Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Introduction

The 70 kDa heat shock proteins (Hsp70) are ubiquitous molecules that play central roles in protein homeostasis. Their nucleotide-binding domains (NBD) are associated with the J domains of 40 kDa co-chaperone ‘HSP40’ in performing their functions. Interruption of this interaction significantly impacts the critical ATPase activity of Hsp70s, making them dysfunctional.

Methods

MAL2-11B is a dihydropyrimidine derivative that blocks Hsp70-Hsp40 interaction and hence holds the potential to be used as a drug. This Hsp70 inhibitor is a structural analogue of MAL3-101 that has proven anti-cancer and antiparasitic activity. MAL2-11B is predicted to have better drug-likeness, solubility, and absorption properties than MAL3-101. In the present study, we have therefore explored the potential of MAL2-11B as an antimalarial by using tools.

Results

Molecular docking of MAL2-11B with all Hsp70 (PfHsp70) proteins revealed its preferential affinity for two out of four homologs at the nucleotide-binding site. Detailed analysis of the docked complexes helped us to predict the kind of protein-inhibitor interactions and specific amino acid residues involved in binding.

Conclusion

After validation, these data may be used as the groundwork for the design and development of new inhibitors and drugs against malaria.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X309936240821072630
2024-08-23
2025-01-19
Loading full text...

Full text loading...

