Skip to content
2000
image of Novel Approaches to Decomposing Hydrocarbon Pollutants from the Environment

Abstract

In the modern era, petrochemical industries' production of hydrocarbon pollution is a significant environmental problem that causes biodiversity loss. Alkanes constitute a substantial proportion of crude oil, and refined fuels are found in small amounts in various uncontaminated environments. They are prevalent in underground fossil fuel reserves and shallow subsurface habitats polluted with hydrocarbons, such as aquifers. Using microorganisms to break down alkane hydrocarbon pollutants in environmental areas has great potential. Considerable advancements have been achieved in identifying microorganisms and metabolic processes responsible for the breakdown of alkanes in both oxygen-free and oxygen-rich conditions in the last two decades. A wide range of prokaryotic and eukaryotic organisms have been identified and observed to possess the ability to utilize various carbon and energy sources as substrates. Bioremediation is essential for environmental safety and management; various methods have been established for petroleum hydrocarbon bioremediation. Numerous microbial species have been employed to investigate the bioremediation of petroleum hydrocarbons, highlighting the crucial functions of varied microbial communities. Phytoremediation is an environmentally sustainable method that may effectively rehabilitate heavy metal-contaminated soil cost-efficiently. This manuscript provides an overview of prevalent alkane hydrocarbon pollutants, microorganisms capable of degrading hydrocarbons, key pathways and enzymes involved in hydrocarbon degradation, factors influencing hydrocarbon degradation, and various strategies employed to harness the degrading capabilities of microbes for remedial purposes.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461363271250113050350
2025-01-14
2025-05-31
Loading full text...

Full text loading...

References

  1. Aggarwal V.R. McBeth J. Zakrzewska J.M. Lunt M. Macfarlane G.J. The epidemiology of chronic syndromes that are frequently unexplained: do they have common associated factors? Int. J. Epidemiol. 2006 35 2 468 476 10.1093/ije/dyi265 16303810
    [Google Scholar]
  2. Stewart W.F. Lipton R.B. Celentano D.D. Reed M.L. Prevalence of migraine headache in the United States. Relation to age, income, race, and other sociodemographic factors. JAMA 1992 267 1 64 69 10.1001/jama.1992.03480010072027 1727198
    [Google Scholar]
  3. Spierings E.L.H. Dhadwal S. Orofacial pain after invasive dental procedures: neuropathic pain in perspective. Neurologist 2015 19 2 56 60 10.1097/NRL.0b013e3182811968 25607335
    [Google Scholar]
  4. Spierings E.L.H. Mulder M.J.H.L. Persistent orofacial muscle pain: Its synonymous terminology and presentation. Cranio 2017 35 5 304 307 10.1080/08869634.2016.1248591 27776466
    [Google Scholar]
  5. Mulder MJ Spierings EL Treatments of orofacial muscle pain: A review of current literature. J Dent Oral Disord 2017 3 5 10.26420/jdentoraldisord.2017.1075
    [Google Scholar]
  6. Aeckersberg F. Bak F. Widdel F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 1991 156 1 5 14 10.1007/BF00418180
    [Google Scholar]
  7. Kropp K.G. Davidova I.A. Suflita J.M. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl. Environ. Microbiol. 2000 66 12 5393 5398 10.1128/AEM.66.12.5393‑5398.2000 11097919
    [Google Scholar]
  8. Gieg L.M. Suflita J.M. Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ. Sci. Technol. 2002 36 17 3755 3762 10.1021/es0205333 12322748
