Skip to content
2000
Volume 24, Issue 4
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Arterial Hypertension (HTN) is the leading cause of cardiovascular diseases, which, in turn, are the primary cause of mortality worldwide. The success rates in Blood Pressure (BP) control among the general population remain unacceptably low. HTN etiology is multifactorial, but ample evidence has shown an essential role of the Autonomic Nervous System (ANS) dysfunction in its physiopathology. Concurrently, studies have pointed to the promising effect of non-invasive cortical stimulation techniques, such as transcranial Direct Current Stimulation (tDCS), on modulating blood pressure and the ANS. tDCS involves the application of a direct low-intensity electric current between two electrodes (cathode and anode) placed on the scalp and skull over areas of interest in the cerebral cortex. The impacts of this technique on regulating BP levels and cardiovascular autonomic modulation have excellent potential to be explored in hypertension. This study aimed to review and discuss the existing evidence concerning the efficacy of tDCS in modulating BP and ANS, focusing on its potential as a therapeutic intervention for HTN. This narrative mini-review presents and discusses critical findings regarding using tDCS to modulate BP and the ANS. Data obtained from clinical and preclinical studies have been addressed in this work. The evidence gathered and discussed in this mini-review suggests the promising role of tDCS as a non-invasive intervention for HTN; however, the underlying mechanisms through which it exerts its effects remain poorly understood. More mechanistic studies must be carried out to draw definitive conclusions regarding the effectiveness and safety of tDCS as a treatment for HTN.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X343701241113100959
2024-11-19
2025-04-04
Loading full text...

Full text loading...

References

  1. OparilS. AcelajadoM.C. BakrisG.L. BerlowitzD.R. CífkováR. DominiczakA.F. GrassiG. JordanJ. PoulterN.R. RodgersA. WheltonP.K. Hypertension.Nat. Rev. Dis. Primers2018411801410.1038/nrdp.2018.1429565029
    [Google Scholar]
  2. VolpeM. GalloG. BattistoniA. TocciG. Highlights of ESC/ESH 2018 Guidelines on the Management of Hypertension: What Every Doctor Should Know.High Blood Press. Cardiovasc. Prev.20192611810.1007/s40292‑018‑00297‑y30604199
    [Google Scholar]
  3. MillsK.T. StefanescuA. HeJ. The global epidemiology of hypertension.Nat. Rev. Nephrol.202016422323710.1038/s41581‑019‑0244‑232024986
    [Google Scholar]
  4. WheltonP.K. CareyR.M. AronowW.S. CaseyD.E.Jr CollinsK.J. Dennison HimmelfarbC. DePalmaS.M. GiddingS. JamersonK.A. JonesD.W. MacLaughlinE.J. MuntnerP. OvbiageleB. SmithS.C.Jr SpencerC.C. StaffordR.S. TalerS.J. ThomasR.J. WilliamsK.A.Sr WilliamsonJ.D. WrightJ.T.Jr 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.Circulation201813817e426e48330354655
    [Google Scholar]
  5. MensahG.A. CroftJ.B. GilesW.H. The heart, kidney, and brain as target organs in hypertension.Cardiol. Clin.200220222524710.1016/S0733‑8651(02)00004‑812119798
    [Google Scholar]
  6. HarrisonD.G. CoffmanT.M. WilcoxC.S. Pathophysiology of Hypertension.Circ. Res.2021128784786310.1161/CIRCRESAHA.121.31808233793328
    [Google Scholar]
  7. ManciaG. GrassiG. The autonomic nervous system and hypertension.Circ. Res.2014114111804181410.1161/CIRCRESAHA.114.30252424855203
    [Google Scholar]
  8. CogiamanianF. BrunoniA.R. BoggioP.S. FregniF. CioccaM. PrioriA. Non-invasive brain stimulation for the management of arterial hypertension.Med. Hypotheses201074233233610.1016/j.mehy.2009.08.03719775822
    [Google Scholar]
  9. HeringD. SchlaichM. The Role of Central Nervous System Mechanisms in Resistant Hypertension.Curr. Hypertens. Rep.20151785810.1007/s11906‑015‑0570‑026070453
    [Google Scholar]
  10. SchlaichM.P. KayeD.M. LambertE. SommervilleM. SocratousF. EslerM.D. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy.Circulation2003108556056510.1161/01.CIR.0000081775.72651.B612847071
