Skip to content
2000
Volume 1, Issue 2
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

The progress in genome-scale approaches to human diseases will soon require to understand the function of a large number of genes as potentially interesting therapeutic targets. The determination of their biological role needs to be accelerated in order to select valid therapeutic targets and streamline the drug discovery process. The sequencing of the human genome, as well as a number of model organisms, provides a strong framework to achieve this goal. Several methods among which gene expression profiling and protein interaction mapping are being used on a large-scale basis and constitute useful entry points to identify pathways involved in disease mechanisms. The resulting information is however limited. Other methods rely on the genetic manipulation of well-characterized and simple model organisms (SMOs) to reconstruct human disease-associated pathways and pinpoint biologically-valid therapeutic targets on the basis of function-based datasets generated in vivo. SMOs are strongly complementary to well-established complex mammalian models, and multiple ways exist to integrate SMOs into the early stage of the drug discovery process. In this review, we attempt to highlight some of the general criteria and essential methodological components associated with the use of SMO technologies for rapid functional genomics. Examples are provided to illustrate the utility of C. elegans and Drososphila for the validation of targets for central nervous system drugs.

Loading

Article metrics loading...

/content/journals/cg/10.2174/1389202003351544
2000-09-01
2025-10-07
Loading full text...

Full text loading...

/content/journals/cg/10.2174/1389202003351544
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test