    [Google Scholar]
  9. Savage K.N. Krumholz L.R. Gieg L.M. Parisi V.A. Suflita J.M. Allen J. Philp R.P. Elshahed M.S. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns. FEMS Microbiol. Ecol. 2010 72 3 485 495 10.1111/j.1574‑6941.2010.00866.x 20402777
    [Google Scholar]
  10. Bregnard T.P. Haner A. Hohener P. Zeyer J. Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl. Environ. Microbiol. 1997 63 5 2077 2081 10.1128/aem.63.5.2077‑2081.1997 16535616
    [Google Scholar]
  11. Callaghan A.V. Tierney M. Phelps C.D. Young L.Y. Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium. Appl. Environ. Microbiol. 2009 75 5 1339 1344 10.1128/AEM.02491‑08 19114507
    [Google Scholar]
  12. Zengler K. Richnow H.H. Rosselló-Mora R. Michaelis W. Widdel F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 1999 401 6750 266 269 10.1038/45777 10499582
    [Google Scholar]
  13. Anderson R.T. Lovley D.R. Hexadecane decay by methanogenesis. Nature 2000 404 6779 722 723 10.1038/35008145 10783875
    [Google Scholar]
  14. Gieg L.M. Duncan K.E. Suflita J.M. Bioenergy production via microbial conversion of residual oil to natural gas. Appl. Environ. Microbiol. 2008 74 10 3022 3029 10.1128/AEM.00119‑08 18378655
    [Google Scholar]
  15. Jones D.M. Head I.M. Gray N.D. Adams J.J. Rowan A.K. Aitken C.M. Bennett B. Huang H. Brown A. Bowler B.F.J. Oldenburg T. Erdmann M. Larter S.R. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008 451 7175 176 180 10.1038/nature06484 18075503
    [Google Scholar]
  16. Aeckersberg F. Rainey F.A. Widdel F. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch. Microbiol. 1998 170 5 361 369 10.1007/s002030050654 9818355
    [Google Scholar]
  17. Ehrenreich P. Behrends A. Harder J. Widdel F. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol. 2000 173 1 58 64 10.1007/s002030050008 10648105
    [Google Scholar]
  18. Aragaw T.A. Bogale F.M. Gessesse A. Adaptive response of thermophiles to redox stress and their role in the process of dye degradation from textile industry wastewater. Front. Physiol. 2022 13 908370 10.3389/fphys.2022.908370 35795652
    [Google Scholar]
  19. Sayara T. Sánchez A. Bioremediation of PAH-contaminated soils: Process enhancement through composting/compost. Appl. Sci. 2020 10 11 3684 10.3390/app10113684
    [Google Scholar]
  20. Roy A. Dutta A. Pal S. Gupta A. Sarkar J. Chatterjee A. Saha A. Sarkar P. Sar P. Kazy S.K. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour. Technol. 2018 253 22 32 10.1016/j.biortech.2018.01.004 29328931
    [Google Scholar]
  21. Macaulay B.M. Rees D. Bioremediation of oil spills: a review of challenges for research advancement. Ann. Environ. Sci. (Boston Mass.) 2014 8 9 37
    [Google Scholar]
  22. Das N. Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011 2011 1 1 13 10.4061/2011/941810 21350672
    [Google Scholar]
  23. Kebede G. Tafese T. Abda E.M. Kamaraj M. Assefa F. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. J. Chem. 2021 2021 1 1 17 10.1155/2021/9823362
    [Google Scholar]
  24. Varjani S.J. Hydrocarbon degrading and biosurfactants (bioemulsifiers) producing bacteria from petroleum oil wells. Gandhinagar, India Kadi Sarva Vishwavidyalaya 2014
    [Google Scholar]
  25. Peixoto RS Vermelho AB Rosado AS Petroleum-degrading enzymes: Bioremediation and new prospects. Enzyme Research 2011 2011 475193 10.4061/2011/475193
    [Google Scholar]
