Skip to content
2000
image of Progress in the Transition-metal-free Approaches to Access Chiral Silicon-containing Molecules

Abstract

Biological evolution has omitted organic silicon from the Earth's scab, which forms approximately 28% of the Earth's crust. However, there is a growing interest in organosilicon compounds due to their widespread use in organic synthesis, material science, agrochemistry, and medical research. Recently, there have been many applications of silicon-stereogenic organosilanes in syntheses, medicinal chemistry, and functional materials, making them an important topic for research. However, in silicon, it is possible for the stereogenic center to be racemized as it can form more than four covalent bonds. By overcoming this issue, transition-metal-catalyzed transformations have achieved significant progress in the synthesis of silicon-stereogenic silanes over the last decade. However, transition metal-free approaches are quite challenging with respect to the stability of the chiral centers. This study will comprehensively summarize the advances in the transition-metal-free asymmetric synthesis of chiral silicon-containing molecules. The mild reaction conditions and environmentally friendly reagents that are used in these organocatalytic methods make the process significant for the advancement of green chemistry.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461352292241122194003
2025-02-04
2025-06-24
Loading full text...

Full text loading...

References

  1. Silicon. Available from:https://www.rsc.org/periodic-table/element/14/silicon(accessed on 4-11-2024).
  2. Brook M. Ed.; Silicon in Organic, Organometallic and Polymer Chemistry. New York Wiley 2000
    [Google Scholar]
  3. Rappoport Z. Apeloig Y. , Eds.; The Chemistry of Organic Silicon Compounds. Chichester Wiley 2003
    [Google Scholar]
  4. Hiyama T. Oestreich M. , Eds.; Organosilicon Chemistry: Novel Approaches and Reactions. Weinheim, Germany Wiley 2019 10.1002/9783527814787
    [Google Scholar]
  5. Hissler M. Dyer P.W. Réau R. Linear organic π-conjugated systems featuring the heavy Group 14 and 15 elements. Coord. Chem. Rev. 2003 244 1-2 1 44 10.1016/S0010‑8545(03)00098‑5
    [Google Scholar]
  6. Chen J. Cao Y. Silole-containing polymers: chemistry and optoelectronic properties. Macromol. Rapid Commun. 2007 28 17 1714 1742 10.1002/marc.200700326
    [Google Scholar]
  7. Ohshita J. Conjugated oligomers and polymers containing dithienosilole units. Macromol. Chem. Phys. 2009 210 17 1360 1370 10.1002/macp.200900180
    [Google Scholar]
  8. Wong W.W.H. Hooper J.F. Holmes A.B. Silicon analogues of polyfluorene as materials for organic electronics. Aust. J. Chem. 2009 62 5 393 401 10.1071/CH08497
    [Google Scholar]
  9. Corey J.Y. Siloles. Adv. Organomet. Chem. 2011 59 181 328 10.1016/B978‑0‑12‑378649‑4.00002‑2
    [Google Scholar]
  10. Fu H. Cheng Y. Electroluminescent and photovoltaic properties of silolebased materials. Curr. Org. Chem. 2012 16 11 1423 1446 10.2174/138527212800672637
    [Google Scholar]
  11. Zhao Z. He B. Tang B.Z. Aggregation-induced emission of siloles. Chem. Sci. (Camb.) 2015 6 10 5347 5365 10.1039/C5SC01946J 28717442
    [Google Scholar]
  12. Xu L.W. Li L. Lai G.Q. Jiang J.X. The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis. Chem. Soc. Rev. 2011 40 3 1777 1790 10.1039/C0CS00037J 21088772