References

  1. RosenzweigR. NillegodaN.B. MayerM.P. BukauB. The Hsp70 chaperone network.Nat. Rev. Mol. Cell Biol.2019201166568010.1038/s41580‑019‑0133‑3 31253954
    [Google Scholar]
  2. DaugaardM. RohdeM. JäätteläM. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions.FEBS Lett.2007581193702371010.1016/j.febslet.2007.05.039 17544402
    [Google Scholar]
  3. RadonsJ. The human HSP70 family of chaperones: Where do we stand?Cell Stress Chaperones201621337940410.1007/s12192‑016‑0676‑6 26865365
    [Google Scholar]
  4. KumarA. TiwariA.K. Molecular chaperone hsp70 and its constitutively active form hsc70 play an indispensable role during eye development of drosophila melanogaster.Mol. Neurobiol.20175554345436110.1007/s12035‑017‑0650‑z
    [Google Scholar]
  5. BrocchieriL. Conway de MacarioE. MacarioA.J.L. Hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions.BMC Evol. Biol.2008811910.1186/1471‑2148‑8‑19 18215318
    [Google Scholar]
  6. HuC. YangJ. QiZ. WuH. WangB. ZouF. MeiH. LiuJ. WangW. LiuQ. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities.MedComm202233e16110.1002/mco2.161 35928554
    [Google Scholar]
  7. BehlA. MishraP.C. Structural insights into the binding mechanism of Plasmodium falciparum exported Hsp40-Hsp70 chaperone pair.Comput. Biol. Chem.20198310709910.1016/j.compbiolchem.2019.107099 31430682
    [Google Scholar]
  8. BehlA. KumarV. BishtA. PandaJ.J. HoraR. MishraP.C. Cholesterol bound Plasmodium falciparum co-chaperone ‘PFA0660w’ complexes with major virulence factor ‘PfEMP1’ via chaperone ‘PfHsp70-x’.Sci. Rep.201991266410.1038/s41598‑019‑39217‑y 30804381
    [Google Scholar]
  9. SharmaD. MasisonD. Hsp70 structure, function, regulation and influence on yeast prions.Protein Pept. Lett.200916657158110.2174/092986609788490230 19519514
    [Google Scholar]
  10. HatherleyR. BlatchG.L. BishopÖ.T. Plasmodium falciparum Hsp70-x: A heat shock protein at the host–parasite interface.J. Biomol. Struct. Dyn.201432111766177910.1080/07391102.2013.834849 24028577
    [Google Scholar]
  11. Moradi-MarjanehR. PasebanM. Moradi MarjanehM. Hsp70 inhibitors: Implications for the treatment of colorectal cancer.IUBMB Life201971121834184510.1002/iub.2157 31441584
    [Google Scholar]
  12. ShonhaiA. BoshoffA. BlatchG.L. The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum.Protein Sci.20071691803181810.1110/ps.072918107 17766381
    [Google Scholar]
  13. FewellS.W. SmithC.M. LyonM.A. DumitrescuT.P. WipfP. DayB.W. BrodskyJ.L. Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity.J. Biol. Chem.200427949511315114010.1074/jbc.M404857200 15448148
    [Google Scholar]
  14. AdamC. BaeurleA. BrodskyJ.L. WipfP. SchramaD. BeckerJ.C. HoubenR. The hsp70 modulator MAL3-101 inhibits Merkel cell carcinoma.PLoS One201494e9204110.1371/journal.pone.0092041 24694787
    [Google Scholar]
  15. BraunsteinM.J. ScottS.S. ScottC.M. BehrmanS. WalterP. WipfP. Antimyeloma effects of the heat shock protein 70 molecular chaperone inhibitor MAL3-101.J. oncol.201110.1155/2011/232037
    [Google Scholar]
  16. HurynD.M. BrodskyJ.L. BrummondK.M. ChambersP.G. EyerB. IrelandA.W. KawasumiM. LaPorteM.G. LloydK. ManteauB. NghiemP. QuadeB. SeguinS.P. WipfP. Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators.Proc. Natl. Acad. Sci. USA2011108176757676210.1073/pnas.1015251108 21502524
    [Google Scholar]
  17. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv951 26400175
    [Google Scholar]
  18. WisénS. BertelsenE.B. ThompsonA.D. PaturyS. UngP. ChangL. EvansC.G. WalterG.M. WipfP. CarlsonH.A. BrodskyJ.L. ZuiderwegE.R. GestwickiJ.E. Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40.ACS Chem. Biol.20105661162210.1021/cb1000422 20481474
    [Google Scholar]
  19. ChiangA.N. ValderramosJ.C. BalachandranR. ChovatiyaR.J. MeadB.P. SchneiderC. BellS.L. KleinM.G. HurynD.M. ChenX.S. DayB.W. FidockD.A. WipfP. BrodskyJ.L. Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum.Bioorg. Med. Chem.20091741527153310.1016/j.bmc.2009.01.024 19195901
    [Google Scholar]
  20. PlasmoDB: An integrative database of the Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished sequence data.Nucl. Acid. Res.2001291666910.1093/nar/29.1.66 11125051
    [Google Scholar]
  21. DoustiM. Manzano-RománR. RashidiS. BarzegarG. AhmadpourN.B. MohammadiA. HatamG. A proteomic glimpse into the effect of antimalarial drugs on Plasmodium falciparum proteome towards highlighting possible therapeutic targets.Pathog. Dis.2021791ftaa07110.1093/femspd/ftaa071 33202000
    [Google Scholar]
  22. MansouriR. Ali-HassanzadehM. ShafieiR. SavardashtakiA. KarimazarM. AnvariE. NguewaP. RashidiS. The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum.Parasitology2020147121255126210.1017/S003118202000102X 32618524
    [Google Scholar]
  23. RashidiS. TutejaR. MansouriR. Ali-HassanzadehM. ShafieiR. GhaniE. KarimazarM. NguewaP. Manzano-RománR. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update.J. Proteomics202124510427910.1016/j.jprot.2021.104279 34089893
    [Google Scholar]
  24. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucl. Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  25. DayJ. PasseckerA. BeckH.P. VakonakisI. The Plasmodium falciparum Hsp70‐x chaperone assists the heat stress response of the malaria parasite.FASEB J.20193312146111462410.1096/fj.201901741R 31690116
    [Google Scholar]
  26. ChenY. Murillo-SolanoC. KirkpatrickM.G. AntoshchenkoT. ParkH.W. PizarroJ.C. Repurposing drugs to target the malaria parasite unfolding protein response.Sci. Rep.2018811033310.1038/s41598‑018‑28608‑2 29985421
    [Google Scholar]
  27. SchwedeT. KoppJ. GuexN. PeitschM.C. Swiss-model: An automated protein homology-modeling server.Nucleic Acids Res.200331133381338510.1093/nar/gkg520 12824332
    [Google Scholar]
  28. RamachandranG.N. RamakrishnanC. SasisekharanV. Stereochemistry of polypeptide chain configurations.J. Mol. Biol.196371959910.1016/S0022‑2836(63)80023‑6 13990617
    [Google Scholar]
  29. WangY. XiaoJ. SuzekT.O. ZhangJ. WangJ. BryantS.H. PubChem: A public information system for analyzing bioactivities of small molecules.Nucleic Acids Res.2009372W623W63310.1093/nar/gkp456 19498078
    [Google Scholar]
  30. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  31. WeiningerD. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules.J. Chem. Inf. Comput. Sci.1988281313610.1021/ci00057a005
    [Google Scholar]
  32. LaskowskiR.A. SwindellsM.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u 21919503
    [Google Scholar]
  33. TatusovaT.A. MaddenT.L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences.FEMS Microbiol. Lett.1999174224725010.1111/j.1574‑6968.1999.tb13575.x 10339815
    [Google Scholar]
  34. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera-A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  35. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  36. KitykR. KoppJ. MayerM.P. Molecular mechanism of j-domain-triggered ATP hydrolysis by hsp70 chaperones.Mol. Cell2018692227237.e410.1016/j.molcel.2017.12.003 29290615
    [Google Scholar]
  37. BioviaD.S. Discovery studio modeling environment.Dassault Syst.20154
    [Google Scholar]
  38. CamachoC. CoulourisG. AvagyanV. MaN. PapadopoulosJ. BealerK. MaddenT.L. BLAST+: architecture and applications.BMC Bioinformat.200910142110.1186/1471‑2105‑10‑421 20003500
    [Google Scholar]
  39. StricherF. MacriC. RuffM. MullerS. HSPA8/HSC70 chaperone protein.Autophagy20139121937195410.4161/auto.26448 24121476
    [Google Scholar]
  40. NyakundiD.O. VukoL.A. BentleyS.J. HoppeH. BlatchG.L. BoshoffA. Plasmodium falciparum Hep1 is required to prevent the self aggregation of PfHsp70-3.PLoS One2016116e015644610.1371/journal.pone.0156446 27253881
    [Google Scholar]
  41. VincensiniL. RichertS. BlisnickT. Van DorsselaerA. Leize-WagnerE. RabilloudT. Braun BretonC. Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell.Mol. Cell. Proteomics20054458259310.1074/mcp.M400176‑MCP200 15671043
    [Google Scholar]
  42. LanzerM. WickertH. KrohneG. VincensiniL. Braun BretonC. Maurer’s clefts: A novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes.Int. J. Parasitol.2006361233610.1016/j.ijpara.2005.10.001 16337634
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X309936240821072630
Loading
/content/journals/chddt/10.2174/011871529X309936240821072630
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publishers' website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test