  26. Gopinath V. Murali A. Dhar K.S. Nampoothiri K.M. Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products. Appl. Microbiol. Biotechnol. 2012 93 1 95 106 10.1007/s00253‑011‑3686‑4 22094976
    [Google Scholar]
  27. Latha R. Kalaivani R. Bacterial degradation of crude oil by gravimetric analysis. Adv. Appl. Sci. Res. 2012 3 5 2789 2795
    [Google Scholar]
  28. Rahman K.S.M. Rahman T.J. Kourkoutas Y. Petsas I. Marchant R. Banat I.M. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour. Technol. 2003 90 2 159 168 10.1016/S0960‑8524(03)00114‑7 12895559
    [Google Scholar]
  29. Hadibarata T. Tachibana S. Itoh K. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J. Hazard. Mater. 2009 164 2-3 911 917 10.1016/j.jhazmat.2008.08.081 18835091
    [Google Scholar]
  30. Zhao D. Liu C. Liu L. Zhang Y. Liu Q. Wu W.M. Selection of functional consortium for crude oil-contaminated soil remediation. Int. Biodeterior. Biodegradation 2011 65 8 1244 1248 10.1016/j.ibiod.2011.07.008
    [Google Scholar]
  31. Lal B. Khanna S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Bacteriol. 1996 81 4 355 362 10.1111/j.1365‑2672.1996.tb03519.x 8896350
    [Google Scholar]
  32. Brusseau M.L. The impact of physical, chemical and biological factors on biodegradation. 1998
    [Google Scholar]
  33. Foght J.M. Westlake D.W.S. Johnson W.M. Ridgway H.F. Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology (Reading) 1996 142 9 2333 2340 10.1099/00221287‑142‑9‑2333 8828201
    [Google Scholar]
  34. Bartha R Bossert I The treatment and disposal of petroleum wastes. Petroleum Microbiology 1984 553 578
    [Google Scholar]
  35. Cooney J.J. The fate of petroleum pollutants in fresh water ecosystems. Petroleum Microbiology. New York Macmillan 1984 399 434
    [Google Scholar]
  36. Venosa A.D. Zhu X. Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci. Technol. Bull. 2003 8 2 163 178 10.1016/S1353‑2561(03)00019‑7
    [Google Scholar]
  37. Pelletier E. Delille D. Delille B. Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar. Environ. Res. 2004 57 4 311 327 10.1016/j.marenvres.2003.07.001 14749062
    [Google Scholar]
  38. Delille D. Coulon F. Pelletier E. Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg. Sci. Technol. 2004 40 1-2 61 70 10.1016/j.coldregions.2004.05.005
    [Google Scholar]
  39. Atlas RM Effects of hydrocarbons on microorganisms and petroleum biodegradation in arctic ecosystems. 1985 Available from: https://www.govinfo.gov/app/details/GOVPUB-I-5a74f311cc140ccd9c3609161c8dabd6
  40. Floodgate G. The fate of petroleum in marine ecosystems. Petroleum microbiology 1984 355 397
    [Google Scholar]
  41. Mitsch WJ Gosselink JG Zhang L Anderson CJ Wetland ecosystems. John Wiley & Sons 2009
    [Google Scholar]
  42. Choi S.C. Kwon K.K. Sohn J.H. Kim S.I. Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosms. J. Microbiol. Biotechnol. 2002 12 3 431 436
    [Google Scholar]
  43. Kim S.J. Choi D.H. Sim D.S. Oh Y.S. Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere 2005 59 6 845 852 10.1016/j.chemosphere.2004.10.058 15811413
    [Google Scholar]
  44. Chaillan F. Chaîneau C.H. Point V. Saliot A. Oudot J. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ. Pollut. 2006 144 1 255 265 10.1016/j.envpol.2005.12.016 16487636
    [Google Scholar]
  45. Oudot J. Merlin F.X. Pinvidic P. Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar. Environ. Res. 1998 45 2 113 125 10.1016/S0141‑1136(97)00024‑X
    [Google Scholar]
  46. Chaîneau C.H. Rougeux G. Yéprémian C. Oudot J. Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol. Biochem. 2005 37 8 1490 1497 10.1016/j.soilbio.2005.01.012
