Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-7827
  • E-ISSN: 2666-7835

Abstract

Artificial Intelligence (AI) is a swiftly evolving branch of technology that has been used to improve clinical practice, minimize errors, and boost safety and efficiency worldwide; in almost every field. AI is used for machine-learning algorithms and techniques to replicate human cognition in the assessment, display, and interpretation of complicated medical and healthcare data. AI is surfacing and producing a discernible shift in the healthcare system by expanding the availability of data in healthcare and speeding up the development of analysis tools. Additionally, AI and its applications in healthcare have evolved and proved to be a boon. The pharmaceutical business, health services, medical institutes, and patients, not only doctors use the applications but also dermatology, echocardiography, surgery, and angiography are only a few applications. AI can improve healthcare systems without hesitation. Automating time-consuming tasks can free up clinicians' schedules so they can encounter patients. It is causing a radical shift in healthcare, attributed to the increasing availability of healthcare data and the rapid advancement of advanced analytics. Screening, monitoring, and medical and clinical investigations are all made easier by AI. Despite some of the obstacles and limitations that AI faces, this new technology has enormous potential in the medical field. Regarding their reduced size, electronic devices have become more powerful as technology has progressed. Currently, the COVID – 19 pandemic is propelling the digital age to unprecedented heights. On multiple fronts, Machine Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI) are being employed to combat the pandemic.

Loading

Article metrics loading...

/content/journals/cjai/10.2174/2666782701666220805105655
2022-09-06
2025-05-30
Loading full text...

Full text loading...

References

  1. RongG. MendezA. Bou AssiE. ZhaoB. SawanM. Artificial intelligence in healthcare: Review and prediction case studies.Engi-neering20206329130110.1016/j.eng.2019.08.015
    [Google Scholar]
  2. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature14539 26017442
    [Google Scholar]
  3. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proceedings of the IEEE conference on computer vision and pattern recognition201677077810.1109/CVPR.2016.90
    [Google Scholar]
  4. NgJ.Y.H. HausknechtM. VijayanarasimhanS. VinyalsO. MongaR. TodericiG. Beyond short snippets: Deep networks for video classification.Proceedings of the IEEE conference on computer vision and pattern recognition20154694470210.1109/CVPR.2015.7299101
    [Google Scholar]
  5. JiangW. ZhangL. Geospatial data to images: A deep-learning framework for traffic forecasting.Tsinghua Sci. Technol.2019241526410.26599/TST.2018.9010033
    [Google Scholar]
  6. DeoR.C. Machine learning in medicine.Circulation2015132201920193010.1161/CIRCULATIONAHA.115.001593 26572668
    [Google Scholar]
  7. LjosaV. SokolnickiK.L. CarpenterA.E. Annotated high-throughput microscopy image sets for validation.Nat. Methods20129763710.1038/nmeth.2083 22743765
    [Google Scholar]
  8. DarcyA.M. LouieA.K. RobertsL.W. Machine learning and the profession of medicine.JAMA2016315655155210.1001/jama.2015.18421 26864406
    [Google Scholar]
  9. JamesG. WittenD. HastieT. TibshiraniR. An introduction to statistical learningSpringer Nature: NY201310311410.1007/978‑1‑4614‑7138‑7
    [Google Scholar]