    [Google Scholar]
  13. Shintani R. Recent advances in the transition‐metal‐catalyzed enantioselective synthesis of silicon‐stereogenic organosilanes. Asian J. Org. Chem. 2015 4 6 510 514 10.1002/ajoc.201500066
    [Google Scholar]
  14. Li L. Zhang Y. Gao L. Song Z. Recent advances in C–Si bond activation via a direct transition metal insertion. Tetrahedron Lett. 2015 56 12 1466 1473 10.1016/j.tetlet.2015.01.184
    [Google Scholar]
  15. Bauer J.O. Strohmann C. Recent progress in asymmetric synthesis and application of difunctionalized silicon‐stereogenic silanes. Eur. J. Inorg. Chem. 2016 2016 18 2868 2881 10.1002/ejic.201600100
    [Google Scholar]
  16. Cui Y.M. Lin Y. Xu L.W. Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C–H functionalization. Coord. Chem. Rev. 2017 330 37 52 10.1016/j.ccr.2016.09.011
    [Google Scholar]
  17. Shintani R. Recent progress in catalytic enantioselective desymmetrization of prochiral organosilanes for the synthesis of silicon-stereogenic compounds. Synlett 2018 29 4 388 396 10.1055/s‑0036‑1591839
    [Google Scholar]
  18. He C. Yuan W. Enantioselective C–H functionalization toward silicon-stereogenic silanes. Synthesis 2022 54 8 1939 1950 10.1055/a‑1729‑9664
    [Google Scholar]
  19. Xu L.W. Huang W.S. Wang Q. Yang H. State-of-the-art advances in enantioselective transition-metal-mediated reactions of silacyclobutanes. Synthesis 2022 54 24 5400 5408 10.1055/a‑1929‑4890
    [Google Scholar]
  20. Wu Y. Wang P. Silicon‐stereogenic monohydrosilane: synthesis and applications. Angew. Chem. Int. Ed. 2022 61 36 e202205382 10.1002/anie.202205382 35594056
    [Google Scholar]
  21. Ye Z.T. Wu Z.W. Zhang X.X. Zhou J. Yu J.S. Organocatalytic enantioselective construction of Si-stereocenters: recent advances and perspectives. Chem. Soc. Rev. 2024 53 17 8546 8562 10.1039/D4CS00417E 39091219
    [Google Scholar]
  22. Panayides J.L. Riley D.L. Hasenmaile F. van Otterlo W.A.L. The role of silicon in drug discovery: A review. RSC Med. Chem. 2024 15 3286 3344 10.1039/D4MD00169A
    [Google Scholar]
  23. Franz A.K. Wilson S.O. Organosilicon molecules with medicinal applications. J. Med. Chem. 2013 56 2 388 405 10.1021/jm3010114 23061607
    [Google Scholar]
  24. Rémond E. Martin C. Martinez J. Cavelier F. Silicon-containing amino acids: Synthetic aspects, conformational studies, and applications to bioactive peptides. Chem. Rev. 2016 116 19 11654 11684 10.1021/acs.chemrev.6b00122 27529497
    [Google Scholar]
  25. Tacke R. Kornek T. Heinrich T. Burschka C. Penka M. Pülm M. Keim C. Mutschler E. Lambrecht G. Syntheses and pharmacological characterization of achiral and chiral enantiopure C/Si/Ge-analogous derivatives of the muscarinic antagonist cycrimine: a study on C/Si/Ge bioisosterism. J. Organomet. Chem. 2001 640 1-2 140 165 10.1016/S0022‑328X(01)01179‑2
    [Google Scholar]
  26. Mutahi M. Nittoli T. Guo L. Sieburth S.M. Silicon-based metalloprotease inhibitors: synthesis and evaluation of silanol and silanediol peptide analogues as inhibitors of angiotensin-converting enzyme. J. Am. Chem. Soc. 2002 124 25 7363 7375 10.1021/ja026158w 12071745
    [Google Scholar]
  27. Kawakami Y. Kakihana Y. Ooi O. Oishi M. Suzuki K. Shinke S. Uenishi K. Control of stereochemical structures of silicon‐containing polymeric systems. Polym. Int. 2009 58 3 279 284 10.1002/pi.2524