    [Google Scholar]
  47. Carmichael L.M. Pfaender F.K. The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation 1997 8 1 1 13 10.1023/A:1008258720649 9290252
    [Google Scholar]
  48. Okolo J.C. Amadi E.N. Odu C.T. Effects of soil treatments containing poultry manure on crude oil degradation in a sandy loam soil. Appl. Ecol. Environ. Res. 2005 3 1 47 53 10.15666/aeer/0301_047053
    [Google Scholar]
  49. Maki H. Sasaki T. Harayama S. Photo-oxidation of biodegraded crude oil and toxicity of the photo-oxidized products. Chemosphere 2001 44 5 1145 1151 10.1016/S0045‑6535(00)00292‑7 11513402
    [Google Scholar]
  50. van Beilen J.B. Funhoff E.G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 2007 74 1 13 21 10.1007/s00253‑006‑0748‑0 17216462
    [Google Scholar]
  51. Zimmer T. Ohkuma M. Ohta A. Takagi M. Schunck W.H. The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450. Biochem. Biophys. Res. Commun. 1996 224 3 784 789 10.1006/bbrc.1996.1100 8713123
    [Google Scholar]
  52. Scheller U. Zimmer T. Becher D. Schauer F. Schunck W.H. Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3. J. Biol. Chem. 1998 273 49 32528 32534 10.1074/jbc.273.49.32528 9829987
    [Google Scholar]
  53. Beilen J.B. Funhoff E.G. Expanding the alkane oxygenase toolbox: New enzymes and applications. Curr. Opin. Biotechnol. 2005 16 3 308 314 10.1016/j.copbio.2005.04.005 15961032
    [Google Scholar]
  54. van Beilen J.B. Funhoff E.G. van Loon A. Just A. Kaysser L. Bouza M. Holtackers R. Röthlisberger M. Li Z. Witholt B. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl. Environ. Microbiol. 2006 72 1 59 65 10.1128/AEM.72.1.59‑65.2006 16391025
    [Google Scholar]
  55. Iida T. Sumita T. Ohta A. Takagi M. The cytochrome P450ALK multigene family of ann-alkane-assimilating yeast,Yarrowia lipolytica: Cloning and characterization of genes coding for new CYP52 family members. Yeast 2000 16 12 1077 1087 10.1002/1097‑0061(20000915)16:12<1077::AID‑YEA601>3.0.CO;2‑K 10953079
    [Google Scholar]
  56. McDonald I.R. Miguez C.B. Rogge G. Bourque D. Wendlandt K.D. Groleau D. Murrell J.C. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol. Lett. 2006 255 2 225 232 10.1111/j.1574‑6968.2005.00090.x 16448499
    [Google Scholar]
  57. Maeng J.H. Sakai Y. Tani Y. Kato N. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J. Bacteriol. 1996 178 13 3695 3700 10.1128/jb.178.13.3695‑3700.1996 8682768
    [Google Scholar]
  58. Muthusamy K. Gopalakrishnan S. Ravi T.K. Sivachidambaram P. Biosurfactants: Properties, commercial production and application. Curr. Sci. 2008 736 747
    [Google Scholar]
  59. Mahmound A. Aziza Y. Abdeltif A. Rachida M. Biosurfactant production by Bacillus strain injected in the petroleum reservoirs. J. Ind. Microbiol. Biotechnol. 2008 35 2 1303 1306
    [Google Scholar]
  60. Youssef N. Simpson D.R. Duncan K.E. McInerney M.J. Folmsbee M. Fincher T. Knapp R.M. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl. Environ. Microbiol. 2007 73 4 1239 1247 10.1128/AEM.02264‑06 17172458
    [Google Scholar]
  61. Ilori M.O. Amobi C.J. Odocha A.C. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 2005 61 7 985 992 10.1016/j.chemosphere.2005.03.066 15878609
    [Google Scholar]
  62. Tabatabaee A. Assadi M.M. Noohi A.A. Sajadian V.A. Isolation of biosurfactant producing bacteria from oil reservoirs. J. Environ. Health Sci. Eng. 2005 2 1 6 12
    [Google Scholar]
  63. Mitsch WJ Wu X Wetlands and global change. CRC Press 2018 10.1201/9780203739310‑18