  10. WangY. TetkoI.V. HallM.A. FrankE. FaciusA. MayerK.F.X. MewesH.W. Gene selection from microarray data for cancer classification--a machine learning approach.Comput. Biol. Chem.2005291374610.1016/j.compbiolchem.2004.11.001 15680584
    [Google Scholar]
  11. MurdochT.B. DetskyA.S. The inevitable application of big data to health care.JAMA2013309131351135210.1001/jama.2013.393 23549579
    [Google Scholar]
  12. LeeC.S. NagyP. G. WeaverS. J. Newman-TokerD. E. CognitiveAJR, and system factors contributing to diagnostic errors in radiology.2013201361161710.2214/AJR.12.1037523971454
    [Google Scholar]
  13. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature21056 28117445
    [Google Scholar]
  14. HeatonJ. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning.Genet. Program. Evolvable Mach.201819305307[https://doi.org/10.1007/s10710-017-9314-z]
    [Google Scholar]
  15. SomashekharS. KumarcR. RauthanA. ArunK. PatilP. RamyaY. Abstract S6-07: Double blinded validation study to assess performance of IBM artificial intelligence platform, watson for oncology in comparison with manipal multidisciplinary tumour board – first study of 638 breast cancer cases.Cancer Res.2017774S6S0710.1158/1538‑7445.SABCS16‑S6‑07
    [Google Scholar]
  16. BoutonC.E. ShaikhouniA. AnnettaN.V. BockbraderM.A. FriedenbergD.A. NielsonD.M. SharmaG. SederbergP.B. GlennB.C. MysiwW.J. MorganA.G. DeogaonkarM. RezaiA.R. Restoring cortical control of functional movement in a human with quad-riplegia.Nature2016533760224725010.1038/nature17435 27074513
    [Google Scholar]
  17. Farina D. Vujaklija I. Sartori M. Kapelner T. Negro F. Jiang N. Bergmeister K. Andalib A. Principe J. Aszmann O.C. Man/Machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation.Nat. Biomed. Eng.201710025
    [Google Scholar]
  18. First FDA approval for clinical cloud-based deep learning in healthcare.Available from: https://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-clinical-cloud-based-deep-learning-in-healthcare/?sh=21de6c41161c
  19. LongE. LinH. LiuZ. WuX. WangL. JiangJ. AnY. LinZ. LiX. ChenJ. LiJ. CaoQ. WangD. LiuX. ChenW. LiuY. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts.Nat. Biomed. Eng.201710024
    [Google Scholar]
  20. GulshanV. PengL. CoramM. StumpeM.C. WuD. NarayanaswamyA. VenugopalanS. WidnerK. MadamsT. CuadrosJ. KimR. RamanR. NelsonP.C. MegaJ.L. WebsterD.R. Development and validation of a deep learning algorithm for detection of di-abetic retinopathy in retinal fundus photographs.JAMA2016316222402241010.1001/jama.2016.17216 27898976
    [Google Scholar]
  21. SaengerA.K. ChristensonR.H. Stroke biomarkers: Progress and challenges for diagnosis, prognosis, differentiation, and treatment.Clin. Chem.2010561213310.1373/clinchem.2009.133801 19926776
    [Google Scholar]
  22. HeeleyE. AndersonC.S. HuangY. JanS. LiY. LiuM. SunJ. XuE. WuY. YangQ. ZhangJ. ZhangS. WangJ. Role of health insurance in averting economic hardship in families after acute stroke in China.Stroke20094062149215610.1161/STROKEAHA.108.540054 19359646
    [Google Scholar]
  23. ZhangQ. XieY. YeP. PangC. Acute ischaemic stroke prediction from physiological time series patterns.Australas. Med. J.20136528028610.4066/AMJ.2013.1650 23745149
    [Google Scholar]
  24. VillarJ.R. GonzálezS. SedanoJ. ChiraC. Trejo-Gabriel-GalanJ.M. Improving human activity recognition and its application in early stroke diagnosis.Int. J. Neural Syst.2015254145003610.1142/S0129065714500361 25684369
    [Google Scholar]
