology-new-fraikin-truck-fleet-trial/
    [Google Scholar]
  116. BroderickT. Cars made of graphene (well, almost!)Available from: https://www.udl.co.uk/insights/cars-made-of-graphene
    [Google Scholar]
  117. MorrisA. Increasing oil’s performance with crumpled graphene ballsAvailable from: https://www.mccormick.northwestern.edu/news/articles/2016/01/increasing-oils-performance-with-crumpled-graphene-balls.html
    [Google Scholar]
  118. DouX. KoltonowA.R. HeX. JangH.D. WangQ. ChungY.W. HuangJ. Self-dispersed crumpled graphene balls in oil for friction and wear reduction.Proc. Natl. Acad. Sci. USA201611361528153310.1073/pnas.152099411326811466
    [Google Scholar]
  119. MuraA. CuràF. AdamoF. Evaluation of graphene grease compound as lubricant for spline couplings.Tribol. Int.201811716216710.1016/j.triboint.2017.08.027
    [Google Scholar]
  120. CuràF. MuraA. AdamoF. Experimental investigation about tribological performance of grapheme-nanoplatelets as additive for lubricants.Procedia Struct. Integr.201812445110.1016/j.prostr.2018.11.107
    [Google Scholar]
  121. Linney Tuning TechnologyAvailable from: http://www.linneytuning.com/product/graphene-r-brake-pads/
  122. PelegR. Linney Tuning develops graphene-enhanced brake padsAvailable from: https://www.graphene-info.com/linney-tuning-develops-graphene-enhanced-brake-pads
    [Google Scholar]
  123. AGM collaborates with SHD and Magna Exteriors on the W Motors Fenyr SuperSport car. Applied Graphene Materials plcAvailable from: https://www.appliedgraphenematerials.com/files/8715/2044/0181/AGM_collaborates_with_SHD_and_Magna_Exteriors_on_the_W_Motors_Fenyr_SuperSport_car.pdf
    [Google Scholar]
  124. Graphene composites improve auto part.Reinf. Plast.2018623
    [Google Scholar]
  125. DobsonC. Graphene trainers, phones and cars - Manchester’s wonder material is about to change your life. 16 DEC 2018, The University of ManchesterAvailable from: https://www.manchestereveningnews.co.uk/news/greater-manchester-news/graphene-trainers-phones-cars-manchesters-15538382
    [Google Scholar]
  126. JonesA. UA Students Build Lightweight, Strong Hood for Chevy CamaroAvailable from: https://www.ua.edu/news/2017/04/ua-students-build-lightweight-strong-hood-for-chevy-camaro/
    [Google Scholar]
  127. SchoenbergerR. Ford plans to use graphene in vehicles by year’s endAvailable from: https://www.todaysmotorvehicles.com/article/ford-graphene-research-101018/
    [Google Scholar]
  128. Cell phones, sporting goods, and soon, cars: Ford innovates with “miracle” material, powerful graphene for vehicle partsAvailable from: https://www.mediaab.ford.com/content/fordmedia/feu/en/news/2018/10/09/ford-innovates-with-miracle-material-powerful-graphene-for-vehicle-parts.html
    [Google Scholar]
  129. WalterK. FordX.G. Sciences go under the hood with grapheneAvailable from: https://www.rdmag.com/article/2019/01/ford-xg-sciences-go-under-hood-graphene
    [Google Scholar]
  130. MathurR. Nissan unveils the new Kicks in IndiaAvailable from: https://newsroom.nissan-global.com/releases/release-860852d7040eed420ffbaebb222d0d9a-nissan-unveils-the-new-kicks-in-india
    [Google Scholar]
  131. ThompsonM. Talga and Schunk sign LOI over graphene product co-operationAvailable from: http://www.talgaresources.com/irm/PDF/2382_0/TalgaandSchunksignLOIovergrapheneproductcooperation
    [Google Scholar]
  132. First graphene targets car industryAvailable from: https://grapheneindustry.org.au/2019/03/first-graphene-targets-car-industry/
    [Google Scholar]
  133. PonnammaD. YinY. SalimN. ParameswaranpillaiJ. ThomasS. HameedN. Recent progress and multifunctional applications of 3D printed graphene nanocomposites.Compos., Part B Eng.202120410849310.1016/j.compositesb.2020.108493
