Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-7827
  • E-ISSN: 2666-7835

Abstract

Background

Artificial intelligence postulates that computers will eventually supervise performing tasks through various pattern recognition with less or without human interventions and assistance. It appears to mimic human cognitive functions. Resembling the human brain, it receives various forms of raw data that are stored, aligned, surveyed, interpreted, analyzed, and converted to single processed data, making it easy to conclude and understand. Recently, in the digital world, machine learning, deep learning, neural network and AI applications are expanding widely, where humans have expertise.

Methods

A detailed literature survey was performed through an online database, such as ScienceDirect, Google Scholar, Scopus, Cochrane, and PubMed. The search keywords were Machine Learning OR Deep Learning OR Neural Networks OR Applications OR Pharmaceutical Innovations OR Technology OR Artificial Intelligence AND Pharmaceutical Sectors OR Clinical Pharmacology OR Healthcare OR Medical OR Pharmacovigilance OR Clinical Trials OR Regulatory OR Challenges. The literature search was limited to studies published in English.

Results

It was found that there is an immense growth of artificial intelligence in the sector of the pharmaceutical industry applied in drug discovery and drug development, clinical trials, and the pharmacovigilance sector. It has several clinical applications of AI as a tool in health care and biomedical research besides clinical practice. It also shows several challenges faced and methods to overcome them.

Conclusion

AI has great potential and future as a valuable tool in the healthcare and pharmaceutical industry by applying a scientific approach and averting real-life challenges.

Loading

Article metrics loading...

/content/journals/cjai/10.2174/2666782701666220920091940
2022-09-28
2025-01-19
Loading full text...

Full text loading...