  25. GrefkesC. FinkG.R. Recovery from stroke: Current concepts and future perspectives.Neurol. Res. Pract.20202111010.1186/s42466‑020‑00060‑6
    [Google Scholar]
  26. ManniniA. TrojanielloD. CereattiA. SabatiniA.M. A machine learning framework for gait classification using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients.Sensors201616113410.3390/s16010134 26805847
    [Google Scholar]
  27. ThornhillR.E. LumC. JaberiA. StefanskiP. TorresC.H. MomoliF. PetrcichW. DowlatshahiD. Can shape analysis differenti-ate free-floating internal carotid artery thrombus from atherosclerotic plaque in patients evaluated with CTA for stroke or transient is-chemic attack?Acad. Radiol.201421334535410.1016/j.acra.2013.11.011 24507422
    [Google Scholar]
  28. RehmeA.K. VolzL.J. FeisD.L. Bomilcar-FockeI. LiebigT. EickhoffS.B. FinkG.R. GrefkesC. Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques.Cereb. Cortex20152593046305610.1093/cercor/bhu100 24836690
    [Google Scholar]
  29. GriffisJ.C. AllendorferJ.B. SzaflarskiJ.P. GriffisJ.C. AllendorferJ.B. SzaflarskiJ.P. Voxel-based gaussian naïve bayes classifi-cation of ischemic stroke lesions in individual T1-weighted MRI scans.J. Neurosci. Methods20162579710810.1016/j.jneumeth.2015.09.019
    [Google Scholar]
  30. KamnitsasK. LedigC. NewcombeV.F.J. SimpsonJ.P. KaneA.D. MenonD.K. RueckertD. GlockerB. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.Med. Image Anal.201736617810.1016/j.media.2016.10.004 27865153
    [Google Scholar]
  31. RondinaJ.M. FilipponeM. GirolamiM. WardN.S. Decoding post-stroke motor function from structural brain imaging.Neuroimage Clin.20161237238010.1016/j.nicl.2016.07.014 27595065
    [Google Scholar]
  32. JiangF. JiangY. ZhiH. DongY. LiH. MaS. WangY. DongQ. ShenH. WangY. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  33. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  34. LedfordJ.R. Chest radiology: Plain film patterns and differential diagnoses, 6th JamesC. Reed. Philadelphia, PA: Elsevier201119745510.2214/AJR.11.7214
    [Google Scholar]
  35. RigelD.S. FriedmanR.J. KopfA.W. PolskyD. ABCDE--an evolving concept in the early detection of melanoma.Arch. Dermatol.200514181032103410.1001/archderm.141.8.1032 16103334
    [Google Scholar]
  36. ThomasL. TranchandP. BerardF. SecchiT. ColinC. MoulinG. Semiological value of ABCDE criteria in the diagnosis of cutane-ous pigmented tumors.Dermatology19981971111710.1159/000017969 9693179
    [Google Scholar]
  37. ZhengY. HeM. CongdonN. Worldwide epidemic of diabetic retinopathy.Indian J. Ophthalmol.201260542843110.4103/0301‑4738.100542 22944754
    [Google Scholar]
  38. MenkeA. CasagrandeS. GeissL. CowieC.C. Prevalence of and trends in diabetes among adults in the United States, 1988-2012.JAMA2015314101021102910.1001/jama.2015.10029 26348752
    [Google Scholar]
  39. RubegniP. CeveniniG. BurroniM. PerottiR. Dell’EvaG. SbanoP. MiraccoC. LuziP. TosiP. BarbiniP. AndreassiL. Au-tomated diagnosis of pigmented skin lesions.Int. J. Cancer2002101657658010.1002/ijc.10620 12237900
    [Google Scholar]
  40. StangA. PohlabelnH. MüllerK.M. JahnI. GiersiepenK. JöckelK.H. Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case-control study.Lung Cancer2006521293610.1016/j.lungcan.2005.11.012 16476504
    [Google Scholar]
  41. QuangD. ChenY. XieX. DANN: A deep learning approach for annotating the pathogenicity of genetic variants.Bioinformatics201531576176310.1093/bioinformatics/btu703 25338716
    [Google Scholar]
