Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background

The damage in the liver and hepatocytes is where the primary liver cancer begins, and this is referred to as Hepatocellular Carcinoma (HCC). One of the best methods for detecting changes in gene expression of hepatocellular carcinoma is through bioinformatics approaches.

Objective

This study aimed to identify potential drug target(s) hubs mediating HCC progression using computational approaches through gene expression and protein-protein interaction datasets.

Methodology

Four datasets related to HCC were acquired from the GEO database, and Differentially Expressed Genes (DEGs) were identified. Using Evenn, the common genes were chosen. Using the Fun Rich tool, functional associations among the genes were identified. Further, protein-protein interaction networks were predicted using STRING, and hub genes were identified using Cytoscape. The selected hub genes were subjected to GEPIA and Shiny GO analysis for survival analysis and functional enrichment studies for the identified hub genes. The up-regulating genes were further studied for immunohistopathological studies using HPA to identify gene/protein expression in normal HCC conditions. Drug Bank and Drug Gene Interaction Database were employed to find the reported drug status and targets. Finally, STITCH was performed to identify the functional association between the drugs and the identified hub genes.

Results

The GEO2R analysis for the considered datasets identified 735 upregulating and 284 downregulating DEGs. Functional gene associations were identified through the Fun Rich tool. Further, PPIN network analysis was performed using STRING. A comparative study was carried out between the experimental evidence and the other seven data evidence in STRING, revealing that most proteins in the network were involved in protein-protein interactions. Further, through Cytoscape plugins, the ranking of the genes was analyzed, and densely connected regions were identified, resulting in the selection of the top 20 hub genes involved in HCC pathogenesis. The identified hub genes were: KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Further, GEPIA and Shiny GO analyses provided insights into survival ratios and functional enrichment studied for the hub genes. The HPA database studies further found that upregulating genes were involved in changes in protein expression in Normal HCC tissues. These findings indicated that hub genes were certainly involved in the progression of HCC. STITCH database studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, could be used as leads to identify novel drugs, and identified hub genes could also be considered as potential and promising drug targets as they are involved in the gene-chemical interaction networks.

Conclusion

The present study involved various integrated bioinformatics approaches, analyzing gene expression and protein-protein interaction datasets, resulting in the identification of 20 top-ranked hubs involved in the progression of HCC. They are KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Gene-chemical interaction network studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, can be used as leads to identify novel drugs, and the identified hub genes can be promising drug targets. The current study underscores the significance of targeting these hub genes and utilizing existing molecules to generate new molecules to combat liver cancer effectively and can be further explored in terms of drug discovery research to develop treatments for HCC.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029308243240709073945
2024-07-18
2024-12-26
Loading full text...

Full text loading...