    [Google Scholar]
  134. PapageorgiouM. The wonder material in 3D Printing: Graphene materialAvailable from: https://www.sculpteo.com/blog/2017/11/22/the-wonder-material-in-3d-printing-graphene/
    [Google Scholar]
  135. KrassensteinB. Local motors to 3D print cars in 12 hours, recycle old cars, & research printing with graphene & metalsAvailable from: https://3dprint.com/51866/local-motors-plans-3d-print/
    [Google Scholar]
  136. JensenS. The many possibilities of grapheneAvailable from: https://www.oemoffhighway.com/engineering-manufacturing/materials/article/21023807/the-many-possibilities-of-graphene
    [Google Scholar]
  137. DaytonM. A brief guide to graphene enhanced rubber composite materialsAvailable from: https://nearsay.com/c/446402/393942/a-brief-guide-to-graphene-enhanced-rubber-composite-materials
    [Google Scholar]
  138. PelegR. Chinese cooperation yields graphene-enhanced tires set for mass productionAvailable from: https://www.graphene-info.com/chinese-cooperation-yields-graphene-enhanced-tires-set-mass-production
    [Google Scholar]
  139. Shangdong Hengyu making graphene tyresAvailable from: https://www.tyrepress.com/2016/10/shangdong-hengyu-making-graphene-tyres/
    [Google Scholar]
  140. A graphene tyre breakthrough?Available from: https://www.tyrepress.com/2016/01/a-graphene-tyre-breakthrough/
    [Google Scholar]
  141. González-PartidaJ-T. León-InfanteF. Blázquez-GarcíaR. Burgos-GarcíaM. On the use of low-cost radar networks for collision warning systems aboard dumpers.Sensors (Basel)20141433921393810.3390/s14030392124577521
    [Google Scholar]
  142. GhavaniniF.A. TheanderH. Graphene feasibility and foresight study for transport infrastructures.Chalmers Industriteknik2015153
    [Google Scholar]
  143. Dynapac leads first graphene-modified asphalt surface overhaulAvailable from: https://dynapac.com/en/news/dynapac-leads-first-graphene-modified-asphalt-surface-overhaul
    [Google Scholar]
  144. Chinese bridge resurfacing with new materials. World Highways September 2018Available from: http://www.worldhighways.com/categories/earthmoving-excavation/products/chinese-bridge-resurfacing-with-new-materials/
    [Google Scholar]
  145. NauriyalS. ChoudharyT. GuptaV. KhasK.S. Finite element analysis and dynamic response of graphene-based nanocomposite: For low velocity impacts applications.Strength Mater.202153311510.1007/s11223‑021‑00312‑z
    [Google Scholar]
  146. XuM. TabarraeiA. PaciJ.T. OswaldJ. BelytschkoT. A coupled quantum/continuum mechanics study of graphene fracture.Int. J. Fract.2012173216317310.1007/s10704‑011‑9675‑x
    [Google Scholar]
  147. KorobeynikovS. AlyokhinV. BabichevA. Simulation of mechanical parameters of graphene using the DREIDING force field.Acta Mech.201822962343237810.1007/s00707‑018‑2115‑5
    [Google Scholar]
  148. YangS. ShinH. ChoM. Molecular dynamics simulation and finite element analysis on mechanical behavior of oxygen functionalized graphene/polymer nanocomposites.J. Mech. Sci. Technol.201933130731410.1007/s12206‑018‑1230‑5
    [Google Scholar]
  149. LeeG-D. WangC.Z. YoonE. HwangN-M. HoK.M. Vacancy defects and the formation of local haeckelite structures in graphene from tight-binding molecular dynamics.Phys. Rev. B Condens. Matter Mater. Phys.2006742424541110.1103/PhysRevB.74.245411
    [Google Scholar]
  150. LeeG-D. YoonE. HwangN-M. WangC-Z. HoK-M. Formation and development of dislocation in graphene.Appl. Phys. Lett.2013102202160310.1063/1.4775671
    [Google Scholar]
  151. VermaA. ParasharA. PackirisamyM. Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: A review.Wiley Interdiscip. Rev. Comput. Mol. Sci.201883e134610.1002/wcms.1346
    [Google Scholar]