    [Google Scholar]
  28. Koga S. Ueki S. Shimada M. Ishii R. Kurihara Y. Yamanoi Y. Yuasa J. Kawai T. Uchida T. Iwamura M. Nozaki K. Nishihara H. Access to chiral silicon centers for application to circularly polarized luminescence materials. J. Org. Chem. 2017 82 12 6108 6117 10.1021/acs.joc.7b00583 28494580
    [Google Scholar]
  29. Strohmann C. Hörnig J. Auer D. Synthesis of a highly enantiomerically enriched silyllithium compound. Chem. Commun. (Camb.) 2002 7 766 767 10.1039/b111687h 12119713
    [Google Scholar]
  30. Chang X. Ma P.L. Chen H.C. Li C.Y. Wang P. Asymmetric synthesis and application of chiral spirosilabiindanes. Angew. Chem. Int. Ed. 2020 59 23 8937 8940 10.1002/anie.202002289 32141185
    [Google Scholar]
  31. Yang B. Gao J. Tan X. Ge Y. He C. Chiral psisi‐ligand enabled iridium‐catalyzed atroposelective intermolecular c−h silylation. Angew. Chem. Int. Ed. 2023 62 36 e202307812 10.1002/anie.202307812 37462125
    [Google Scholar]
  32. Brook A.G. Gajewski J.J. sp2 ‐Hybridized silicon: Parameters for molecular modeling. Heteroatom Chem. 1990 1 1 57 63 10.1002/hc.520010109
    [Google Scholar]
  33. Lin D. Wei Y. Peng A. Zhang H. Zhong C. Lu D. Zhang H. Zheng X. Yang L. Feng Q. Xie L. Huang W. Stereoselective gridization and polygridization with centrosymmetric molecular packing. Nat. Commun. 2020 11 1 1756 10.1038/s41467‑020‑15401‑x 32273512
    [Google Scholar]
  34. Zhu J. Chen S. He C. Catalytic enantioselective dehydrogenative si–o coupling to access chiroptical silicon-stereogenic siloxanes and alkoxysilanes. J. Am. Chem. Soc. 2021 143 14 5301 5307 10.1021/jacs.1c01106 33792300
    [Google Scholar]
  35. Chen S. Mu D. Mai P.L. Ke J. Li Y. He C. Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles. Nat. Commun. 2021 12 1 1249 10.1038/s41467‑021‑21489‑6 33623025
    [Google Scholar]
  36. Zhao J.H. Zheng L. Zou J.Y. Zhang S.Y. Shen H.C. Wu Y. Wang P. Construction of Si‐stereogenic silanols by palladium‐catalyzed enantioselective C−H alkenylation. Angew. Chem. Int. Ed. 2024 63 20 e202402612 10.1002/anie.202402612 38410071
    [Google Scholar]
  37. Guo Y. Liu M.M. Zhu X. Zhu L. He C. Catalytic asymmetric synthesis of silicon‐stereogenic dihydrodibenzosilines: silicon central‐to‐axial chirality relay. Angew. Chem. Int. Ed. 2021 60 25 13887 13891 10.1002/anie.202103748 33830619
    [Google Scholar]
  38. Zhang J. Yan N. Ju C.W. Zhao D. Nickel(0)‐catalyzed asymmetric ring expansion toward enantioenriched silicon‐stereogenic benzosiloles. Angew. Chem. Int. Ed. 2021 60 49 25723 25728 10.1002/anie.202111025 34590411
    [Google Scholar]
  39. Zhang H. Zhao D. Synthesis of silicon-stereogenic silanols involving iridium-catalyzed enantioselective C–H silylation leading to a new ligand scaffold. ACS Catal. 2021 11 17 10748 10753 10.1021/acscatal.1c03112
    [Google Scholar]
  40. Gao J. Mai P.L. Ge Y. Yuan W. Li Y. He C. Copper-catalyzed desymmetrization of prochiral silanediols to silicon-stereogenic silanols. ACS Catal. 2022 12 14 8476 8483 10.1021/acscatal.2c02482
    [Google Scholar]
  41. Yin K.L. Zhao S. Qin Y. Chen S.H. Li B. Zhao D. Enantioselective construction of sila-bicyclo[3.2.1] scaffolds bearing both carbon- and silicon-stereocenters. ACS Catal. 2022 12 22 13999 14005 10.1021/acscatal.2c04441
