Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Toll-like receptors (TLRs) belong to the innate immune system. TLRs identify and respond to invading pathogens by recognizing certain molecular patterns associated with the infections. TLRs are crucial for the host's defence against these diseases. TLRs are capable of detecting several endogenous chemicals through the recognition of damage-associated molecular patterns, which are generated in response to various harmful situations. Recent animal studies have shown that TLR signaling has a significant role in the development of serious heart diseases, such as ischemia myocardial damage, myocarditis, and septic cardiomyopathy, where inflammation of the heart muscle is a key factor. This manuscript examines the animal research findings on (1) TLRs, TLR ligands, and the signal transduction system, and (2) the significant involvement of TLR signaling in these crucial cardiac diseases.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X348433240915133309
2024-09-24
2025-01-31
Loading full text...

Full text loading...

References

  1. AndersonK.V. JürgensG. Nüsslein-VolhardC. Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product.Cell198542377978910.1016/0092‑8674(85)90274‑03931918
    [Google Scholar]
  2. MedzhitovR. Preston-HurlburtP. JanewayC.A.Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.Nature1997388664039439710.1038/411319237759
    [Google Scholar]
  3. KawaiT. AkiraS. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors.Nat. Immunol.201011537338410.1038/ni.186320404851
    [Google Scholar]
  4. AlegreM.L. LeemansJ. Le MoineA. FlorquinS. De WildeV. ChongA. GoldmanM. The multiple facets of toll-like receptors in transplantation biology.Transplantation20088611910.1097/TP.0b013e31817c11e618622268
    [Google Scholar]
  5. AkiraS. TakedaK. Toll-like receptor signalling.Nat. Rev. Immunol.20044749951110.1038/nri139115229469
    [Google Scholar]
  6. O’NeillL.A.J. How Toll-like receptors signal: what we know and what we don’t know.Curr. Opin. Immunol.20061813910.1016/j.coi.2005.11.01216343886
    [Google Scholar]
  7. KaishoT. TakeuchiO. KawaiT. HoshinoK. AkiraS. Endotoxin-induced maturation of MyD88-deficient dendritic cells.J. Immunol.200116695688569410.4049/jimmunol.166.9.568811313410
    [Google Scholar]
  8. KawaiT. TakeuchiO. FujitaT. InoueJ. MühlradtP.F. SatoS. HoshinoK. AkiraS. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes.J. Immunol.2001167105887589410.4049/jimmunol.167.10.588711698465
    [Google Scholar]
  9. TaylorK.R. YamasakiK. RadekK.A. NardoA.D. GoodarziH. GolenbockD. BeutlerB. GalloR.L. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2.J. Biol. Chem.200728225182651827510.1074/jbc.M60635220017400552
    [Google Scholar]
  10. TakedaK. KaishoT. AkiraS. Toll-Like Receptors.Annu. Rev. Immunol.200321133537610.1146/annurev.immunol.21.120601.14112612524386
    [Google Scholar]
  11. TakeuchiO. AkiraS. Pattern recognition receptors and inflammation.Cell2010140680582010.1016/j.cell.2010.01.02220303872
    [Google Scholar]
  12. DelnesteY. BeauvillainC. JeanninP. Innate immunity: Structure and function of TLRs.Med. Sci. (Paris)2007231677310.1051/medsci/20072316717212934
    [Google Scholar]
  13. BlasiusA.L. BeutlerB. Intracellular toll-like receptors.Immunity201032330531510.1016/j.immuni.2010.03.01220346772
    [Google Scholar]
  14. LeeC.C. AvalosA.M. PloeghH.L. Accessory molecules for Toll-like receptors and their function.Nat. Rev. Immunol.201212316817910.1038/nri315122301850
    [Google Scholar]
  15. BehzadiP. García-PerdomoH.A. KarpińskiT.M. Toll-like receptors: general molecular and structural biology.J. Immunol. Res.2021202112110.1155/2021/991485434195298
    [Google Scholar]
  16. BotosI. SegalD.M. DaviesD.R. The structural biology of Toll-like receptors.Structure201119444745910.1016/j.str.2011.02.00421481769