  42. QuangD. XieX. DanQ. DanQ. A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA se-quences.Nucleic Acids Res.20164411e10710.1093/nar/gkw226 27084946
    [Google Scholar]
  43. SariaS.A. $3 Trillion challenge to computational scientists: Transforming healthcare delivery.IEEE Intell. Syst.2014294828710.1109/MIS.2014.58
    [Google Scholar]
  44. RameshA.N. KambhampatiC. MonsonJ.R.T. DrewP.J. Artificial intelligence in medicine.Ann. R. Coll. Surg. Engl.200486533433810.1308/147870804290 15333167
    [Google Scholar]
  45. HametP. TremblayJ. Artificial intelligence in medicine.Metabolism201769SS36S4010.1016/j.metabol.2017.01.011 28126242
    [Google Scholar]
  46. ShahA. AhirraoS. PhansalkarS. KotechaK. Survey on: Applications of smart wearable technology in health insurance.IOP Conf. Ser. Mater. Sci. Eng.2021104211202510.1088/1757‑899X/1042/1/012025
    [Google Scholar]
  47. HassanM.M. HudaS. UddinM.Z. AlmogrenA. AlrubaianM. Human activity recognition from body sensor data using deep learn-ing.J. Med. Syst.20184269910.1007/s10916‑018‑0948‑z 29663090
    [Google Scholar]
  48. UddinM.Z. SoyluA. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.Sci. Rep.20211111645510.1038/s41598‑021‑95947‑y 34385552
    [Google Scholar]
  49. CapobiancoG. Di GiacomoU. MartinelliF. MercaldoF. SantoneA. "Wearable devices for human activity recognition and user detection," 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)201936537210.1109/EMPDP.2019.8671636
    [Google Scholar]
  50. GuoX. LiuL. ZhangZ. ChunYu J. A review of AI technologies for wearable devices.IOP Conf. Ser. Mater. Sci. Eng.2019688404407210.1088/1757‑899X/688/4/044072
    [Google Scholar]
  51. AxisaF. SchmittP.M. GehinC. DelhommeG. McAdamsE. DittmarA. Flexible technologies and smart clothing for citizen medi-cine, home healthcare, and disease prevention.IEEE Trans. Inf. Technol. Biomed.20059332533610.1109/TITB.2005.854505 16167686
    [Google Scholar]
  52. KubotaK.J. ChenJ.A. LittleM.A. Machine learning for large-scale wearable sensor data in Parkinson’s disease: Concepts, promises, pitfalls, and futures.Mov. Disord.20163191314132610.1002/mds.26693 27501026
    [Google Scholar]
  53. GuoJ. LiB. The application of medical artificial intelligence technology in rural areas of developing countries.Health Equity20182117418110.1089/heq.2018.0037 30283865
    [Google Scholar]
  54. KhanZ.H. SiddiqueA. LeeC.W. Robotics utilization for healthcare digitization in global COVID-19 management.Int. J. Environ. Res. Public Health20201711381910.3390/ijerph17113819 32481547
    [Google Scholar]
  55. LocsinR.C. ItoH. Can humanoid nurse robots replace human nurses?J. Nurs.201851110.7243/2056‑9157‑5‑1
    [Google Scholar]
  56. BaiL. YangJ. ChenX. SunY. LiX. Medical robotics in bone fracture reduction surgery: A review.Sensors20191916359310.3390/s19163593 31426577
    [Google Scholar]
  57. BalasubramanianS. ChenniahJ. BalasubramanianG. VellaipandiV. The era of robotics: Dexterity for surgery and medical care: Narrative review.Int. Surg. J.2020741317132310.18203/2349‑2902.isj20201057
    [Google Scholar]
  58. LocsinR.C. ItoH. TaniokaT. YasuharaY. OsakaK. SchoenhoferS.O. Humanoid nurse robots as caring entities: A revolutionary probability?Int. J. Stud. Nurs.20183214610.20849/ijsn.v3i2.456
    [Google Scholar]
  59. BouteraaY. Ben AbdallahI. GhommamJ. Task-space region-reaching control for medical robot manipulator.Comput. Electr. Eng.20186762964510.1016/j.compeleceng.2017.02.004
    [Google Scholar]