    [Google Scholar]
  11. GrassiG. SeravalleG. Quarti-TrevanoF. Dell’OroR. ArenareF. SpazianiD. ManciaG. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction.Hypertension200953220520910.1161/HYPERTENSIONAHA.108.12146719124679
    [Google Scholar]
  12. JuddE. CalhounD.A. Apparent and true resistant hypertension: definition, prevalence and outcomes.J. Hum. Hypertens.201428846346810.1038/jhh.2013.14024430707
    [Google Scholar]
  13. RubertiO.M. Yugar-ToledoJ.C. MorenoH. RodriguesB. Hypertension telemonitoring and home-based physical training programs.Blood Press.202130642843810.1080/08037051.2021.199622134714208
    [Google Scholar]
  14. MakovacE. ThayerJ.F. OttavianiC. A meta-analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease.Neurosci. Biobehav. Rev,201774Pt B33034110.1016/j.neubiorev.2016.05.001
    [Google Scholar]
  15. StornettaR.L. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata.J. Chem. Neuroanat.200938322223010.1016/j.jchemneu.2009.07.00519665549
    [Google Scholar]
  16. CechettoD.F. ChenS.J. Hypothalamic and cortical sympathetic responses relay in the medulla of the rat.Am. J. Physiol.19922633 Pt 2R544R5521415640
    [Google Scholar]
  17. CarnevaleD. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications.Nat. Rev. Cardiol.202219637939410.1038/s41569‑022‑00678‑w35301456
    [Google Scholar]
  18. KellyD.M. RothwellP.M. Blood pressure and the brain: the neurology of hypertension.Pract. Neurol.202020210010810.1136/practneurol‑2019‑00226931558584
    [Google Scholar]
  19. HeymansC. BouckaertJ.J. Sinus caroticus and respiratory reflexes.J. Physiol.193069225426610.1113/jphysiol.1930.sp00264816994101
    [Google Scholar]
  20. AbboudF.M. SinghM.V. Autonomic regulation of the immune system in cardiovascular diseases.Adv. Physiol. Educ.201741457859310.1152/advan.00061.201729138216
    [Google Scholar]
  21. AcelajadoM.C. CalhounD.A. Resistant hypertension, secondary hypertension, and hypertensive crises: diagnostic evaluation and treatment.Cardiol. Clin.201028463965410.1016/j.ccl.2010.07.00220937447
    [Google Scholar]
  22. GoswamiR. FrancesM.F. SteinbackC.D. ShoemakerJ.K. Forebrain organization representing baroreceptor gating of somatosensory afferents within the cortical autonomic network.J. Neurophysiol.2012108245346610.1152/jn.00764.201122514285
    [Google Scholar]
  23. TavaresR.F. Antunes-RodriguesJ. de Aguiar CorrêaF.M. Pressor effects of electrical stimulation of medial prefrontal cortex in unanesthetized rats.J. Neurosci. Res.200477461362010.1002/jnr.2019515264231
    [Google Scholar]
  24. GrassiG. The Sympathetic Nervous System in Hypertension: Roadmap Update of a Long Journey.Am. J. Hypertens.202134121247125410.1093/ajh/hpab12434355740
    [Google Scholar]
  25. GrassiG. RamV.S. Evidence for a critical role of the sympathetic nervous system in hypertension.J. Am. Soc. Hypertens.201610545746610.1016/j.jash.2016.02.01527052349
    [Google Scholar]
  26. GreenA.L. WangS. OwenS.L.F. PatersonD.J. SteinJ.F. AzizT.Z. Controlling the heart via the brain: a potential new therapy for orthostatic hypotension.Neurosurgery20065861176118310.1227/01.NEU.0000215943.78685.0116723897
    [Google Scholar]
  27. ArêasF.Z.D.S. KusterE. SouzaL.C. DominguesW.J.R. SiqueiraJ. SerudoL.H.A. ArêasG.P. Transcranial Direct Current Stimulation in the Management of Hypertension: A Plausible Hypothesis?Arq. Bras. Cardiol.20231209e2023010037820174
    [Google Scholar]
  28. FassiniA. ResstelL.B.M. CorrêaF.M.A. Prelimbic cortex GABA A receptors are involved in the mediation of restraint stress-evoked cardiovascular responses.Stress201619657658410.1080/10253890.2016.123117727582393
    [Google Scholar]
  29. KawaguchiY. KubotaY. GABAergic cell subtypes and their synaptic connections in rat frontal cortex.Cereb. Cortex19977647648610.1093/cercor/7.6.4769276173
    [Google Scholar]
