Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7827
  • E-ISSN: 2666-7835

Abstract

Reading every clinical trial for any disease is tedious, as is determining the current progress, especially when the number of clinical trials is huge. The Text Mining Platform of Artificial Intelligence (AI) can help to simplify the task.

A large pool of tuberculosis clinical trials has been searched through the International Clinical Trial Registry Platform (ICTRP) and used as a textual dataset. The exported dataset of 1635 clinical studies, in a comma-separated format, is preprocessed for data analysis and text mining. Data preparation, corpus generation, text preprocessing, and finally, cluster analysis were carried out using the text-mining widget of the open-source machine learning tool. The hierarchical cluster analysis was used for mapping research interests in tuberculosis clinical trials.

The data mining of the exported dataset of tuberculosis clinical trials uncovered interesting facts in terms of numbers. Text mining presented a total of 41 hierarchical clusters that were further mapped in twenty-five (25) different research interests among tuberculosis clinical trials. A novel technique for the rapid and practical review of major clinical trials is demonstrated. As an open-source and GUI-based tool is used for work, any researcher with working knowledge of text mining may also use this technique for other clinical trials.

Loading

Article metrics loading...

/content/journals/cjai/10.2174/2666782701666220113102751
2022-04-01
2024-11-22
Loading full text...

Full text loading...