  60. DesaiJ.P. ShengJ. ChengS.S. WangX. DeatonN.J. RahmanN. Towards patient-specific 3D-printed robotic systems for surgical interventions.IEEE Trans. Med. Robot. Bionics201912778710.1109/TMRB.2019.2912444 32984777
    [Google Scholar]
  61. CheahW.C. WatsonS.A. LennoxB. Limitations of wireless power transfer technologies for mobile robots.Wirel. Power Transf.20196217518910.1017/wpt.2019.8
    [Google Scholar]
  62. ParkJ. YeJi, H.; Duck Hee. Lee; Jaesoon, C. Study on safety and performance evaluation of micro - surgical robots based on open robot platform.J. Biomed. Eng. Res.201940520621410.9718/JBER.2019.40.5.206
    [Google Scholar]
  63. ChinzeiK. Safety of surgical robots and IEC 80601-2-77: The first international standard for surgical robots.Acta Polytech. Hungarica16820192171
    [Google Scholar]
  64. PetrescuR.V.V. Medical service of robots.J. Mechatronics Robot.201931608110.3844/jmrsp.2019.60.81
    [Google Scholar]
  65. XuX.W. WuX.X. JiangX.G. XuK.J. YingL.J. MaC.L. LiS.B. WangH.Y. ZhangS. GaoH.N. ShengJ.F. CaiH.L. QiuY.Q. LiL.J. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: Retrospective case series.BMJ2020368m60610.1136/bmj.m606 32075786
    [Google Scholar]
  66. GunesO. GunesG. SeyitogluD.C. The use of artificial intelligence in different medical branches: An overview of the literature.Med. Sci.20198377077310.5455/medscience.2019.08.9036
    [Google Scholar]
  67. FuL. WangB. YuanT. ChenX. AoY. FitzpatrickT. LiP. ZhouY. LinY.F. DuanQ. LuoG. FanS. LuY. FengA. ZhanY. LiangB. CaiW. ZhangL. DuX. LiL. ShuY. ZouH. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis.J. Infect.202080665666510.1016/j.jinf.2020.03.041 32283155
    [Google Scholar]
  68. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  69. SamaniH. ZhuR. Robotic automated external defibrillator ambulance for emergency medical service in smart cities.IEEE Access2016426828310.1109/ACCESS.2016.2514263
    [Google Scholar]
  70. KoceskaN. KoceskiS. Beomonte ZobelP. TrajkovikV. GarciaN. A telemedicine robot system for assisted and independent liv-ing.Sensors201919483410.3390/s19040834 30781647
    [Google Scholar]
  71. OzkilA.G. FanZ. DawidsS. AanesH. KristensenJ.K. ChristensenK.H. Service robots for hospitals: A case study of transporta-tion tasks in a hospital.Proc. 2009 IEEE Int. Conf. Autom. Logist. ICAL200928929410.1109/ICAL.2009.5262912
    [Google Scholar]
  72. MettlerT. SprengerM. WinterR. Service robots in hospitals.Eur. J. Inf. Syst.201726545146810.1057/s41303‑017‑0046‑1
    [Google Scholar]
  73. El-RashidyN. El-SappaghS. IslamS.M.R. M El-BakryH. AbdelrazekS. Mobile health in remote patient monitoring for chronic diseases: Principles, trends, and challenges.Diagnostics202111460710.3390/diagnostics11040607 33805471
    [Google Scholar]
  74. GrespanL. FioriniP. ColucciG. Surgical Robots.The Route to Patient Safety in Robotic Surgery. Springer Tracts in Advanced Robotics, Springer, Cham2019126253510.1007/978‑3‑030‑03020‑9_3
    [Google Scholar]
  75. PrasslerE. RitterA. SchaefferC. FioriniP. A short history of cleaning robots.Autonomous Robots Springer2000921122610.1023/A:1008974515925
    [Google Scholar]
  76. WangX. PengY. LuL. LuZ. BagheriM. SummersR.M. ChestX-Ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, 2017 IEEE conference on computer vision and pattern recognition.CVPR20173462347110.1109/CVPR.2017.369
    [Google Scholar]
  77. Twin robotic X-ray scanner – multitom raxAvailable from: https://www.siemens-healthineers.com/en-in/robotic-x-ray/twin-robotic-x-ray/multitom-rax (Accessed on August 14, 2021).