  30. SomogyiP. TamásG. LujanR. BuhlE.H. Salient features of synaptic organisation in the cerebral cortex1Published on the World Wide Web on 3 March 1998.1.Brain Res. Brain Res. Rev.1998262-311313510.1016/S0165‑0173(97)00061‑19651498
    [Google Scholar]
  31. BrasilT.F.S. FassiniA. CorrêaF.M. AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats.Cell. Mol. Neurobiol.201838130531610.1007/s10571‑017‑0518‑928695320
    [Google Scholar]
  32. FernandesK.B.P. TavaresR.F. PelosiG.G. CorrêaF.M.A. The paraventricular nucleus of hypothalamus mediates the pressor response to noradrenergic stimulation of the medial prefrontal cortex in unanesthetized rats.Neurosci. Lett.2007426210110510.1016/j.neulet.2007.08.06317890005
    [Google Scholar]
  33. GranjeiroÉ.M. ScopinhoA.A. CorrêaF.M.A. ResstelL.B.M. Prelimbic but not infralimbic cortex is involved in the pressor response to chemoreflex activation in awake rats.Exp. Physiol.201196551852710.1113/expphysiol.2011.05759621335419
    [Google Scholar]
  34. HardyS.G.P. HolmesD.E. Prefrontal stimulus-produced hypotension in rat.Exp. Brain Res.198873224925510.1007/BF002482173215302
    [Google Scholar]
  35. SchaeubleD. PackardA.E.B. McKlveenJ.M. MoranoR. FourmanS. SmithB.L. ScheimannJ.R. PackardB.A. WilsonS.P. JamesJ. HuiD.Y. Ulrich-LaiY.M. HermanJ.P. MyersB. Prefrontal Cortex Regulates Chronic Stress‐Induced Cardiovascular Susceptibility.J. Am. Heart Assoc.2019824e01445110.1161/JAHA.119.01445131838941
    [Google Scholar]
  36. Ferreira-JuniorN.C. FedoceA.G. AlvesF.H.F. ResstelL.B.M. Medial prefrontal cortex N-methyl-D-aspartate receptor/nitric oxide/cyclic guanosine monophosphate pathway modulates both tachycardic and bradycardic baroreflex responses.J. Neurosci. Res.201391101338134810.1002/jnr.2324823913674
    [Google Scholar]
  37. Müller-RibeiroF.C.F. ZaretskyD.V. ZaretskaiaM.V. SantosR.A.S. DiMiccoJ.A. FontesM.A.P. Contribution of infralimbic cortex in the cardiovascular response to acute stress.Am. J. Physiol. Regul. Integr. Comp. Physiol.20123036R639R65010.1152/ajpregu.00573.201122785427
    [Google Scholar]
  38. ZbrożynaA.W. WestwoodD.M. Stimulation in prefrontal cortex inhibits conditioned increase in blood pressure and avoidance bar pressing in rats.Physiol. Behav.199149470570810.1016/0031‑9384(91)90306‑91881973
    [Google Scholar]
  39. OwensN.C. SartorD.M. VerberneA.J.M. Medial prefrontal cortex depressor response: role of the solitary tract nucleus in the rat.Neuroscience19998941331134610.1016/S0306‑4522(98)00389‑310362318
    [Google Scholar]
  40. VerberneA.J. Medullary sympathoexcitatory neurons are inhibited by activation of the medial prefrontal cortex in the rat.Am. J. Physiol.19962704 Pt 2R713R7198967398
    [Google Scholar]
  41. ResstelL.B.M. FernandesK.B.P. CorrêaF.M.A. Medial prefrontal cortex modulation of the baroreflex parasympathetic component in the rat.Brain Res.200410151-213614410.1016/j.brainres.2004.04.06515223377
    [Google Scholar]
  42. IshikawaA. IshidaY. NakamuraS. Neurons in the lateral paragigantocellular nucleus projecting to the infralimbic cortex in rats: electrical activity and response to changes in blood pressure.Neurosci. Lett.20013111576010.1016/S0304‑3940(01)02145‑011585567
    [Google Scholar]
  43. FiskG.D. WyssJ.M. Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure.Brain Res.20008591839510.1016/S0006‑8993(00)01935‑110720617
    [Google Scholar]
  44. TavaresR.F. CorrêaF.M.A. ResstelL.B.M. Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats.J. Neurosci. Res.200987112601260710.1002/jnr.2207019326445
    [Google Scholar]
  45. de OliveiraC. de FreitasJ.S. MacedoI.C. ScarabelotV.L. StröherR. SantosD.S. SouzaA. FregniF. CaumoW. TorresI.L.S. Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats.Neuropeptides20197311010.1016/j.npep.2018.09.00630446297
    [Google Scholar]