References

  1. HenstockP.V. Artificial intelligence for pharma: Time for internal investment.Trends Pharmacol. Sci.201940854354610.1016/j.tips.2019.05.003 31204059
    [Google Scholar]
  2. HelmJ.M. SwiergoszA.M. HaeberleH.S. KarnutaJ.M. SchafferJ.L. KrebsV.E. SpitzerA.I. RamkumarP.N. Machine learning and artificial intelligence: Definitions, applications, and future directions.Curr. Rev. Musculoskelet. Med.2020131697610.1007/s12178‑020‑09600‑8 31983042
    [Google Scholar]
  3. BiniS.A. Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care?J. Arthroplasty20183382358236110.1016/j.arth.2018.02.067 29656964
    [Google Scholar]
  4. HaeberleH.S. HelmJ.M. NavarroS.M. KarnutaJ.M. SchafferJ.L. CallaghanJ.J. MontM.A. KamathA.F. KrebsV.E. RamkumarP.N. Artificial intelligence and machine learning in lower extremity arthroplasty: A review.J. Arthroplasty201934102201220310.1016/j.arth.2019.05.055 31253449
    [Google Scholar]
  5. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑94
    [Google Scholar]
  6. BadilloS. BanfaiB. BirzeleF. DavydovI.I. HutchinsonL. Kam-ThongT. Siebourg-PolsterJ. SteiertB. ZhangJ.D. An intro-duction to machine learning.Clin. Pharmacol. Ther.2020107487188510.1002/cpt.1796 32128792
    [Google Scholar]
  7. ShahidN. RapponT. BertaW. Applications of artificial neural networks in health care organizational decision-making: A scoping review.PLoS One20192e021235610.1371/journal.pone.0212356
    [Google Scholar]
  8. BrownN. CambruzziJ. CoxP.J. DaviesM. DunbarJ. PlumbleyD. Big data in drug discovery.In: Progress in Medicinal Chemistry20185727735610.1016/bs.pmch.2017.12.003
    [Google Scholar]
  9. KriegeskorteN. GolanT. Neural network models and deep learning.Curr. Biol.2019297R231R23610.1016/j.cub.2019.02.034 30939301
    [Google Scholar]
  10. SarkerI.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions.SN Comput Sci202126420
    [Google Scholar]
  11. ChoyG. KhalilzadehO. MichalskiM. DoS. SamirA.E. PianykhO.S. GeisJ.R. PandharipandeP.V. BrinkJ.A. DreyerK.J. Current applications and future impact of machine learning in radiology.Radiology2018288231832810.1148/radiol.2018171820 29944078
    [Google Scholar]
  12. ScapicchioC. GabelloniM. BarucciA. CioniD. SabaL. NeriE. A deep look into radiomics.Radiol. Med. (Torino)2021126101296131110.1007/s11547‑021‑01389‑x 34213702
    [Google Scholar]
  13. RyuJ.Y. KimH.U. LeeS.Y. Deep learning improves prediction of drug–drug and drug–food interactions.Proc. Natl. Acad. Sci. USA201811518E4304E431110.1073/pnas.1803294115 29666228
    [Google Scholar]
  14. DaunhawerI. KasserS. KochG. SieberL. CakalH. TütschJ. PfisterM. WellmannS. VogtJ.E. Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning.Pediatr. Res.201986112212710.1038/s41390‑019‑0384‑x 30928997
    [Google Scholar]
  15. GawedaA.E. MuezzinogluM.K. AronoffG.R. JacobsA.A. ZuradaJ.M. BrierM.E. Individualization of pharmacological anemia management using reinforcement learning.Neural Netw.2005185-682683410.1016/j.neunet.2005.06.020 16109475
    [Google Scholar]
  16. SchorkN.J. Artificial intelligence and personalized medicine.Precision Medicine in Cancer Therapy. Von HoffD. HanH. Cancer treatment and researchChamSpringer2019178[https://doi.org/10.1007/978-3-030-16391-4_11]
    [Google Scholar]
  17. HammannF. GutmannH. VogtN. HelmaC. DreweJ. Prediction of adverse drug reactions using decision tree modeling.Clin. Pharmacol. Ther.2010881525910.1038/clpt.2009.248 20220749
    [Google Scholar]
  18. McCombM. BiesR. RamanathanM. Machine learning in pharmacometrics: Opportunities and challenges.Br. J. Clin. Pharmacol.20228841482149910.1111/bcp.14801 33634893
    [Google Scholar]
  19. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  20. CáceresE.L. TudorM. ChengA.C. Deep learning approaches in predicting ADMET properties.Future Med. Chem.202012221995199910.4155/fmc‑2020‑0259 33124448