    [Google Scholar]
  64. Lee I.G. Han S.K. Go Y.S. Ahn T.Y. Phylogenetic analysis of Mycobacterium sp. C2-3 degrading polycyclic aromatic hydrocarbons. J. Microbiol. 2001 39 4 326 330
    [Google Scholar]
  65. Vila J. López Z. Sabaté J. Minguillón C. Solanas A.M. Grifoll M. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: Actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 2001 67 12 5497 5505 10.1128/AEM.67.12.5497‑5505.2001 11722898
    [Google Scholar]
  66. Kim Y.H. Engesser K.H. Cerniglia C.E. Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microb. Ecol. 2005 50 1 110 119 10.1007/s00248‑004‑0126‑3 16132428
    [Google Scholar]
  67. Burback B.L. Perry J.J. Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl. Environ. Microbiol. 1993 59 4 1025 1029 10.1128/aem.59.4.1025‑1029.1993 8476280
    [Google Scholar]
  68. Coleman N.V. Yau S. Wilson N.L. Nolan L.M. Migocki M.D. Ly M. Crossett B. Holmes A.J. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environ. Microbiol. Rep. 2011 3 3 297 307 10.1111/j.1758‑2229.2010.00225.x 23761275
    [Google Scholar]
  69. Solano-Serena F. Marchal R. Casarégola S. Vasnier C. Lebeault J.M. Vandecasteele J.P. A Mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons. Appl. Environ. Microbiol. 2000 66 6 2392 2399 10.1128/AEM.66.6.2392‑2399.2000 10831416
    [Google Scholar]
  70. Kołwzan B. Bioremediation of soils contaminated with petroleum products and their ecotoxicological assessment. 2005 Available from: https://www.researchgate.net/publication/298587238_Bioremediation_of_the_soils_contaminated_with_petroleum_products_and_their_ecotoxicological_assessment/citation/download
  71. Martínková L. Uhnáková B. Pátek M. Nešvera J. Křen V. Biodegradation potential of the genus Rhodococcus. Environ. Int. 2009 35 1 162 177 10.1016/j.envint.2008.07.018 18789530
    [Google Scholar]
  72. Margesin R. Moertelmaier C. Mair J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int. Biodeterior. Biodegradation 2013 84 185 191 10.1016/j.ibiod.2012.05.004
    [Google Scholar]
  73. Steliga T. Jakubowicz P. Kapusta P. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Bioresour. Technol. 2012 125 1 10 10.1016/j.biortech.2012.08.092 23018157
    [Google Scholar]
  74. Andreoni V. Bernasconi S. Colombo M. Van Beilen J.B. Cavalca L. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ. Microbiol. 2000 2 5 572 577 10.1046/j.1462‑2920.2000.00134.x 11233165
    [Google Scholar]
  75. Song X. Xu Y. Li G. Zhang Y. Huang T. Hu Z. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar. Pollut. Bull. 2011 62 10 2122 2128 10.1016/j.marpolbul.2011.07.013 21871639
    [Google Scholar]
  76. Brzeszcz J. Environmental microorganisms capable of concomitant degradation of aliphatic and aromatic hydrocarbons-perspective for the application in bioremediation practice of petroleum contaminated soils. Doctoral dissertation, PhD Dissertation, Jagiellonian University, Krakow, Poland
    [Google Scholar]
  77. Carvalho C.C.C.R. Fonseca M.M.R. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 2005 51 3 389 399 10.1016/j.femsec.2004.09.010 16329886
    [Google Scholar]
  78. Lee E.H. Kim J. Cho K.S. Ahn Y.G. Hwang G.S. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ. Sci. Pollut. Res. Int. 2010 17 1 64 77 10.1007/s11356‑009‑0238‑x 19756804
    [Google Scholar]
  79. Yang H.Y. Jia R.B. Chen B. Li L. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ. Sci. Pollut. Res. Int. 2014 21 18 11086 11093 10.1007/s11356‑014‑3027‑0 24859700
    [Google Scholar]