  152. LuQ. GaoW. HuangR. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension.Model. Simul. Mater. Sci. Eng.201119505400610.1088/0965‑0393/19/5/054006
    [Google Scholar]
  153. WellaS.A. HamamotoY. SuprijadiS. MorikawaY. HamadaI. Platinum single-atom adsorption on graphene: A density functional theory study.Nanoscale Adv.2019131165117410.1039/C8NA00236C
    [Google Scholar]
  154. DimakisN. SalasI. GonzalezL. VadodariaO. RuizK. BhattiM.I. Li and Na adsorption on graphene and graphene oxide examined by density functional theory, quantum theory of atoms in molecules, and electron localization function.Molecules201924475410.3390/molecules2404075430791506
    [Google Scholar]
  155. AlukoO. GowthamS. OdegardG. Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite.Compos., Part B Eng.2017131829010.1016/j.compositesb.2017.07.075
    [Google Scholar]
  156. FioriG. IannacconeG. Multiscale modeling for graphene-based nanoscale transistors.Proc. IEEE201310171653166910.1109/JPROC.2013.2259451
    [Google Scholar]
  157. ElmarakbiA. JianhuaW. AzotiW.L. Non-linear elastic moduli of Graphene sheet-reinforced polymer composites.Int. J. Solids Struct.20168138339210.1016/j.ijsolstr.2015.12.019
    [Google Scholar]
  158. AkinwandeD. BrennanC.J. BunchJ.S. EgbertsP. FeltsJ.R. GaoH. HuangR. KimJ-S. LiT. LiY. LiechtiK.M. LuN. ParkH.S. ReedE.J. WangP. YakobsonB.I. ZhangT. ZhangY-W. ZhouY. ZhuY. A review on mechanics and mechanical properties of 2D materials-Graphene and beyond.Extreme Mech. Lett.201713427710.1016/j.eml.2017.01.008
    [Google Scholar]
  159. GuoZ. SongL. BoayC.G. LiZ. LiY. WangZ. A new multiscale numerical characterization of mechanical properties of graphene-reinforced polymer-matrix composites.Compos. Struct.20181991910.1016/j.compstruct.2018.05.053
    [Google Scholar]
  160. StrikwerdaN. Should we model graphene as a 2D sheet or thin 3D volume?Available from: https://www.comsol.com/blogs/should-we-model-graphene-as-a-2d-sheet-or-thin-3d-volume/
    [Google Scholar]
  161. LengvarskýP. BockoJ. Prediction of Young’s modulus of graphene sheets by the finite element method.American J. Mech. Eng.201536225229
    [Google Scholar]
  162. GuedjC. Atomistic modelling and simulation of transmission electron microscopy images: Application to intrinsic defects of graphene8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications201810.5220/0006829200150024
    [Google Scholar]
  163. ShinoharaH. TiwariA. Graphene: An introduction to the fundamentals and industrial applications.John Wiley & Sons2015
    [Google Scholar]
  164. GongG. Literature study of graphene modified polymeric compositesSIO Grafen.2018Available from: https://siografen.se/app/uploads/2018/02/Literature-study-of-Graphene-modified-polymeric-composites.pdf
    [Google Scholar]
  165. council, g. Graphene Directory - List of Graphene Related Organizations and ResourcesAvailable from: https://www.thegraphenecouncil.org/general/recommended_links.asp?cc=37020
    [Google Scholar]
  166. KaulingA.P. SeefeldtA.T. PisoniD.P. PradeepR.C. BentiniR. OliveiraR.V.B. NovoselovK.S. Castro NetoA.H. The Worldwide graphene flake production.Adv. Mater.20183044e180378410.1002/adma.20180378430209839
    [Google Scholar]
  167. DhandV. RheeK.Y. Ju KimH. Ho JungD. A comprehensive review of graphene nanocomposites: Research status and trends.J. Nanomater.2013201315810.1155/2013/763953
    [Google Scholar]
/content/journals/cmam/10.2174/2666184502666220429134113
Loading
/content/journals/cmam/10.2174/2666184502666220429134113
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): automotive industry; Graphene; nanocomposites; off-highway vehicle; polymer matrix; VOLVO
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test