References

  1. GerberM.A. ThungS.N. Histology of the Liver.Am. J. Surg. Pathol.198711970971010.1097/00000478‑198709000‑000073631384
    [Google Scholar]
  2. YinZ. JiangK. LiR. DongC. WangL. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy.Mol. Cancer201817117810.1186/s12943‑018‑0926‑630593276
    [Google Scholar]
  3. TreftsE. GannonM. WassermanD.H. The liver.Curr. Biol.20172721R1147R115110.1016/j.cub.2017.09.01929112863
    [Google Scholar]
  4. TorimuraT. IwamotoH. Treatment and the prognosis of hepatocellular carcinoma in Asia.Liver Int.20224292042205410.1111/liv.1513034894051
    [Google Scholar]
  5. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  6. YangJ.D. HainautP. GoresG.J. AmadouA. PlymothA. RobertsL.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol.2019161058960410.1038/s41575‑019‑0186‑y31439937
    [Google Scholar]
  7. DimitroulisD. DamaskosC. ValsamiS. DavakisS. GarmpisN. SpartalisE. AthanasiouA. MorisD. SakellariouS. KykalosS. TsourouflisG. GarmpiA. DelladetsimaI. KontzoglouK. KouraklisG. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world.World J. Gastroenterol.201723295282529410.3748/wjg.v23.i29.528228839428
    [Google Scholar]
  8. VenookA.P. PapandreouC. FuruseJ. Ladrón de GuevaraL. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective.Oncologist201015S4Suppl. 451310.1634/theoncologist.2010‑S4‑0521115576
    [Google Scholar]
  9. Tejeda-MaldonadoJ. García-JuárezI. Aguirre-ValadezJ. González-AguirreA. Vilatobá-ChapaM. Armengol-AlonsoA. Escobar-PenagosF. TorreA. Sánchez-ÁvilaJ.F. Carrillo-PérezD.L. Diagnosis and treatment of hepatocellular carcinoma: An update.World J. Hepatol.20157336237610.4254/wjh.v7.i3.36225848464
    [Google Scholar]
  10. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  11. TavassolyI. GoldfarbJ. IyengarR. Systems biology primer: The basic methods and approaches.Essays Biochem.201862448750010.1042/EBC2018000330287586
    [Google Scholar]
  12. XuR. WeiW. KrawczykM. WangW. LuoH. FlaggK. YiS. ShiW. QuanQ. LiK. ZhengL. ZhangH. CaugheyB.A. ZhaoQ. HouJ. ZhangR. XuY. CaiH. LiG. HouR. ZhongZ. LinD. FuX. ZhuJ. DuanY. YuM. YingB. ZhangW. WangJ. ZhangE. ZhangC. LiO. GuoR. CarterH. ZhuJ. HaoX. ZhangK. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma.Nat. Mater.201716111155116110.1038/nmat499729035356
    [Google Scholar]
  13. DengY.B. NagaeG. MidorikawaY. YagiK. TsutsumiS. YamamotoS. HasegawaK. KokudoN. AburataniH. KanedaA. Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma.Cancer Sci.201010161501151010.1111/j.1349‑7006.2010.01549.x20345479
    [Google Scholar]
  14. AtyahM. ZhouC. ZhouQ. ChenW. WengJ. WangP. ShiY. DongQ. RenN. The Age-Specific Features and Clinical Significance of NRF2 and MAPK10 Expression in HCC Patients.Int. J. Gen. Med.20221573774810.2147/IJGM.S35126335082522
    [Google Scholar]
  15. OsnaN.A. DonohueT.M.Jr KharbandaK.K. Alcoholic Liver Disease: Pathogenesis and Current Management.Alcohol Res.201738214716128988570
    [Google Scholar]
  16. KandaT. GotoT. HirotsuY. MoriyamaM. OmataM. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in Chronic Hepatitis B and C infections: A review.Int. J. Mol. Sci.2019206135810.3390/ijms2006135830889843
    [Google Scholar]
  17. EdgarR. DomrachevM. LashA.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res.200230120721010.1093/nar/30.1.20711752295
    [Google Scholar]
  18. ChenC.L. TsaiY.S. HuangY.H. LiangY.J. SunY.Y. SuC.W. ChauG.Y. YehY.C. ChangY.S. HuJ.T. WuJ.C. Lymphoid enhancer factor 1 contributes to hepatocellular carcinoma progression through transcriptional regulation of epithelial-mesenchymal transition regulators and stemness genes.Hepatol. Commun.20182111392140710.1002/hep4.122930411085
    [Google Scholar]