  80. Lee E.H. Cho K.S. Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere 2008 71 9 1738 1744 10.1016/j.chemosphere.2007.12.009 18289631
    [Google Scholar]
  81. Zhang Y Qin F Qiao J Li G Shen C Huang T Hu Z Draft genome sequence of Rhodococcus sp. strain P14, a biodegrader of high-molecular-weight polycyclic aromatic hydrocarbons. J Bacteriol 2012 194 13 3546
    [Google Scholar]
  82. Ajona M. Vasanthi P. Bioremediation of petroleum contaminated soils – A review. Mater. Today Proc. 2021 45 7117 7122 10.1016/j.matpr.2021.01.949
    [Google Scholar]
  83. Chebbi A. Hentati D. Zaghden H. Baccar N. Rezgui F. Chalbi M. Sayadi S. Chamkha M. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int. Biodeterior. Biodegradation 2017 122 128 140 10.1016/j.ibiod.2017.05.006
    [Google Scholar]
  84. Fuentes S. Barra B. Caporaso J.G. Seeger M. From rare to dominant: A fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation. Appl. Environ. Microbiol. 2016 82 3 888 896 10.1128/AEM.02625‑15 26590285
    [Google Scholar]
  85. Xia W. Du Z. Cui Q. Dong H. Wang F. He P. Tang Y. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2014 276 489 498 10.1016/j.jhazmat.2014.05.062 24929788
    [Google Scholar]
  86. Lo Giudice A. Casella P. Caruso C. Mangano S. Bruni V. De Domenico M. Michaud L. Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biol. 2010 33 7 929 943 10.1007/s00300‑010‑0770‑7
    [Google Scholar]
  87. Smith C.A. O’Reilly K.T. Hyman M.R. Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8 n-alkanes. Appl. Environ. Microbiol. 2003 69 12 7385 7394 10.1128/AEM.69.12.7385‑7394.2003 14660389
    [Google Scholar]
  88. Kim J.M. Le N.T. Chung B.S. Park J.H. Bae J.W. Madsen E.L. Jeon C.O. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 2008 74 23 7313 7320 10.1128/AEM.01695‑08 18835999
    [Google Scholar]
  89. Klankeo P. Nopcharoenkul W. Pinyakong O. Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. J. Biosci. Bioeng. 2009 108 6 488 495 10.1016/j.jbiosc.2009.05.016 19914581
    [Google Scholar]
  90. Patel V. Cheturvedula S. Madamwar D. Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J. Hazard. Mater. 2012 201-202 43 51 10.1016/j.jhazmat.2011.11.002 22169141
    [Google Scholar]
  91. Nopcharoenkul W. Netsakulnee P. Pinyakong O. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation 2013 24 3 387 397 10.1007/s10532‑012‑9596‑z 23054183
    [Google Scholar]
  92. Darwesh O.M. Matter I.A. Eida M.F. Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J. Environ. Chem. Eng. 2019 7 1 102805 10.1016/j.jece.2018.11.049
    [Google Scholar]
  93. Bilal M. Iqbal H.M.N. Hussain Shah S.Z. Hu H. Wang W. Zhang X. Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. J. Environ. Manage. 2016 183 Pt 3 836 842 10.1016/j.jenvman.2016.09.040 27663907
    [Google Scholar]
  94. Bilal M. Asgher M. Hu H. Zhang X. Kinetic characterization, thermo-stability and Reactive Red 195A dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel. Water Sci. Technol. 2016 74 8 1809 1820 10.2166/wst.2016.363 27789882
    [Google Scholar]
  95. Vasudevan M. Kumar G.S. Nambi I.M. Numerical studies on kinetics of sorption and dissolution and their interactions for estimating mass removal of toluene from entrapped soil pores. Arab. J. Geosci. 2015 8 9 6895 6910 10.1007/s12517‑014‑1681‑7
    [Google Scholar]
  96. Ostrem Loss E.M. Lee M.K. Wu M.Y. Martien J. Chen W. Amador-Noguez D. Jefcoate C. Remucal C. Jung S. Kim S.C. Yu J.H. Cytochrome P450 monooxygenase-mediated metabolic utilization of benzo [a] pyrene by Aspergillus species. MBio 2019 10 3 e00558-19 10.1128/mBio.00558‑19 31138742