    [Google Scholar]
  21. WinklerD.A. Use of artificial intelligence and machine learning for discovery of drugs for neglected tropical diseases.Front Chem.2021961407310.3389/fchem.2021.614073 33791277
    [Google Scholar]
  22. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x 21091654
    [Google Scholar]
  23. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  24. JonesT.M. Preformulation studies.Pharmaceutical Formulation.The Science and Technology of Dosage Forms2018141Available from: http://ebook.rsc.org/ 10.1039/9781782620402‑00001
    [Google Scholar]
  25. DamiatiS.A. Digital Pharmaceutical Sciences.AAPS PharmSciTech202021620610.1208/s12249‑020‑01747‑4 32715351
    [Google Scholar]
  26. BohrA. MemarzadehK. The rise of artificial intelligence in healthcare applications.Artificial Intelligence in Healthcare.AmsterdamElsevier2020256010.1016/B978‑0‑12‑818438‑7.00002‑2
    [Google Scholar]
  27. LounnasV. RitschelT. KelderJ. McGuireR. BywaterR.P. FoloppeN. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery.Comput. Struct. Biotechnol. J.201356e20130201110.5936/csbj.201302011 24688704
    [Google Scholar]
  28. WangC. XuP. ZhangL. HuangJ. ZhuK. LuoC. Current strategies and applications for precision drug design.Front. Pharmacol.2018978710.3389/fphar.2018.00787 30072901
    [Google Scholar]
  29. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries.Mol. Divers.20222618931913[https://link.springer.com/10.1007/s11030-021-10326-z]
    [Google Scholar]
  30. VijayanR.S.K. KihlbergJ. CrossJ.B. PoongavanamV. Enhancing preclinical drug discovery with artificial intelligence.Drug Discov. Today202227496798410.1016/j.drudis.2021.11.023 34838731
    [Google Scholar]
  31. GuanL. YangH. CaiY. SunL. DiP. LiW. LiuG. TangY. ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness.MedChemComm201910114815710.1039/C8MD00472B 30774861
    [Google Scholar]
  32. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  33. SoufanO. Ba-alawiW. Magana-MoraA. EssackM. BajicV.B. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening.Sci. Rep.201881911010.1038/s41598‑018‑27495‑x 29904147
    [Google Scholar]
  34. GolbraikhA. WangX.S. ZhuH. TropshaA. Predictive QSAR modeling: Methods and applications in drug discovery and chemical risk assessment.Handbook of Computational Chemistry.DordrechtSpringer Netherlands201614810.1007/978‑94‑007‑6169‑8_37‑3
    [Google Scholar]
  35. Keshavarzi ArshadiA. WebbJ. SalemM. CruzE. Calad-ThomsonS. GhadirianN. Artificial intelligence for COVID-19 drug dis-covery and vaccine development.Front Artif Intell2020
    [Google Scholar]
  36. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  37. BullockJ. LuccioniA. Hoffman PhamK. Sin Nga LamC. Luengo-OrozM. Mapping the landscape of Artificial Intelligence applica-tions against COVID-19.J. Artif. Intell. Res.20206980784510.1613/jair.1.12162
    [Google Scholar]
  38. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. CedrónF. NovoaF.J. CarballalA. MaojoV. PazosA. Fer-nandez-Lozano, C. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.011 34471498
    [Google Scholar]
  39. NekoeiM. MohammadhosseiniM. PourbasheerE. QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach.Med. Chem. Res.20152473037304610.1007/s00044‑015‑1354‑4
    [Google Scholar]
  40. MaJ. SheridanR.P. LiawA. DahlG.E. SvetnikV. Deep neural nets as a method for quantitative structure-activity relationships.J. Chem. Inf. Model.201555226310.1021/ci500747n 25635324
    [Google Scholar]