    [Google Scholar]
  42. Chen S. Zhu J. Ke J. Li Y. He C. Enantioselective intermolecular C−H silylation of heteroarenes for the synthesis of acyclic Si‐stereogenic silanes. Angew. Chem. Int. Ed. 2022 61 21 e202117820 10.1002/anie.202117820 35263001
    [Google Scholar]
  43. Wang L. Lu W. Zhang J. Chong Q. Meng F. Cobalt‐catalyzed regio‐, diastereo‐ and enantioselective intermolecular hydrosilylation of 1,3‐dienes with prochiral silanes. Angew. Chem. Int. Ed. 2022 61 30 e202205624 10.1002/anie.202205624 35606326
    [Google Scholar]
  44. Yuan W. Zhu X. Xu Y. He C. Synthesis of Si‐stereogenic silanols by catalytic asymmetric hydrolytic oxidation. Angew. Chem. Int. Ed. 2022 61 31 e202204912 10.1002/anie.202204912 35614025
    [Google Scholar]
  45. Zeng Y. Fang X.J. Tang R.H. Xie J.Y. Zhang F.J. Xu Z. Nie Y.X. Xu L.W. Rhodium‐catalyzed dynamic kinetic asymmetric hydrosilylation to access silicon‐stereogenic center. Angew. Chem. Int. Ed. 2022 61 51 e202214147 10.1002/anie.202214147
    [Google Scholar]
  46. Mukherjee S. Yang J.W. Hoffmann S. List B. Asymmetric enamine catalysis. Chem. Rev. 2007 107 12 5471 5569 10.1021/cr0684016 18072803
    [Google Scholar]
  47. MacMillan D.W.C. The advent and development of organocatalysis. Nature 2008 455 7211 304 308 10.1038/nature07367 18800128
    [Google Scholar]
  48. Nicewicz D.A. MacMillan D.W.C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 2008 322 5898 77 80 10.1126/science.1161976 18772399
    [Google Scholar]
  49. Silvi M. Melchiorre P. Enhancing the potential of enantioselective organocatalysis with light. Nature 2018 554 7690 41 49 10.1038/nature25175 29388950
    [Google Scholar]
  50. Xiang S.H. Tan B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun. 2020 11 1 3786 10.1038/s41467‑020‑17580‑z 32728115
    [Google Scholar]
  51. Han B. He X.H. Liu Y.Q. He G. Peng C. Li J.L. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem. Soc. Rev. 2021 50 3 1522 1586 10.1039/D0CS00196A 33496291
    [Google Scholar]
  52. Susam Z.D. Tanyeli C. Recyclable organocatalysts in asymmetric synthesis. Asian J. Org. Chem. 2021 10 6 1251 1266 10.1002/ajoc.202100165
    [Google Scholar]
  53. Jana B. Mondal M. Halder S. Mahata A. Saurav S. Paladhi S. Recent advancement on the organocatalyzed asymmetric conjugate addition using maleimide as a potential substrate. Asian J. Org. Chem. 2023 12 10 e202300387 10.1002/ajoc.202300387
    [Google Scholar]
  54. García Mancheño O. Waser M. Recent developments and trends in asymmetric organocatalysis. Eur. J. Org. Chem. 2023 26 1 e202200950 10.1002/ejoc.202200950 37065706
    [Google Scholar]
  55. Paladhi S. Park S.J. Hwang I.S. Park J.H. Bae H.Y. Jadhav A.P. Song C.E. Biomimetic catalytic retro-aldol reaction using a cation-binding catalyst: A promising route to axially chiral biaryl aldehydes. Org. Lett. 2023 25 15 2713 2717 10.1021/acs.orglett.3c00825 37052359
    [Google Scholar]
  56. Jung M.J. Paladhi S. Song C.E. Enantioselective protonation of monofluorinated silyl enol ethers by cooperative cation‐binding catalysis. Bull. Korean Chem. Soc. 2023 44 5 420 424 10.1002/bkcs.12675
    [Google Scholar]
  57. Park J.H. Maity P. Paladhi S. Bae H.Y. Song C.E. Enantioselective synthesis of chiral 2‐nitroallylic amines via cooperative cation‐binding catalysis. Chemistry 2023 29 52 e202301787 10.1002/chem.202301787 37370249