  19. SungW.K. ZhengH. LiS. ChenR. LiuX. LiY. LeeN.P. LeeW.H. AriyaratneP.N. TennakoonC. MulawadiF.H. WongK.F. LiuA.M. PoonR.T. FanS.T. ChanK.L. GongZ. HuY. LinZ. WangG. ZhangQ. BarberT.D. ChouW.C. AggarwalA. HaoK. ZhouW. ZhangC. HardwickJ. BuserC. XuJ. KanZ. DaiH. MaoM. ReinhardC. WangJ. LukJ.M. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma.Nat. Genet.201244776576910.1038/ng.229522634754
    [Google Scholar]
  20. NeumannO. KesselmeierM. GeffersR. PellegrinoR. RadlwimmerB. HoffmannK. EhemannV. SchemmerP. SchirmacherP. Lorenzo BermejoJ. LongerichT. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors.Hepatology20125651817182710.1002/hep.2587022689435
    [Google Scholar]
  21. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: Archive for functional genomics data sets—update.Nucleic Acids Res.201241D1D991D99510.1093/nar/gks119323193258
    [Google Scholar]
  22. XuZ. ZhouY. CaoY. DinhT.L.A. WanJ. ZhaoM. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis.Med. Oncol.2016331113010.1007/s12032‑016‑0840‑y27757782
    [Google Scholar]
  23. ChenT. ZhangH. LiuY. LiuY.X. HuangL. EVenn: Easy to create repeatable and editable Venn diagrams and Venn networks online.J. Genet. Genomics202148986386610.1016/j.jgg.2021.07.00734452851
    [Google Scholar]
  24. PathanM. KeerthikumarS. AngC.S. GangodaL. QuekC.Y.J. WilliamsonN.A. MouradovD. SieberO.M. SimpsonR.J. SalimA. BacicA. HillA.F. StroudD.A. RyanM.T. AgbinyaJ.I. MariadasonJ.M. BurgessA.W. MathivananS. FunRich: An open access standalone functional enrichment and interaction network analysis tool.Proteomics201515152597260110.1002/pmic.20140051525921073
    [Google Scholar]
  25. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  26. ChenY.C. ChenY.H. WrightJ.D. LimC. PPI-Hotspot DB : Database of Protein–Protein Interaction Hot Spots.J. Chem. Inf. Model.20226241052106010.1021/acs.jcim.2c0002535147037
    [Google Scholar]
  27. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  28. ChinC. H. ChenS. H. WuH. H. HoC. W. KoM. T. LinC. Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst Biol.20148Suppl 4S1110.1186/1752‑0509‑8‑S4‑S11
    [Google Scholar]
  29. BaderG.D. HogueC.W.V. An automated method for finding molecular complexes in large protein interaction networks.BMC Bioinformatics200341210.1186/1471‑2105‑4‑212525261
    [Google Scholar]
  30. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx24728407145
    [Google Scholar]
  31. LudbrookJ. RoyseA.G. Analysing clinical studies: Principles, practice and pitfalls of Kaplan-Meier plots.ANZ J. Surg.200878320421010.1111/j.1445‑2197.2007.04405.x18269491
    [Google Scholar]
  32. GeS.X. JungD. YaoR. ShinyGO: A graphical gene-set enrichment tool for animals and plants.Bioinformatics20203682628262910.1093/bioinformatics/btz93131882993
    [Google Scholar]
  33. ThulP.J. LindskogC. The human protein atlas: A spatial map of the human proteome.Protein Sci.201827123324410.1002/pro.330728940711
    [Google Scholar]
  34. NormannC. ButtenschønH.N. Gene–environment interactions between HPA-axis genes and childhood maltreatment in depression: A systematic review.Acta Neuropsychiatr.202032311112110.1017/neu.2020.131902387
    [Google Scholar]
  35. FreshourS.L. KiwalaS. CottoK.C. CoffmanA.C. McMichaelJ.F. SongJ.J. GriffithM. GriffithO.L. WagnerA.H. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts.Nucleic Acids Res.202149D1D1144D115110.1093/nar/gkaa108433237278
    [Google Scholar]
  36. MarkhamA. Atezolizumab: First global approval.Drugs201676121227123210.1007/s40265‑016‑0618‑827412122
    [Google Scholar]
  37. KuhnM. von MeringC. CampillosM. JensenL.J. BorkP. STITCH: Interaction networks of chemicals and proteins.Nucleic Acids Res.200736DatabaseD684D68810.1093/nar/gkm79518084021