  41. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Ap-plications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  42. MayrA. KlambauerG. UnterthinerT. SteijaertM. WegnerJ.K. CeulemansH. ClevertD.A. HochreiterS. Large-scale compari-son of machine learning methods for drug target prediction on ChEMBL.Chem. Sci. (Camb.)20189245441545110.1039/C8SC00148K 30155234
    [Google Scholar]
  43. LavecchiaA. Machine-learning approaches in drug discovery: methods and applications.Drug Discov. Today201520331833110.1016/j.drudis.2014.10.012 25448759
    [Google Scholar]
  44. RashidM.B.M.A. Artificial Intelligence Effecting a Paradigm Shift in Drug Development.SLAS Technol.202126131510.1177/2472630320956931 32940124
    [Google Scholar]
  45. JiangL. WuZ. XuX. ZhanY. JinX. WangL. QiuY. Opportunities and challenges of artificial intelligence in the medical field: current application, emerging problems, and problem-solving strategies.J. Int. Med. Res.202149310.1177/03000605211000157 33771068
    [Google Scholar]
  46. AungY.Y.M. WongD.C.S. TingD.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artifi-cial intelligence in healthcare.Br. Med. Bull.2021139141510.1093/bmb/ldab016 34405854
    [Google Scholar]
  47. PriceW.N.II CohenI.G. Privacy in the age of medical big data.Nat. Med.2019251374310.1038/s41591‑018‑0272‑7 30617331
    [Google Scholar]
  48. RaghupathiW. RaghupathiV. Big data analytics in healthcare: promise and potential.Health Inf. Sci. Syst.201421310.1186/2047‑2501‑2‑3
    [Google Scholar]
  49. AbouelmehdiK. Beni-HessaneA. KhaloufiH. Big healthcare data: preserving security and privacy.J. Big Data201851110.1186/s40537‑017‑0110‑7
    [Google Scholar]
  50. ChengL. LiuF. YaoD.D. Enterprise data breach: causes, challenges, prevention, and future directions.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.201775e121110.1002/widm.1211
    [Google Scholar]
  51. HassanS. DhaliM. ZamanF. TanveerM. Big data and predictive analytics in healthcare in Bangladesh: regulatory challenges.Heliyon202176e0717910.1016/j.heliyon.2021.e07179 34141936
    [Google Scholar]
  52. KellyC.J. KarthikesalingamA. SuleymanM. CorradoG. KingD. Key challenges for delivering clinical impact with artificial intelli-gence.BMC Med.201917119510.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  53. MurphyK. Di RuggieroE. UpshurR. WillisonD.J. MalhotraN. CaiJ.C. MalhotraN. LuiV. GibsonJ. Artificial intelligence for good health: a scoping review of the ethics literature.BMC Med. Ethics20212211410.1186/s12910‑021‑00577‑8 33588803
    [Google Scholar]
  54. FerrymanK. Addressing health disparities in the Food and Drug Administration’s artificial intelligence and machine learning regulatory framework.J. Am. Med. Inform. Assoc.202027122016201910.1093/jamia/ocaa133 32951036
    [Google Scholar]
  55. RosaC. MarschL.A. WinstanleyE.L. BrunnerM. CampbellA.N.C. Using digital technologies in clinical trials: Current and future applications.Contemp. Clin. Trials202110010621910.1016/j.cct.2020.106219 33212293
    [Google Scholar]
  56. CowieM.R. BlomsterJ.I. CurtisL.H. DuclauxS. FordI. FritzF. GoldmanS. JanmohamedS. KreuzerJ. LeenayM. MichelA. OngS. PellJ.P. SouthworthM.R. StoughW.G. ThoenesM. ZannadF. ZalewskiA. Electronic health records to facilitate clin-ical research.Clin. Res. Cardiol.201710611910.1007/s00392‑016‑1025‑6 27557678
    [Google Scholar]
  57. LeeS. XuY. D’SouzaA.G. MartinE.A. DoktorchikC. ZhangZ. QuanH. Unlocking the potential of electronic health records for health research.Int. J. Popul. Data Sci.202051112310.23889/ijpds.v5i1.1123 32935049
    [Google Scholar]
  58. LinW.C. ChenJ.S. ChiangM.F. HribarM.R. Applications of artificial intelligence to electronic health record data in ophthalmology.Transl. Vis. Sci. Technol.2020921310.1167/tvst.9.2.13 32704419
    [Google Scholar]