    [Google Scholar]
  17. KangJ.Y. LeeJ.O. Structural biology of the Toll-like receptor family.Annu. Rev. Biochem.201180191794110.1146/annurev‑biochem‑052909‑14150721548780
    [Google Scholar]
  18. BrubakerS.W. BonhamK.S. ZanoniI. KaganJ.C. Innate immune pattern recognition: A cell biological perspective.Annu. Rev. Immunol.201533125729010.1146/annurev‑immunol‑032414‑11224025581309
    [Google Scholar]
  19. DereticV. SaitohT. AkiraS. Autophagy in infection, inflammation and immunity.Nat. Rev. Immunol.2013131072273710.1038/nri353224064518
    [Google Scholar]
  20. SpirigR. TsuiJ. ShawS. The emerging role of TLR and innate immunity in cardiovascular disease.Cardiol. Res. Pract.2012201211210.1155/2012/18139422577589
    [Google Scholar]
  21. LinE. FreedmanJ.E. BeaulieuL.M. Innate immunity and toll- like receptor antagonists: a potential role in the treatment of cardiovascular diseases.Cardiovasc. Ther.200927211712310.1111/j.1755‑5922.2009.00077.x19426249
    [Google Scholar]
  22. BellJ.K. MullenG.E.D. LeiferC.A. MazzoniA. DaviesD.R. SegalD.M. Leucine-rich repeats and pathogen recognition in Toll-like receptors.Trends Immunol.2003241052853310.1016/S1471‑4906(03)00242‑414552836
    [Google Scholar]
  23. NieL. CaiS.Y. ShaoJ.Z. ChenJ. Toll-like receptors, associated biological roles, and signaling networks in non-mammals.Front. Immunol.20189152310.3389/fimmu.2018.0152330034391
    [Google Scholar]
  24. GaoW. XiongY. LiQ. YangH. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: A journey from molecular to nano therapeutics.Front. Physiol.2017850810.3389/fphys.2017.0050828769820
    [Google Scholar]
  25. ChangZ.L. Important aspects of Toll-like receptors, ligands and their signaling pathways.Inflamm. Res.2010591079180810.1007/s00011‑010‑0208‑220593217
    [Google Scholar]
  26. AkiraS. TakedaK. KaishoT. Toll-like receptors: Critical proteins linking innate and acquired immunity.Nat. Immunol.20012867568010.1038/9060911477402
    [Google Scholar]
  27. AkiraS. UematsuS. TakeuchiO. Pathogen recognition and innate immunity.Cell2006124478380110.1016/j.cell.2006.02.01516497588
    [Google Scholar]
  28. BrennanJ.J. GilmoreT.D. Evolutionary origins of toll-like receptor signaling.Mol. Biol. Evol.20183571576158710.1093/molbev/msy05029590394
    [Google Scholar]
  29. LeulierF. LemaitreB. Toll-like receptors — taking an evolutionary approach.Nat. Rev. Genet.20089316517810.1038/nrg230318227810
    [Google Scholar]
  30. ReuvenE.M. FinkA. ShaiY. Regulation of innate immune responses by transmembrane interactions: Lessons from the TLR family.Biochim. Biophys. Acta Biomembr.2014183861586159310.1016/j.bbamem.2014.01.02024480409
    [Google Scholar]
  31. GaoD. LiW. Structures and recognition modes of toll-like receptors.Proteins20178513910.1002/prot.2517927699870
    [Google Scholar]
  32. GayN.J. GangloffM. Structure and function of Toll receptors and their ligands.Annu. Rev. Biochem.200776114116510.1146/annurev.biochem.76.060305.15131817362201
    [Google Scholar]
  33. MuradS. Toll-like receptor 4 in inflammation and angiogenesis: A double-edged sword.Front. Immunol.2014531310.3389/fimmu.2014.0031325071774
    [Google Scholar]
  34. Falck-HansenM. KassiteridiC. MonacoC. Toll-like receptors in atherosclerosis.Int. J. Mol. Sci.2013147140081402310.3390/ijms14071400823880853
    [Google Scholar]
  35. GuJ.Q. WangD.F. YanX.G. ZhongW.L. ZhangJ. FanB. IkuyamaS. A Toll-like receptor 9-mediated pathway stimulates perilipin 3 (TIP47) expression and induces lipid accumulation in macrophages.Am. J. Physiol. Endocrinol. Metab.20102994E593E60010.1152/ajpendo.00159.201020628022
    [Google Scholar]
  36. UelandT. EspevikT. KjekshusJ. GullestadL. OmlandT. SquireI.B. FrølandS.S. MollnesT.E. DicksteinK. AukrustP. Mannose binding lectin and soluble Toll-like receptor 2 in heart failure following acute myocardial infarction.J. Card. Fail.200612865966310.1016/j.cardfail.2006.07.00217045187