    [Google Scholar]
  38. Kazazi-HyseniF. BeijnenJ.H. SchellensJ.H.M. Bevacizumab.Oncologist201015881982510.1634/theoncologist.2009‑031720688807
    [Google Scholar]
  39. GrüllichC. Cabozantinib: A MET, RET, and VEGFR2 tyrosine kinase inhibitor.Recent Results Cancer Res.201420120721410.1007/978‑3‑642‑54490‑3_1224756794
    [Google Scholar]
  40. GoodkinR. ZaiasB. MichelsenW.J. Arteriovenous malformation and glioma: Coexistent or sequential?J. Neurosurg.199072579880510.3171/jns.1990.72.5.07982182794
    [Google Scholar]
  41. KeizerR.J. HuitemaA.D.R. SchellensJ.H.M. BeijnenJ.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies.Clin. Pharmacokinet.201049849350710.2165/11531280‑000000000‑0000020608753
    [Google Scholar]
  42. RizzoA. RicciA.D. BrandiG. Futibatinib, an investigational agent for the treatment of intrahepatic cholangiocarcinoma: Evidence to date and future perspectives.Expert Opin. Investig. Drugs202130431732410.1080/13543784.2021.183777433054456
    [Google Scholar]
  43. ArruC. De MiglioM.R. CossuA. MuroniM.R. CarruC. ZinelluA. PaliogiannisP. Durvalumab plus tremelimumab in solid tumors: A systematic review.Adv. Ther.20213873674369310.1007/s12325‑021‑01796‑634105088
    [Google Scholar]
  44. BotrusG. RamanP. OliverT. Bekaii-SaabT. Infigratinib (BGJ398): An investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma.Expert Opin. Investig. Drugs202130430931610.1080/13543784.2021.186432033307867
    [Google Scholar]
  45. TrinhV.A. HagenB. Ipilimumab for advanced melanoma: A pharmacologic perspective.J. Oncol. Pharm. Pract.201319319520110.1177/107815521245910023047236
    [Google Scholar]
  46. ThumarJ.R. KlugerH.M. Ipilimumab: A promising immunotherapy for melanoma.Oncology201024141280128821294471
    [Google Scholar]
  47. MatsuiJ. YamamotoY. FunahashiY. TsuruokaA. WatanabeT. WakabayashiT. UenakaT. AsadaM. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition.Int. J. Cancer2008122366467110.1002/ijc.2313117943726
    [Google Scholar]
  48. AbdelgalilA.A. AlkahtaniH.M. Al-JenoobiF.I. Sorafenib.Profiles Drug Subst. Excip. Relat. Methodol.20194423926610.1016/bs.podrm.2018.11.00331029219
    [Google Scholar]
  49. NakamuraM. MashimaE. YamaguchiT. SasakiN. HaraY. OmotoD. HaruyamaS. YoshiokaM. NishioD. SakuragiY. OhmoriS. InoueA. SawadaY. Nivolumab in the treatment of malignant melanoma: Review of the literature.OncoTargets Ther.201582045205110.2147/OTT.S6210226273207
    [Google Scholar]
  50. LiuP.C.C. KoblishH. WuL. BowmanK. DiamondS. DiMatteoD. ZhangY. HansburyM. RuparM. WenX. CollierP. FeldmanP. KlabeR. BurkeK.A. SolovievM. GardinerC. HeX. VolginaA. CovingtonM. RuggeriB. WynnR. BurnT.C. ScherleP. YeleswaramS. YaoW. HuberR. HollisG. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models.PLoS One2020154e023187710.1371/journal.pone.023187732315352
    [Google Scholar]
  51. HottaK. UeyamaJ. TatsumiY. TsukiyamaI. SugiuraY. SaitoH. MatsuuraK. HasegawaT. Lack of contribution of multidrug resistance-associated protein and organic anion-transporting polypeptide to pharmacokinetics of regorafenib, a novel multi-kinase inhibitor, in rats.Anticancer Res.20153594681468926254357
    [Google Scholar]
  52. YinF. ShuL. LiuX. LiT. PengT. NanY. LiS. ZengX. QiuX. Microarray-based identification of genes associated with cancer progression and prognosis in hepatocellular carcinoma.J. Exp. Clin. Cancer Res.201635112710.1186/s13046‑016‑0403‑227567667
    [Google Scholar]
  53. NadeauV. HildgenP. AFM study of a new carrier based on PLA and salen copolymers for gene therapy.Molecules200510110511310.3390/1001010518007280
    [Google Scholar]
  54. ZouY. van BreukelenB. PronkerM. ReidingK. HeckA.J.R. Proteogenomic features of the highly polymorphic histidine-rich glycoprotein arose late in evolution.Mol. Cell. Proteomics202322710058510.1016/j.mcpro.2023.10058537244517