  46. LeffaD.T. BellaverB. de OliveiraC. de MacedoI.C. de FreitasJ.S. GrevetE.H. CaumoW. RohdeL.A. Quincozes-SantosA. TorresI.L.S. Increased Oxidative Parameters and Decreased Cytokine Levels in an Animal Model of Attention-Deficit/Hyperactivity Disorder.Neurochem. Res.201742113084309210.1007/s11064‑017‑2341‑628664398
    [Google Scholar]
  47. MacedoI.C. de OliveiraC. VercelinoR. SouzaA. LasteG. MedeirosL.F. ScarabelotV.L. NunesE.A. KuoJ. FregniF. CaumoW. TorresI.L.S. Repeated transcranial direct current stimulation reduces food craving in Wistar rats.Appetite2016103293710.1016/j.appet.2016.03.01426972354
    [Google Scholar]
  48. FrysztakR.J. NeafseyE.J. The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat.Brain Res.19946431-218119310.1016/0006‑8993(94)90024‑88032913
    [Google Scholar]
  49. OliveiraL.A. CarvalhoI.I. KurokawaR.Y. DuarteJ.O. BusnardoC. CrestaniC.C. Differential roles of prelimbic and infralimbic cholinergic neurotransmissions in control of cardiovascular responses to restraint stress in rats.Brain Res. Bull.202218117518210.1016/j.brainresbull.2022.02.00135124160
    [Google Scholar]
  50. JenningsJ.R. ZanstraY. Is the brain the essential in hypertension?Neuroimage200947391492110.1016/j.neuroimage.2009.04.07219410005
    [Google Scholar]
  51. OwensN.C. VerberneA.J.M. Regional haemodynamic responses to activation of the medial prefrontal cortex depressor region.Brain Res.2001919222123110.1016/S0006‑8993(01)03017‑711701134
    [Google Scholar]
  52. VernieriF. AssenzaG. MaggioP. TibuzziF. ZappasodiF. AltamuraC. CorbettoM. TrottaL. PalazzoP. ErcolaniM. TecchioF. RossiniP.M. Cortical neuromodulation modifies cerebral vasomotor reactivity.Stroke20104192087209010.1161/STROKEAHA.110.58308820671257
    [Google Scholar]
  53. NitscheM.A. CohenL.G. WassermannE.M. PrioriA. LangN. AntalA. PaulusW. HummelF. BoggioP.S. FregniF. Pascual-LeoneA. Transcranial direct current stimulation: State of the art 2008.Brain Stimul.20081320622310.1016/j.brs.2008.06.00420633386
    [Google Scholar]
  54. FregniF. Pascual-LeoneA. Technology Insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS.Nat. Clin. Pract. Neurol.20073738339310.1038/ncpneuro053017611487
    [Google Scholar]
  55. WagnerT. FregniF. FecteauS. GrodzinskyA. ZahnM. Pascual-LeoneA. Transcranial direct current stimulation: A computer-based human model study.Neuroimage20073531113112410.1016/j.neuroimage.2007.01.02717337213
    [Google Scholar]
  56. GandigaP.C. HummelF.C. CohenL.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation.Clin. Neurophysiol.2006117484585010.1016/j.clinph.2005.12.00316427357
    [Google Scholar]
  57. SchestatskyP. SimisM. FreemanR. Pascual-LeoneA. FregniF. Non-invasive brain stimulation and the autonomic nervous system.Clin. Neurophysiol.201312491716172810.1016/j.clinph.2013.03.02023684898
    [Google Scholar]
  58. SchmaußerM. HoffmannS. RaabM. LabordeS. The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta‐analysis.J. Neurosci. Res.202210091664169410.1002/jnr.2506235582757
    [Google Scholar]
  59. Silva-FilhoE. Gramile Silva MeiraQ. Da Costa RodriguesA. Louise Fontes MarquesC. OliveiraP. PegadoR. Transcranial direct current stimulation on hypertension: a systematic review and meta-analysis.Acta Cardiol.2024•••11010.1080/00015385.2024.240392539286998
    [Google Scholar]
  60. ThayerJ.F. YamamotoS.S. BrosschotJ.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors.Int. J. Cardiol.2010141212213110.1016/j.ijcard.2009.09.54319910061
    [Google Scholar]
  61. BrunoniA.R. VanderhasseltM.A. BoggioP.S. FregniF. DantasE.M. MillJ.G. LotufoP.A. BenseñorI.M. Polarity- and valence-dependent effects of prefrontal transcranial direct current stimulation on heart rate variability and salivary cortisol.Psychoneuroendocrinology2013381586610.1016/j.psyneuen.2012.04.02022626867
    [Google Scholar]
  62. MontenegroR.A. FarinattiP.T.V. FontesE.B. SoaresP.P.S. CunhaF.A. GurgelJ.L. PortoF. CyrinoE.S. OkanoA.H. Transcranial direct current stimulation influences the cardiac autonomic nervous control.Neurosci. Lett.20114971323610.1016/j.neulet.2011.04.01921527314