  59. BennettW.L. BramanteC.T. RothenbergerS.D. KraschnewskiJ.L. HerringS.J. LentM.R. ClarkJ.M. ConroyM.B. LehmannH. CappellaN. Gauvey-KernM. McCulloughJ. McTigueK.M. Patient recruitment into a multicenter clinical cohort linking electron-ic health records from 5 health systems: Cross-sectional analysis.J. Med. Internet Res.2021235e2400310.2196/24003 34042604
    [Google Scholar]
  60. InanO.T. TenaertsP. PrindivilleS.A. ReynoldsH.R. DizonD.S. Cooper-ArnoldK. TurakhiaM. PletcherM.J. PrestonK.L. KrumholzH.M. MarlinB.M. MandlK.D. KlasnjaP. SpringB. IturriagaE. CampoR. Desvigne-NickensP. RosenbergY. SteinhublS.R. CaliffR.M. Digitizing clinical trials.NPJ Digit. Med.20203110110.1038/s41746‑020‑0302‑y 32821856
    [Google Scholar]
  61. SukeS.G. KostaP. NegiH. Role of Pharmacovigilance in India: An overview.Online J. Public Health Inform.201572e22310.5210/ojphi.v7i2.5595 26392851
    [Google Scholar]
  62. MedhiB. MuraliK. KaurS. PrakashA. Artificial intelligence in pharmacovigilance: Practical utility.Indian J. Pharmacol.201951637337610.4103/ijp.IJP_814_19 32029958
    [Google Scholar]
  63. HarpazR. DuMouchelW. ShahN.H. MadiganD. RyanP. FriedmanC. Novel data-mining methodologies for adverse drug event discovery and analysis.Clin. Pharmacol. Ther.20129161010102110.1038/clpt.2012.50 22549283
    [Google Scholar]
  64. KollingM.L. FurstenauL.B. SottM.K. RabaioliB. UlmiP.H. BragazziN.L. TedescoL.P.C. Data mining in healthcare: Applying strategic intelligence techniques to depict 25 years of research development.Int. J. Environ. Res. Public Health2021186309910.3390/ijerph18063099 33802880
    [Google Scholar]
  65. ChopardD. TrederM.S. CorcoranP. AhmedN. JohnsonC. BusseM. SpasicI. Text mining of adverse events in clinical trials: Deep learning approach.JMIR Med. Inform.2021912e2863210.2196/28632 34951601
    [Google Scholar]
  66. BotsisT. NguyenM.D. WooE.J. MarkatouM. BallR. Text mining for the vaccine adverse event reporting system: Medical text classification using informative feature selection.J. Am. Med. Inform. Assoc.201118563163810.1136/amiajnl‑2010‑000022 21709163
    [Google Scholar]
  67. SchmiderJ. KumarK. LaForestC. SwankoskiB. NaimK. CaubelP.M. Innovation in pharmacovigilance: Use of artificial intelli-gence in adverse event case processing.Clin. Pharmacol. Ther.2019105495496110.1002/cpt.1255 30303528
    [Google Scholar]
  68. Schmidt-ErfurthU. SadeghipourA. GerendasB.S. WaldsteinS.M. BogunovićH. Artificial intelligence in retina.Prog. Retin. Eye Res.20186712910.1016/j.preteyeres.2018.07.004 30076935
    [Google Scholar]
  69. AkazawaM. HashimotoK. Artificial intelligence in ovarian cancer diagnosis.Anticancer Res.20204084795480010.21873/anticanres.14482 32727807
    [Google Scholar]
  70. KrittanawongC. VirkH.U.H. BangaloreS. WangZ. JohnsonK.W. PinottiR. ZhangH. KaplinS. NarasimhanB. KitaiT. BaberU. HalperinJ.L. TangW.H.W. Machine learning prediction in cardiovascular diseases: a meta-analysis.Sci. Rep.20201011605710.1038/s41598‑020‑72685‑1 32994452
    [Google Scholar]
  71. DasN. TopalovicM. JanssensW. Artificial intelligence in diagnosis of obstructive lung disease.Curr. Opin. Pulm. Med.201824211712310.1097/MCP.0000000000000459 29251699
    [Google Scholar]
  72. ZhaoY. HuB. WangY. YinX. JiangY. ZhuX. Identification of gastric cancer with convolutional neural networks: A systematic review.Multimedia Tools Appl.2022818117171173610.1007/s11042‑022‑12258‑8
    [Google Scholar]
  73. ZhouL.Q. WangJ.Y. YuS.Y. WuG.G. WeiQ. DengY.B. WuX.L. CuiX.W. DietrichC.F. Artificial intelligence in medical imaging of the liver.World J. Gastroenterol.201925667268210.3748/wjg.v25.i6.672 30783371
    [Google Scholar]
  74. NielO. BastardP. Artificial intelligence in nephrology: Core concepts, clinical applications, and perspectives.Am. J. Kidney Dis.201974680381010.1053/j.ajkd.2019.05.020 31451330
    [Google Scholar]