    [Google Scholar]
  58. Paladhi S. Hwang I.S. Yoo E.J. Ryu D.H. Song C.E. Kinetic resolution of β-hydroxy carbonyl compounds via enantioselective dehydration using a cation-binding catalyst: Facile access to enantiopure chiral aldols. Org. Lett. 2018 20 7 2003 2006 10.1021/acs.orglett.8b00547 29537279
    [Google Scholar]
  59. Paladhi S. Liu Y. Kumar B.S. Jung M.J. Park S.Y. Yan H. Song C.E. Fluoride anions in self-assembled chiral cage for the enantioselective protonation of silyl enol ethers. Org. Lett. 2017 19 12 3279 3282 10.1021/acs.orglett.7b01429 28574270
    [Google Scholar]
  60. Liu Y. Ao J. Paladhi S. Song C.E. Yan H. Organocatalytic asymmetric synthesis of chiral dioxazinanes and dioxazepanes with in Situ Generated nitrones via a tandem reaction pathway using a cooperative cation binding catalyst. J. Am. Chem. Soc. 2016 138 50 16486 16492 10.1021/jacs.6b10660 27936631
    [Google Scholar]
  61. Paladhi S. Das J. Samanta M. Dash J. Asymmetric aldol reaction of thiazole‐carbaldehydes: Regio‐ and stereoselective synthesis of tubuvalin analogues. Adv. Synth. Catal. 2014 356 16 3370 3376 10.1002/adsc.201400640
    [Google Scholar]
  62. Paladhi S. Das J. Mishra P.K. Dash J. Multifunctional “click” prolinamides: a new platform for asymmetric aldol reactions in the presence of water with catalyst recycling. Adv. Synth. Catal. 2013 355 2-3 274 280 10.1002/adsc.201200856
    [Google Scholar]
  63. Murata R. Matsumoto A. Asano K. Matsubara S. Desymmetrization of gem -diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification. Chem. Commun. (Camb.) 2020 56 82 12335 12338 10.1039/D0CC05509C 32896841
    [Google Scholar]
  64. Liao X. Zhou H. Chen X. Xu J. Isothiourea-catalyzed acylative desymmetrization of silicon-centered bisphenols. Org. Lett. 2023 25 17 3099 3103 10.1021/acs.orglett.3c00946 37129310
    [Google Scholar]
  65. Dalton J.J. Bernal Sánchez A. Kelly A.T. Fettinger J.C. Franz A.K. Organocatalytic asymmetric synthesis of si-stereogenic siloxanols. ACS Catal. 2024 14 2 1005 1012 10.1021/acscatal.3c03932 38269039
    [Google Scholar]
  66. Zhang D. Shao Y.B. Xie W. Chen Y. Liu W. Bao H. He F. Xue X.S. Yang X. Remote enantioselective desymmetrization of 9,9-disubstituted 9,10-dihydroacridines through asymmetric aromatic aminations. ACS Catal. 2022 12 23 14609 14618 10.1021/acscatal.2c04975
    [Google Scholar]
  67. Guo W. Li Q. Liu Y. Li C. One-pot remote desymmetrization/peterson-olefination for the construction of silicon-stereogenic silyl ethers. Sci. China Chem. 2023 66 10 2797 2802 10.1007/s11426‑023‑1643‑7
    [Google Scholar]
  68. Zhou H. Han J.T. Nöthling N. Lindner M.M. Jenniches J. Kühn C. Tsuji N. Zhang L. List B. Organocatalytic Asymmetric Synthesis of Si-Stereogenic Silyl Ethers. J. Am. Chem. Soc. 2022 144 23 10156 10161 10.1021/jacs.2c04261 35649270
    [Google Scholar]
  69. Zhou H. Properzi R. Leutzsch M. Belanzoni P. Bistoni G. Tsuji N. Han J.T. Zhu C. List B. Organocatalytic DYKAT of Si -stereogenic silanes. J. Am. Chem. Soc. 2023 145 9 4994 5000 10.1021/jacs.3c00858 36826435
    [Google Scholar]
  70. Han J.T. Tsuji N. Zhou H. Leutzsch M. List B. Organocatalytic asymmetric synthesis of Si-stereogenic silacycles. Nat. Commun. 2024 15 1 5846 10.1038/s41467‑024‑49988‑2 38992000
    [Google Scholar]