    [Google Scholar]
  37. ColeJ.E. NavinT.J. CrossA.J. GoddardM.E. AlexopoulouL. MitraA.T. DaviesA.H. FlavellR.A. FeldmannM. MonacoC. Unexpected protective role for Toll-like receptor 3 in the arterial wall.Proc. Natl. Acad. Sci. USA201110862372237710.1073/pnas.101851510821220319
    [Google Scholar]
  38. NaviA. PatelH. ShawS. BakerD. TsuiJ. Therapeutic role of toll-like receptor modification in cardiovascular dysfunction.Vascul. Pharmacol.201358323123910.1016/j.vph.2012.10.00123070056
    [Google Scholar]
  39. TsoulfasG. TakahashiY. GansterR.W. YagnikG. GuoZ. FungJ.J. MuraseN. GellerD.A. Activation of the lipopolysaccharide signaling pathway in hepatic transplantation preservation injury12.Transplantation200274171310.1097/00007890‑200207150‑0000312134092
    [Google Scholar]
  40. ZhaiY. ShenX. O’ConnellR. GaoF. LassmanC. BusuttilR.W. ChengG. Kupiec-WeglinskiJ.W. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway.J. Immunol.2004173127115711910.4049/jimmunol.173.12.711515585830
    [Google Scholar]
  41. TsungA. HoffmanR.A. IzuishiK. CritchlowN.D. NakaoA. ChanM.H. LotzeM.T. GellerD.A. BilliarT.R. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells.J. Immunol.2005175117661766810.4049/jimmunol.175.11.766116301676
    [Google Scholar]
  42. ZhaiY. QiaoB. ShenX.D. GaoF. BusuttilR.W. ChengG. PlattJ.L. VolkH.D. Kupiec-WeglinskiJ.W. Evidence for the pivotal role of endogenous toll-like receptor 4 ligands in liver ischemia and reperfusion injury.Transplantation20088571016102210.1097/TP.0b013e318168424818408583
    [Google Scholar]
  43. ShinT. KubokiS. LentschA.B. Roles of nuclear factor-κB in postischemic liver.Hepatol. Res.200838542944010.1111/j.1872‑034X.2007.00303.x18034829
    [Google Scholar]
  44. UeharaT. BennettB. SakataS.T. SatohY. BilterG.K. WestwickJ.K. BrennerD.A. JNK mediates hepatic ischemia reperfusion injury.J. Hepatol.200542685085910.1016/j.jhep.2005.01.03015885356
    [Google Scholar]
  45. Kupiec-WeglinskiJ.W. BusuttilR.W. Ischemia and reperfusion injury in liver transplantation.Transpl. proceed.20053741653165610.1016/j.transproceed.2005.03.134
    [Google Scholar]
  46. PedregosaJ.F. HaidarA.A. HirataA.E. FrancoM. GomesG.N. BuenoV. TLR2 and TLR4 expression after kidney ischemia and reperfusion injury in mice treated with FTY720.Int. Immunopharmacol.20111191311131810.1016/j.intimp.2011.04.01421571100
    [Google Scholar]
  47. RabbH. The T cell as a bridge between innate and adaptive immune systems: Implications for the kidney.Kidney Int.20026161935194610.1046/j.1523‑1755.2002.00378.x12028434
    [Google Scholar]
  48. LiL. OkusaM.D. Blocking the immune response in ischemic acute kidney injury: The role of adenosine 2A agonists.Nat. Clin. Pract. Nephrol.20062843244410.1038/ncpneph023816932478
    [Google Scholar]
  49. BonventreJ.V. WeinbergJ.M. Recent advances in the pathophysiology of ischemic acute renal failure.J. Am. Soc. Nephrol.20031482199221010.1097/01.ASN.0000079785.13922.F612874476
    [Google Scholar]
  50. WolfsT.G.A.M. BuurmanW.A. van SchadewijkA. de VriesB. DaemenM.A.R.C. HiemstraP.S. van ’t VeerC. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation.J. Immunol.200216831286129310.4049/jimmunol.168.3.128611801667
    [Google Scholar]
  51. JangH.R. RabbH. The innate immune response in ischemic acute kidney injury.Clin. Immunol.20091301415010.1016/j.clim.2008.08.01618922742
    [Google Scholar]
  52. BajwaA. KinseyG. OkusaM. Immune mechanisms and novel pharmacological therapies of acute kidney injury.Curr. Drug Targets200910121196120410.2174/13894500978975317419715538
    [Google Scholar]
  53. de PerrotM. LiuM. WaddellT.K. KeshavjeeS. Ischemia-reperfusion-induced lung injury.Am. J. Respir. Crit. Care Med.2003167449051110.1164/rccm.200207‑670SO12588712