    [Google Scholar]
  63. NikolinS. BoonstraT.W. LooC.K. MartinD. Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability.PLoS One2017128e018183310.1371/journal.pone.018183328771509
    [Google Scholar]
  64. BinkofskiF. LoebigM. Jauch-CharaK. BergmannS. MelchertU.H. Scholand-EnglerH.G. SchweigerU. PellerinL. OltmannsK.M. Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake.Biol. Psychiatry201170769069510.1016/j.biopsych.2011.05.00921703596
    [Google Scholar]
  65. PiccirilloG. OttavianiC. FiorucciC. PetrocchiN. MoscucciF. Di IorioC. MastropietriF. ParrottaI. PascucciM. MagrìD. Transcranial direct current stimulation improves the QT variability index and autonomic cardiac control in healthy subjects older than 60 years.Clin. Interv. Aging2016111687169510.2147/CIA.S11619427895475
    [Google Scholar]
  66. RodriguesB. BarbozaC.A. MouraE.G. MinistroG. Ferreira-MeloS.E. CastañoJ.B. NunesW.M.S. MostardaC. CocaA. ViannaL.C. Moreno-JuniorH. Acute and Short-Term Autonomic and Hemodynamic Responses to Transcranial Direct Current Stimulation in Patients With Resistant Hypertension.Front. Cardiovasc. Med.2022985342710.3389/fcvm.2022.85342735360028
    [Google Scholar]
  67. RodriguesB. BarbozaC.A. MouraE.G. MinistroG. Ferreira-MeloS.E. CastañoJ.B. RubertiO.M. De AmorimR.F.B. MorenoH. Transcranial direct current stimulation modulates autonomic nervous system and reduces ambulatory blood pressure in hypertensives.Clin. Exp. Hypertens.202143432032710.1080/10641963.2021.187191633423544
    [Google Scholar]
  68. DiBonaG.F. Sympathetic nervous system and hypertension.Hypertension201361355656010.1161/HYPERTENSIONAHA.111.0063323357181
    [Google Scholar]
  69. TakanoY. YokawaT. MasudaA. NiimiJ. TanakaS. HironakaN. A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI.Neurosci. Lett.20114911404310.1016/j.neulet.2011.01.00421215288
    [Google Scholar]
  70. CambiaghiM. BuffelliM. MasinL. ValtortaF. ComaiS. Transcranial direct current stimulation of the mouse prefrontal cortex modulates serotonergic neural activity of the dorsal raphe nucleus.Brain Stimul.202013354855010.1016/j.brs.2020.01.01232289674
    [Google Scholar]
  71. ZaghiS. AcarM. HultgrenB. BoggioP.S. FregniF. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation.Neuroscientist201016328530710.1177/107385840933622720040569
    [Google Scholar]
  72. GellnerA.K. FraseS. ReisJ. FritschB. Direct current stimulation increases blood flow and permeability of cortical microvasculature in vivo.Eur. J. Neurol.202330236237110.1111/ene.1561636305221
    [Google Scholar]
  73. NitscheM.A. PaulusW. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.J. Physiol.2000527Pt B63363910.1111/j.1469‑7793.2000.t01‑1‑00633.x
    [Google Scholar]
  74. BindmanL.J. LippoldO.C.J. RedfearnJ.W.T. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long‐lasting after‐effects.J. Physiol.1964172336938210.1113/jphysiol.1964.sp00742514199369
    [Google Scholar]
  75. ArdolinoG. BossiB. BarbieriS. PrioriA. Non‐synaptic mechanisms underlie the after‐effects of cathodal transcutaneous direct current stimulation of the human brain.J. Physiol.2005568265366310.1113/jphysiol.2005.08831016037080
    [Google Scholar]
  76. MarshallL. MölleM. HallschmidM. BornJ. Transcranial direct current stimulation during sleep improves declarative memory.J. Neurosci.200424449985999210.1523/JNEUROSCI.2725‑04.200415525784
    [Google Scholar]
  77. DalongG. YufeiQ. LeiY. PengfeiL. AnqiY. ZichuanG. CongW. YubinZ. Modulation of thalamic network connectivity using transcranial direct current stimulation based on resting-state functional magnetic resonance imaging to improve hypoxia-induced cognitive impairments.Front. Neurosci.20221695509610.3389/fnins.2022.95509636090294
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X343701241113100959
Loading
/content/journals/chddt/10.2174/011871529X343701241113100959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test