  71. Zhang X.X. Gao Y. Zhang Y.X. Zhou J. Yu J.S. Highly enantioselective construction of multifunctional silicon‐stereogenic silacycles by asymmetric enamine catalysis. Angew. Chem. Int. Ed. 2023 62 9 e202217724 10.1002/anie.202217724 36625565
    [Google Scholar]
  72. Zhou M. Liu J. Deng R. Wang Q. Wu S. Zheng P. Chi Y.R. Construction of tetrasubstituted silicon-stereogenic silanes via conformational isomerization and n-heterocyclic carbene-catalyzed desymmetrization. ACS Catal. 2022 12 13 7781 7788 10.1021/acscatal.2c01082
    [Google Scholar]
  73. Liu H. He P. Liao X. Zhou Y. Chen X. Ou W. Wu Z. Luo C. Yang L. Xu J. Stereoselective access to silicon-stereogenic silacycles via the carbene-catalyzed desymmetric benzoin reaction of siladials. ACS Catal. 2022 12 16 9864 9871 10.1021/acscatal.2c02805
    [Google Scholar]
  74. Palomo C. Oiarbide M. López R. Asymmetric organocatalysis by chiral Brønsted bases: implications and applications. Chem. Soc. Rev. 2009 38 2 632 653 10.1039/B708453F 19169469
    [Google Scholar]
  75. Marcelli T. Hiemstra H. Cinchona alkaloids in asymmetric organocatalysis. Synthesis 2010 2010 8 1229 1279 10.1055/s‑0029‑1218699
    [Google Scholar]
  76. Maruoka K. Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysis and Additional Topics. Stuttgart Thieme 2012
    [Google Scholar]
  77. Fang X. Wang C.J. Recent advances in asymmetric organocatalysis mediated by bifunctional amine–thioureas bearing multiple hydrogen-bonding donors. Chem. Commun. (Camb.) 2015 51 7 1185 1197 10.1039/C4CC07909D 25364797
    [Google Scholar]
  78. Tan C-H. Teng B. Lim W. Recent Advances in Enantioselective Brønsted Base Organocatalytic Reactions. Synlett 2017 28 11 1272 1277 10.1055/s‑0036‑1588847
    [Google Scholar]
  79. Dong S. Feng X. Liu X. Chiral guanidines and their derivatives in asymmetric synthesis. Chem. Soc. Rev. 2018 47 23 8525 8540 10.1039/C7CS00792B 30375584
    [Google Scholar]
  80. Vera S. García-Urricelqui A. Mielgo A. Oiarbide M. Progress in (Thio)urea‐ and Squaramide‐Based Brønsted Base Catalysts with Multiple H‐Bond Donors. Eur. J. Org. Chem. 2023 26 7 e202201254 10.1002/ejoc.202201254
    [Google Scholar]
  81. Gaunt M.J. Johansson C.C.C. Recent developments in the use of catalytic asymmetric ammonium enolates in chemical synthesis. Chem. Rev. 2007 107 12 5596 5605 10.1021/cr0683764 18072805
    [Google Scholar]
  82. Denmark S.E. Beutner G.L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 2008 47 9 1560 1638 10.1002/anie.200604943 18236505
    [Google Scholar]
  83. Gawronski J. Wascinska N. Gajewy J. Recent progress in Lewis base activation and control of stereoselectivity in the additions of trimethylsilyl nucleophiles. Chem. Rev. 2008 108 12 5227 5252 10.1021/cr800421c 18850749
    [Google Scholar]
  84. Taylor J.E. Bull S.D. Williams J.M.J. Amidines, isothioureas, and guanidines as nucleophilic catalysts. Chem. Soc. Rev. 2012 41 6 2109 2121 10.1039/c2cs15288f 22234578
    [Google Scholar]
  85. Morrill L.C. Smith A.D. Organocatalytic Lewis base functionalisation of carboxylic acids, esters and anhydrides via C1-ammonium or azolium enolates. Chem. Soc. Rev. 2014 43 17 6214 6226 10.1039/C4CS00042K 24867308
    [Google Scholar]
  86. Huy P.H. Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. Eur. J. Org. Chem. 2020 2020 1 10 27 10.1002/ejoc.201901495