    [Google Scholar]
  97. Kuntze K. Shinoda Y. Moutakki H. McInerney M.J. Vogt C. Richnow H.H. Boll M. 6‐Oxocyclohex‐1‐ene‐1‐carbonyl‐coenzyme A hydrolases from obligately anaerobic bacteria: Characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ. Microbiol. 2008 10 6 1547 1556 10.1111/j.1462‑2920.2008.01570.x 18312395
    [Google Scholar]
  98. Srivastav R. Sharma R. Tandon S. Tandon C. Role of DHH superfamily proteins in nucleic acids metabolism and stress tolerance in prokaryotes and eukaryotes. Int. J. Biol. Macromol. 2019 127 66 75 10.1016/j.ijbiomac.2018.12.123 30578903
    [Google Scholar]
  99. Juhasz A.L. Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeterior. Biodegradation 2000 45 1-2 57 88 10.1016/S0964‑8305(00)00052‑4
    [Google Scholar]
  100. Ostrem Loss E.M. Yu J.H. Bioremediation and microbial metabolism of benzo(a)pyrene. Mol. Microbiol. 2018 109 4 433 444 10.1111/mmi.14062 29995976
    [Google Scholar]
  101. Capodaglio A.G. Molognoni D. Dallago E. Liberale A. Cella R. Longoni P. Pantaleoni L. Microbial fuel cells for direct electrical energy recovery from urban wastewaters. Sci. World J. 2013 2013 1 634738 10.1155/2013/634738 24453885
    [Google Scholar]
  102. Miller A. Singh L. Wang L. Liu H. Linking internal resistance with design and operation decisions in microbial electrolysis cells. Environ. Int. 2019 126 611 618 10.1016/j.envint.2019.02.056 30856448
    [Google Scholar]
  103. Brastad K.S. He Z. Water softening using microbial desalination cell technology. Desalination 2013 309 32 37 10.1016/j.desal.2012.09.015
    [Google Scholar]
  104. Wang H. Ren Z.J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 2013 31 8 1796 1807 10.1016/j.biotechadv.2013.10.001 24113213
    [Google Scholar]
  105. Xiao L. Young E.B. Berges J.A. He Z. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ. Sci. Technol. 2012 46 20 11459 11466 10.1021/es303144n 22998430
    [Google Scholar]
  106. Yuan L. Yang X. Liang P. Wang L. Huang Z.H. Wei J. Huang X. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresour. Technol. 2012 110 735 738 10.1016/j.biortech.2012.01.137 22364771
    [Google Scholar]
  107. Modin O. Aulenta F. Three promising applications of microbial electrochemistry for the water sector. Environ. Sci. Water Res. Technol. 2017 3 3 391 402 10.1039/C6EW00325G
    [Google Scholar]
  108. Wang X. Aulenta F. Puig S. Esteve-Núñez A. He Y. Mu Y. Rabaey K. Microbial electrochemistry for bioremediation. Environ. Sci. Ecotechnol. 2020 1 100013 10.1016/j.ese.2020.100013 36160374
    [Google Scholar]
  109. Tyagi M. da Fonseca M.M.R. de Carvalho C.C.C.R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011 22 2 231 241 10.1007/s10532‑010‑9394‑4 20680666
    [Google Scholar]
  110. Leahy J.G. Colwell R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 1990 54 3 305 315 10.1128/mr.54.3.305‑315.1990 2215423
    [Google Scholar]
  111. Omokhagbor Adams G. Tawari Fufeyin P. Eruke Okoro S. Ehinomen I. Bioremediation, biostimulation and bioaugmention: A review. Int. J. Environ. Bioremediat. Biodegrad. 2020 3 1 28 39 10.12691/ijebb‑3‑1‑5
    [Google Scholar]
  112. Dejonghe W. Boon N. Seghers D. Top E.M. Verstraete W. Bioaugmentation of soils by increasing microbial richness: Missing links. Environ. Microbiol. 2001 3 10 649 657 10.1046/j.1462‑2920.2001.00236.x 11722545
    [Google Scholar]
  113. Shukla K.P. Singh N.K. Sharma S. Bioremediation: Developments, current practices and perspectives. Genet. Eng. Biotechnol. J. 2010 3 1 20