    [Google Scholar]
  54. ZanottiG. CasiraghiM. AbanoJ.B. TatreauJ.R. SevalaM. BerlinH. SmythS. FunkhouserW.K. BurridgeK. RandellS.H. EganT.M. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema.Am. J. Physiol. Lung Cell. Mol. Physiol.20092971L52L6310.1152/ajplung.90406.200819376887
    [Google Scholar]
  55. AliI. GruenlohS. GaoY. CloughA. FalckJ.R. MedhoraM. JacobsE.R. Protection by 20-5,14-HEDGE against surgically induced ischemia reperfusion lung injury in rats.Ann. Thorac. Surg.201293128228810.1016/j.athoracsur.2011.08.07422115333
    [Google Scholar]
  56. ShimamotoA. ChongA.J. YadaM. ShomuraS. TakayamaH. FleisigA.J. AgnewM.L. HamptonC.R. RothnieC.L. SpringD.J. PohlmanT.H. ShimpoH. VerrierE.D. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury.Circulation20061141_supplementSuppl.I270I27410.1161/CIRCULATIONAHA.105.00090116820585
    [Google Scholar]
  57. ShihH.C. HuangM.S. LeeC.H. Estrogen augments the protection of hypertonic saline treatment from mesenteric ischemia-reperfusion injury.Shock201135330230710.1097/SHK.0b013e3181f8b42020926986
    [Google Scholar]
  58. GradmanA.H. AlfayoumiF. From left ventricular hypertrophy to congestive heart failure: Management of hypertensive heart disease.Prog. Cardiovasc. Dis.200648532634110.1016/j.pcad.2006.02.00116627048
    [Google Scholar]
  59. BrownR.D. AmblerS.K. MitchellM.D. LongC.S. The cardiac fibroblast: Therapeutic target in myocardial remodeling and failure.Annu. Rev. Pharmacol. Toxicol.200545165768710.1146/annurev.pharmtox.45.120403.09580215822192
    [Google Scholar]
  60. AnkerS.D. von HaehlingS. Inflammatory mediators in chronic heart failure: An overview.Br. Heart J.200490446447010.1136/hrt.2002.00700515020532
    [Google Scholar]
  61. BirksE.J. FelkinL.E. BannerN.R. KhaghaniA. BartonP.J.R. YacoubM.H. Increased toll-like receptor 4 in the myocardium of patients requiring left ventricular assist devices.J. Heart Lung Transplant.200423222823510.1016/S1053‑2498(03)00106‑214761771
    [Google Scholar]
  62. HaT. LiY. HuaF. MaJ. GaoX. KelleyJ. ZhaoA. HaddadG. WilliamsD. WilliambrowderI. KaoR.L. LiC. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload.Cardiovasc. Res.200568222423410.1016/j.cardiores.2005.05.02515967420
    [Google Scholar]
  63. TopkaraV.K. EvansS. ZhangW. EpelmanS. StalochL. BargerP.M. MannD.L. Therapeutic targeting of innate immunity in the failing heart.J. Mol. Cell. Cardiol.201151459459910.1016/j.yjmcc.2010.11.00321074541
    [Google Scholar]
  64. SharmaV. BellR.M. YellonD.M. Targeting reperfusion injury in acute myocardial infarction: A review of reperfusion injury pharmacotherapy.Expert Opin. Pharmacother.20121381153117510.1517/14656566.2012.68516322594845
    [Google Scholar]
  65. ArslanF. SmeetsM.B. O’NeillL.A.J. KeoghB. McGuirkP. TimmersL. TersteegC. HoeferI.E. DoevendansP.A. PasterkampG. de KleijnD.P.V. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody.Circulation20101211809010.1161/CIRCULATIONAHA.109.88018720026776
    [Google Scholar]
  66. OyamaJ. BlaisC.Jr LiuX. PuM. KobzikL. KellyR.A. BourcierT. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice.Circulation2004109678478910.1161/01.CIR.0000112575.66565.8414970116
    [Google Scholar]
  67. ChongA.J. ShimamotoA. HamptonC.R. TakayamaH. SpringD.J. RothnieC.L. YadaM. PohlmanT.H. VerrierE.D. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart.J. Thorac. Cardiovasc. Surg.2004128217017910.1016/j.jtcvs.2003.11.03615282452
    [Google Scholar]
  68. KimS.C. GhanemA. StapelH. TiemannK. KnuefermannP. HoeftA. MeyerR. GrohéC. KnowltonA.A. BaumgartenG. Toll-like receptor 4 deficiency: Smaller infarcts, but nogain in function.BMC Physiol.200771510.1186/1472‑6793‑7‑517592640
    [Google Scholar]