  78. Siemens healthcare introduces first twin robotic X-rayAvailable from: biospectrumindia.com/news/75/6799/siemens-healthcare-introduces-first-twin-robotic-x-ray-system.html
  79. TsuiK.M. YancoH.A. Assistive, rehabilitation, and surgical robots from the perspective of medical and healthcare professionals.Available from: https://www.aaai.org/Papers/Workshops/2007/WS-07-07/WS07-07-007.pdf (Accessed on August 14, 2021).
    [Google Scholar]
  80. RajasekharanC. AnuJ. NeerajV. ParvathyR. Diagnosing scrub typhus: Meticulous physical examination is the key.BMJ Case Rep.201410.1136/bcr‑2014‑204695
    [Google Scholar]
  81. Flirtey real-time delivery by flying robots.Available from: https://www.flirtey.com/ (Accessed on September 19, 2021).
  82. StarshipAvailable from: https://www.starship.xyz/ (Accessed on September 09, 2021).
  83. NamJ.G. ParkS. HwangE.J. LeeJ.H. JinK.N. LimK.Y. VuT.H. SohnJ.H. HwangS. GooJ.M. ParkC.M. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs.Radiology2019290121822810.1148/radiol.2018180237 30251934
    [Google Scholar]
  84. HaleemA. JavaidM. VaishyaR. Effects of COVID-19 pandemic in daily life.Curr. Med. Res. Pract.2020102787910.1016/j.cmrp.2020.03.011 32292804
    [Google Scholar]
  85. Diaz-EscobarJ. Ordóñez-GuillénN.E. Villarreal-ReyesS. Galaviz-MosquedaA. KoberV. Rivera-RodriguezR. Lozano RizkJ.E. Deep-learning based detection of COVID-19 using lung ultrasound imagery.PLoS One2021168e025588610.1371/journal.pone.0255886 34388187
    [Google Scholar]
  86. GozesO. Frid-AdarM. GreenspanH. BrowningP.D. ZhangH. JiW. BernheimA. SiegelE. Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis.ArXiv2020
    [Google Scholar]
  87. StebbingJ. PhelanA. GriffinI. TuckerC. OechsleO. SmithD. RichardsonP. COVID-19: Combining antiviral and anti-inflammatory treatments.Lancet Infect. Dis.202020440040210.1016/S1473‑3099(20)30132‑8 32113509
    [Google Scholar]
  88. VaishyaR. JavaidM. KhanI.H. HaleemA. Artificial intelligence (AI) applications for COVID-19 pandemic.Diabetes Metab. Syndr.202014433733910.1016/j.dsx.2020.04.012 32305024
    [Google Scholar]
  89. ChenS. YangJ. YangW. WangC. BärnighausenT. COVID-19 control in China during mass population movements at new year.Lancet202039576476610.1016/S0140‑6736(20)30421‑9
    [Google Scholar]
  90. PirouzB. HaghshenasS.S. HaghshenasS.S. PiroP. Investigating a serious challenge in the sustainable development process: Analy-sis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis.Sustain.2020126242710.3390/su12062427
    [Google Scholar]
/content/journals/cjai/10.2174/2666782701666220805105655
Loading
/content/journals/cjai/10.2174/2666782701666220805105655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test