    [Google Scholar]
  87. Shao Y.D. Cheng D.J. Chiral phosphoric acid: A powerful organocatalyst for the asymmetric synthesis of heterocycles with chiral atropisomerism. ChemCatChem 2021 13 5 1271 1289 10.1002/cctc.202001750
    [Google Scholar]
  88. Woldegiorgis A.G. Lin X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J. Org. Chem. 2021 17 2729 2764 10.3762/bjoc.17.185 34876929
    [Google Scholar]
  89. Pálvölgyi Á.M. Scharinger F. Schnürch M. Bica-Schröder K. Chiral phosphoric acids as versatile tools for organocatalytic asymmetric transfer hydrogenations. Eur. J. Org. Chem. 2021 2021 38 5367 5381 10.1002/ejoc.202100894 34819797
    [Google Scholar]
  90. Jiménez E.I. An update on chiral phosphoric acid organocatalyzed stereoselective reactions. Org. Biomol. Chem. 2023 21 17 3477 3502 10.1039/D3OB00212H 37057412
    [Google Scholar]
  91. Cao Y. Liu G. Asymmetric catalytic synthesis by synergistic chiral phosphoric acid photoredox catalyzed reactions. Adv. Synth. Catal. 2023 365 18 3044 3062 10.1002/adsc.202300503
    [Google Scholar]
  92. Woldegiorgis A.G. Han Z. Lin X. Recent advances in chiral phosphoric acid catalyzed asymmetric organic reactions: An overview. J. Mol. Struct. 2024 1297 136919 10.1016/j.molstruc.2023.136919
    [Google Scholar]
  93. Schreyer L. Properzi R. List B. IDPi Catalysis. Angew. Chem. Int. Ed. 2019 58 37 12761 12777 10.1002/anie.201900932 30840780
    [Google Scholar]
  94. Erkkilä A. Majander I. Pihko P.M. Iminium Catalysis. Chem. Rev. 2007 107 12 5416 5470 10.1021/cr068388p 18072802
    [Google Scholar]
  95. Deng Y. Kumar S. Wang H. Synergistic–cooperative combination of enamine catalysis with transition metal catalysis. Chem. Commun. (Camb.) 2014 50 33 4272 4284 10.1039/C4CC00072B 24637566
    [Google Scholar]
  96. Zou Y.Q. Hörmann F.M. Bach T. Iminium and enamine catalysis in enantioselective photochemical reactions. Chem. Soc. Rev. 2018 47 2 278 290 10.1039/C7CS00509A 29155908
    [Google Scholar]
  97. Gambhir D. Singh S. Singh R.P. Enamine/Iminium‐based Dual Organocatalytic Systems for Asymmetric Catalysis and Synthesis. Chem. Asian J. 2023 18 24 e202300627 10.1002/asia.202300627 37910066
    [Google Scholar]
  98. Reyes E. Prieto L. Uria U. Carrillo L. Vicario J.L. Asymmetric dual enamine catalysis/hydrogen bonding activation. Catalysts 2023 13 7 1091 10.3390/catal13071091
    [Google Scholar]
  99. César V. Bellemin-Laponnaz S. Gade L.H. Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chem. Soc. Rev. 2004 33 9 619 636 10.1039/B406802P 15592627
    [Google Scholar]
  100. Wang F. Liu L. Wang W. Li S. Shi M. Chiral NHC–metal-based asymmetric catalysis. Coord. Chem. Rev. 2012 256 9-10 804 853 10.1016/j.ccr.2011.11.013
    [Google Scholar]
  101. Zhao D. Candish L. Paul D. Glorius F. N-heterocyclic carbenes in asymmetric hydrogenation. ACS Catal. 2016 6 9 5978 5988 10.1021/acscatal.6b01736
    [Google Scholar]
  102. Janssen-Müller D. Schlepphorst C. Glorius F. Privileged chiral N-heterocyclic carbene ligands for asymmetric transition-metal catalysis. Chem. Soc. Rev. 2017 46 16 4845 4854 10.1039/C7CS00200A 28660958
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461352292241122194003
Loading
/content/journals/cgc/10.2174/0122133461352292241122194003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test