  69. FengY. ZhaoH. XuX. BuysE.S. RaherM.J. BopassaJ.C. ThibaultH. Scherrer-CrosbieM. SchmidtU. ChaoW. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice.Am. J. Physiol. Heart Circ. Physiol.20082953H1311H131810.1152/ajpheart.00119.200818660455
    [Google Scholar]
  70. ElammC. FairweatherD. CooperL.T. Pathogenesis and diagnosis of myocarditis.Heart2012981183584022442199
    [Google Scholar]
  71. GuptaS. MarkhamD.W. DraznerM.H. MammenP.P.A. Fulminant myocarditis.Nat. Clin. Pract. Cardiovasc. Med.200851169370610.1038/ncpcardio133118797433
    [Google Scholar]
  72. O’NeillL.A. BowieA.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.Nat. Rev. Immunol.20077535336417457343
    [Google Scholar]
  73. KennyE.F. O’NeillL.A.J. Signalling adaptors used by Toll-like receptors: An update.Cytokine200843334234910.1016/j.cyto.2008.07.01018706831
    [Google Scholar]
  74. ZhangY. WuJ. DongE. WangZ. XiaoH. Toll-like receptors in cardiac hypertrophy.Front. Cardiovasc. Med.202310114358310.3389/fcvm.2023.114358337113698
    [Google Scholar]
  75. Monnerat-CahliG. AlonsoH. GallegoM. AlarcónM.L. BassaniR.A. CasisO. MedeiE. Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway.J. Mol. Cell. Cardiol.20147611612510.1016/j.yjmcc.2014.08.01225169970
    [Google Scholar]
  76. AdamczakD. The role of toll-like receptors and vitamin D in cardiovascular diseases-A review.Int. J. Mol. Sci.20171811225210.3390/ijms1811225229077004
    [Google Scholar]
  77. KarlsonB.W. PalmerM.K. NichollsS.J. LundmanP. BarterP.J. A VOYAGER meta-analysis of the impact of statin therapy on low-density lipoprotein cholesterol and triglyceride levels in patients with hypertriglyceridemia.Am. J. Cardiol.201611791444144810.1016/j.amjcard.2016.02.01126969416
    [Google Scholar]
  78. BarkerC.A. KimS.K. BudhuS. MatsoukasK. DaniyanA.F. D’AngeloS.P. KochanekM. BöllB. von Bergwelt-BaildonM.S. Cytokine release syndrome after radiation therapy: Case report and review of the literature.J. Immunother. Cancer2018611410.1186/s40425‑017‑0311‑929298730
    [Google Scholar]
  79. GeC. ZhaoY. LiangY. HeY. Silencing of TLR4 inhibits atrial fibrosis and susceptibility to atrial fibrillation via downregulation of NLRP3-TGF-β in spontaneously hypertensive rats.Dis. Markers20222022111610.1155/2022/246615035860690
    [Google Scholar]
  80. BahramiA. ParsamaneshN. AtkinS.L. BanachM. SahebkarA. Effect of statins on toll-like receptors: A new insight to pleiotropic effects.Pharmacol. Res.201813523023810.1016/j.phrs.2018.08.01430120976
    [Google Scholar]
  81. DasuM.R. RiosvelascoA.C. JialalI. Candesartan inhibits Toll-like receptor expression and activity both in vitro and in vivo.Atherosclerosis20092021768310.1016/j.atherosclerosis.2008.04.01018495130
    [Google Scholar]
  82. de VicenteL.G. PintoA.P. da RochaA.L. PauliJ.R. de MouraL.P. CintraD.E. RopelleE.R. da SilvaA.S.R. Role of TLR4 in physical exercise and cardiovascular diseases.Cytokine202013615527310.1016/j.cyto.2020.15527332932194
    [Google Scholar]
  83. WuX.D. ZengK. LiuW.L. GaoY.G. GongC.S. ZhangC.X. ChenY.Q. Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis.Int. J. Sports Med.201435434435024022569
    [Google Scholar]
  84. Parra-FloresP. Espitia-CorredorJ. Espinoza-PérezC. QueiroloC. AyalaP. BrüggendieckF. Salas-HernándezA. Pardo-JiménezV. Díaz-ArayaG. Toll-like receptor 4 activation prevents rat cardiac fibroblast death induced by simulated ischemia/reperfusion.Front. Cardiovasc. Med.2021866019710.3389/fcvm.2021.66019734169098
    [Google Scholar]
  85. SriramulaS. SainiY. DharmakumarR. FrancisJ. Cardiomyocyte-specific deletion of TLR4 attenuates angiotensin ii-induced hypertension and improves cardiac function.Circulation2016134Suppl. 1A18876
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X348433240915133309
Loading
/content/journals/chddt/10.2174/011871529X348433240915133309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test