    [Google Scholar]
  114. Kiran G.S. Hema T.A. Gandhimathi R. Selvin J. Thomas T.A. Rajeetha Ravji T. Natarajaseenivasan K. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf. B Biointerfaces 2009 73 2 250 256 10.1016/j.colsurfb.2009.05.025 19570659
    [Google Scholar]
  115. Cameotra S.S. Singh P. Bioremediation of oil sludge using crude biosurfactants. Int. Biodeterior. Biodegradation 2008 62 3 274 280 10.1016/j.ibiod.2007.11.009
    [Google Scholar]
  116. Pornsunthorntawee O. Wongpanit P. Chavadej S. Abe M. Rujiravanit R. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour. Technol. 2008 99 6 1589 1595 10.1016/j.biortech.2007.04.020 17540558
    [Google Scholar]
  117. Nikolopoulou M. Kalogerakis N. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J. Chem. Technol. Biotechnol. 2009 84 6 802 807
    [Google Scholar]
  118. Abdel-Shafy HI Mansour MS Microbial degradation of hydrocarbons in the environment: An overview. Springer Singapore 2018 10.1007/978‑981‑13‑1840‑5_15
    [Google Scholar]
  119. Schnoor J.L. Licht L.A. McCUTCHEON S.C. Wolfe N.L. Carreira L.H. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 1995 29 7 318A 323A 10.1021/es00007a747 22667744
    [Google Scholar]
  120. Giraldo J.P. Wu H. Newkirk G.M. Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019 14 6 541 553 10.1038/s41565‑019‑0470‑6 31168083
    [Google Scholar]
  121. Zaytseva O. Neumann G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016 3 1 17 10.1186/s40538‑016‑0070‑8
    [Google Scholar]
  122. Prasad R. Bhattacharyya A. Nguyen Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017 8 1014 10.3389/fmicb.2017.01014 28676790
    [Google Scholar]
  123. Solanki P. Bhargava A. Chhipa H. Jain N. Panwar J. Nano-fertilizers and Their Smart Delivery System. Nanotechnologies in Food and Agriculture. Springer International Publishing Cham 2015 81 101
    [Google Scholar]
  124. Nuruzzaman M. Rahman M.M. Liu Y. Naidu R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2016 64 7 1447 1483 10.1021/acs.jafc.5b05214 26730488
    [Google Scholar]
  125. Shojaei T.R. Salleh M.A.M. Tabatabaei M. Mobli H. Aghbashlo M. Rashid S.A. Tan T. Applications of Nanotechnology and Carbon Nanoparticles in Agriculture. Synthesis, Technology and Applications of Carbon Nanomaterials Elsevier 2019 247 277 10.1016/B978‑0‑12‑815757‑2.00011‑5
    [Google Scholar]
  126. Li W. Zheng Y. Zhang H. Liu Z. Su W. Chen S. Liu Y. Zhuang J. Lei B. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Appl. Mater. Interfaces 2016 8 31 19939 19945 10.1021/acsami.6b07268 27425200
    [Google Scholar]
  127. Li Y. Xu X. Wu Y. Zhuang J. Zhang X. Zhang H. Lei B. Hu C. Liu Y. A review on the effects of carbon dots in plant systems. Mater. Chem. Front. 2020 4 2 437 448 10.1039/C9QM00614A
    [Google Scholar]
  128. Gengan S. Ananda Murthy H.C. Sillanpää M. Nhat T. Carbon dots and their application as photocatalyst in dye degradation studies- Mini review. Results Chem. 2022 4 100674 10.1016/j.rechem.2022.100674
    [Google Scholar]
  129. Cruz-Cruz A. Gallareta-Olivares G. Rivas-Sanchez A. González-González R.B. Ahmed I. Parra-Saldívar R. Iqbal H.M.N. Recent advances in carbon dots based biocatalysts for degrading organic pollutants. Curr. Pollut. Rep. 2022 8 4 384 394 10.1007/s40726‑022‑00228‑5
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461363271250113050350
Loading
/content/journals/cgc/10.2174/0122133461363271250113050350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test