  75. MekovE. MiravitllesM. PetkovR. Artificial intelligence and machine learning in respiratory medicine.Expert Rev. Respir. Med.202014655956410.1080/17476348.2020.1743181 32166988
    [Google Scholar]
  76. AhmedZ. MohamedK. ZeeshanS. DongX. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine.Database (Oxford)20202020baaa01010.1093/database/baaa010 32185396
    [Google Scholar]
  77. ThomasianN.M. KamelI.R. BaiH.X. Machine intelligence in non-invasive endocrine cancer diagnostics.Nat. Rev. Endocrinol.2022182819510.1038/s41574‑021‑00543‑9 34754064
    [Google Scholar]
  78. VollmerS. MateenB.A. BohnerG. KirályF.J. GhaniR. JonssonP. CumbersS. JonasA. McAllisterK.S.L. MylesP. Grain-gerD. BirseM. BransonR. MoonsK.G.M. CollinsG.S. IoannidisJ.P.A. HolmesC. HemingwayH. Machine learning and artifi-cial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness.BMJ2020368l692710.1136/bmj.l6927 32198138
    [Google Scholar]
  79. YangG. YeQ. XiaJ. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond.Inf. Fusion202277295210.1016/j.inffus.2021.07.016 34980946
    [Google Scholar]
  80. SarkerI.H. Machine Learning: Algorithms, real-world applications and research directions.SN Comput Sci202123160
    [Google Scholar]
  81. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  82. AhujaA.S. The impact of artificial intelligence in medicine on the future role of the physician.PeerJ20197e770210.7717/peerj.7702 31592346
    [Google Scholar]
  83. AmannJ. VetterD. BlombergS.N. ChristensenH.C. CoffeeM. GerkeS. LuH.H-S. To explain or not to explain?—Artificial intel-ligence explainability in clinical decision support systems.PLOS Digit Heal202212e0000016
    [Google Scholar]
  84. GiordanoC. BrennanM. MohamedB. RashidiP. ModaveF. TigheP. Accessing artificial intelligence for clinical decision-making.Front Digit Heal2021310.3389/fdgth.2021.645232
    [Google Scholar]
  85. GerkeS. BabicB. EvgeniouT. CohenI.G. The need for a system view to regulate artificial intelligence/machine learning-based soft-ware as medical device.NPJ Digit. Med.2020315310.1038/s41746‑020‑0262‑2 32285013
    [Google Scholar]
  86. SecinaroS. CalandraD. SecinaroA. MuthuranguV. BianconeP. The role of artificial intelligence in healthcare: a structured litera-ture review.BMC Med. Inform. Decis. Mak.202121112510.1186/s12911‑021‑01488‑9 33836752
    [Google Scholar]
  87. KrukM.E. GageA.D. ArsenaultC. JordanK. LeslieH.H. Roder-DeWanS. High-quality health systems in the sustainable devel-opment goals era: Time for a revolution.Lancet Glob. Health2018611e1196e125210.1016/S2214‑109X(18)30386‑3
    [Google Scholar]
  88. MeskóB. DrobniZ. BényeiÉ. GergelyB. GyőrffyZ. Digital health is a cultural transformation of traditional healthcare.mHealth20173383810.21037/mhealth.2017.08.07 29184890
    [Google Scholar]
  89. SuttonR.T. PincockD. BaumgartD.C. SadowskiD.C. FedorakR.N. KroekerK.I. An overview of clinical decision support sys-tems: benefits, risks, and strategies for success.NPJ Digit. Med.2020311710.1038/s41746‑020‑0221‑y 32047862
    [Google Scholar]
  90. LysaghtT. LimH.Y. XafisV. NgiamK.Y. AI-assisted decision-making in healthcare.Asian Bioeth. Rev.201911329931410.1007/s41649‑019‑00096‑0 33717318
    [Google Scholar]
  91. HarrerS. ShahP. AntonyB. HuJ. Artificial intelligence for clinical trial design.Trends Pharmacol. Sci.201940857759110.1016/j.tips.2019.05.005 31326235
    [Google Scholar]
  92. JiangF. JiangY. ZhiH. DongY. LiH. MaS. WangY. DongQ. ShenH. WangY. Artificial intelligence in healthcare: past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑00010129507784
    [Google Scholar]
/content/journals/cjai/10.2174/2666782701666220920091940
Loading
/content/journals/cjai/10.2174/2666782701666220920091940
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test