References

  1. BarberisI. BragazziN.L. GalluzzoL. MartiniM. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus.J. Prev. Med. Hyg.2017581E9E12
    [Google Scholar]
  2. Global Tuberculosis Report; World Health Organization: Geneva, 2019. Available from: https://www.who.int/publications/i/item/9789241565714
  3. MiglioriG.B. TiberiS. ZumlaA. PetersenE. ChakayaJ.M. WejseC. Muñoz TorricoM. DuarteR. AlffenaarJ.W. SchaafH.S. MaraisB.J. CirilloD.M. AlagnaR. RendonA. PontaliE. PiubelloA. FigueroaJ. FerlazzoG. García-BasteiroA. CentisR. ViscaD. D’AmbrosioL. SotgiuG. MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the global tuberculosis network.Int. J. Infect. Dis.202092SS15S2510.1016/j.ijid.2020.01.042 32032752
    [Google Scholar]
  4. YoungM. CraigJ. Urgent global action is needed on multi drug-resistant tuberculosis (MDR-TB)–can small cone moxa contribute to a global response?Eur. J. Integr. Med.20203710107210.1016/j.eujim.2020.101072
    [Google Scholar]
  5. LiB.Y. ShiW.P. ZhouC.M. QiZ. VinodK.D. XuB.Z. YangL. SvenH. BiaoX. Rising challenge of multidrug-resistant tuberculosis in China: a predictive study using Markov modeling.Infect. Dis. Poverty202096510.1186/s40249‑020‑00682‑7
    [Google Scholar]
  6. GuglielmettiL. LowM. McKennaL. Challenges in TB regimen development: preserving evidentiary standards for regulatory decisions and policymaking.Taylor & Francis2020
    [Google Scholar]
  7. KorhonenA. SéaghdhaD.O. SilinsI. SunL. HögbergJ. SteniusU. Text mining for literature review and knowledge discovery in cancer risk assessment and research.PLoS One201274e3342710.1371/journal.pone.0033427 22511921
    [Google Scholar]
  8. FabbriS. ElisH. AndreD.T. AndersonB. AugustoZ. CleitonS. Using information visualization and text mining to facilitate the conduction of systematic literature reviews.International Conference on Enterprise Information SystemsSpringer Berlin, Heidelberg2012243256
    [Google Scholar]
  9. Rodriguez-EstebanR. BundschusM. Text mining patents for biomedical knowledge.Drug Discov. Today2016216997100210.1016/j.drudis.2016.05.002 27179985
    [Google Scholar]
  10. PrzybyłaP. Text mining resources for the life sciences.Database (Oxford)201610.1093/database/baw145
    [Google Scholar]
  11. ZhuF. PatumcharoenpolP. ZhangC. YangY. ChanJ. MeechaiA. VongsangnakW. ShenB. Biomedical text mining and its applications in cancer research.J. Biomed. Inform.201346220021110.1016/j.jbi.2012.10.007 23159498
    [Google Scholar]
  12. FleurenW.W.M. AlkemaW. Application of text mining in the biomedical domain.Methods2015749710610.1016/j.ymeth.2015.01.015 25641519
    [Google Scholar]
  13. SafferJ.D. BurnettV.L. Introduction to Biomedical Literature Text Mining: Context and Objectives.Biomedical Literature Mining. KumarV.D. TipneyH.J. New York, NYSpringer New York20141710.1007/978‑1‑4939‑0709‑0_1
    [Google Scholar]
  14. SimonC. DavidsenK. HansenC. SeymourE. BarnkobM.B. OlsenL.R. BioReader: a text mining tool for performing classification of biomedical literature.BMC Bioinformatics201919Suppl. 135710.1186/s12859‑019‑2607‑x 30717659
    [Google Scholar]
  15. SengerS. Assessment of the significance of patent-derived information for the early identification of compound-target interaction hypotheses.J. Cheminform.2017912610.1186/s13321‑017‑0214‑2 29086108
    [Google Scholar]
  16. KorkontzelosI. Text mining for efficient search and assisted creation of clinical trials.Proceedings of the ACM 5th international workshop on Data and text mining in biomedical informatics2011435010.1145/2064696.2064706
    [Google Scholar]
  17. DemšarJ. Orange: data mining toolbox in Python.J. Mach. Learn. Res.201314123492353
    [Google Scholar]
  18. JovicA. BrkicK. BogunovicN. An overview of free software tools for general data mining.2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)20141112-111710.1109/MIPRO.2014.6859735
    [Google Scholar]
  19. KaurM.P. RanaQ.P. Advances in Agri-Management.OrangeFuture Challenges 2017155
    [Google Scholar]
  20. DemšarJ. ZupanB. Orange: Data mining fruitful and fun-a historical perspective.Informatica (Vilnius)2013371
    [Google Scholar]
  21. GhosalA. A short review on different clustering techniques and their applications.Emerging Technology in Modelling and Graphics. JyotsnaK.M. DebikaB. Springer2020698310.1007/978‑981‑13‑7403‑6_9
    [Google Scholar]
  22. ZouH.J.W.P.C. Clustering algorithm and its application in data mining.Wirel. Pers. Commun.202011012130
    [Google Scholar]
  23. DemšarJ. Orange: data mining toolbox in Python.J. Mach. Learn. Res.201314123492353
    [Google Scholar]
  24. KubekM. Natural Language Processing and Text MiningSpringer202010.1007/978‑3‑030‑23136‑1_4
    [Google Scholar]
  25. RokachL. MaimonO. Clustering Methods.Data Mining and Knowledge Discovery Handbook. MaimonO. RokachL. Boston, MASpringer US200532135210.1007/0‑387‑25465‑X_15
    [Google Scholar]
  26. El-HamdouchiA. WillettP. Hierarchic document classification using Ward’s clustering method.Proceedings of the 9th annual international ACM SIGIR conference on Research and development in information retrievalAssociation for Computing Machinery New York, NY, USA198614915610.1145/253168.253200
    [Google Scholar]
  27. PillerC. FDA and NIH let clinical trial sponsors keep results secret and break the law2020Available from: https://www.sciencemag.org/news/2020/01/fda-and-nih-let-clinical-trial-sponsors-keep-results-secret-and-break-law 10.1126/science.aba8123
    [Google Scholar]
  28. FlemingN. Top US institutes still aren’t reporting clinical-trial results on time.2019Available from: https://www.nature.com/articles/d41586-019-00994-1 10.1038/d41586‑019‑00994‑1
    [Google Scholar]
  29. PillerC. Transparency on trial.Science2020367647524024310.1126/science.367.6475.240 31949063
    [Google Scholar]
/content/journals/cjai/10.2174/2666782701666220113102751
Loading
/content/journals/cjai/10.2174/2666782701666220113102751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test