    [Google Scholar]
  55. ShunmoogamN. NaidooP. ChiltonR. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance.Vasc. Health Risk Manag.20181413714310.2147/VHRM.S16517329950852
    [Google Scholar]
  56. SalaA. BettuzziS. PucciS. ChaykaO. DewsM. Thomas-TikhonenkoA. Regulation of CLU gene expression by oncogenes and epigenetic factors implications for tumorigenesis.Adv. Cancer Res.200910511513210.1016/S0065‑230X(09)05007‑619879426
    [Google Scholar]
  57. ClarkE. NavaB. CaputiM. Tat is a multifunctional viral protein that modulates cellular gene expression and functions.Oncotarget2017816275692758110.18632/oncotarget.1517428187438
    [Google Scholar]
  58. HubacekJ.A. Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology.Gene2016592119319910.1016/j.gene.2016.07.07027496343
    [Google Scholar]
  59. WalczakC.E. MitchisonT.J. DesaiA. XKCM1: A Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly.Cell1996841374710.1016/S0092‑8674(00)80991‑58548824
    [Google Scholar]
  60. WagenbachM. VicenteJ.J. OvechkinaY. DomnitzS. WordemanL. Functional characterization of MCAK/Kif2C cancer mutations using high-throughput microscopic analysis.Mol. Biol. Cell202031758058810.1091/mbc.E19‑09‑050331746663
    [Google Scholar]
  61. TanenbaumM.E. MedemaR. AkhmanovaA. Regulation of localization and activity of the microtubule depolymerase MCAK.Bioarchitecture201112808710.4161/bioa.1.2.1580721866268
    [Google Scholar]
  62. ZhuS. PaydarM. WangF. LiY. WangL. BarretteB. BesshoT. KwokB.H. PengA. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair.eLife20209e5340210.7554/eLife.5340231951198
    [Google Scholar]
  63. WeiS. DaiM. ZhangC. TengK. WangF. LiH. SunW. FengZ. KangT. GuanX. XuR. CaiM. XieD. KIF2C: A novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma.Protein Cell2021121078880910.1007/s13238‑020‑00766‑y32748349
    [Google Scholar]
  64. EnserinkJ.M. KolodnerR.D. An overview of Cdk1-controlled targets and processes.Cell Div.2010511110.1186/1747‑1028‑5‑1120465793
    [Google Scholar]
  65. LohkaM.J. HayesM.K. MallerJ.L. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events.Proc. Natl. Acad. Sci. USA19888593009301310.1073/pnas.85.9.30093283736
    [Google Scholar]
  66. YinS. YangS. LuoY. LuJ. HuG. WangK. ShaoY. ZhouS. KooS. QiuY. WangT. YuH. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma.Biochem. Pharmacol.202119311480610.1016/j.bcp.2021.11480634673013
    [Google Scholar]
  67. WieczorekM. BechstedtS. ChaabanS. BrouhardG.J. Microtubule-associated proteins control the kinetics of microtubule nucleation.Nat. Cell Biol.201517790791610.1038/ncb318826098575
    [Google Scholar]
  68. EvansP.D. AndersonJ.R. VallenderE.J. GilbertS.L. MalcomC.M. DorusS. LahnB.T. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans.Hum. Mol. Genet.200413548949410.1093/hmg/ddh05514722158
    [Google Scholar]
  69. GurokU. LoebbertR.W. MeyerA.H. MuellerR. SchoemakerH. GrossG. BehlB. Laser capture microdissection and microarray analysis of dividing neural progenitor cells from the adult rat hippocampus.Eur. J. Neurosci.20072651079109010.1111/j.1460‑9568.2007.05734.x17767487
    [Google Scholar]
  70. PaiV.C. HsuC.C. ChanT.S. LiaoW.Y. ChuuC.P. ChenW.Y. LiC.R. LinC.Y. HuangS.P. ChenL.T. TsaiK.K. ASPM promotes prostate cancer stemness and progression by augmenting Wnt−Dvl-3−β-catenin signaling.Oncogene20193881340135310.1038/s41388‑018‑0497‑430266990
    [Google Scholar]
  71. WordemanL. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays.Semin. Cell Dev. Biol.201021326026810.1016/j.semcdb.2010.01.01820109570
    [Google Scholar]
  72. LiuX. GongH. HuangK. Oncogenic role of kinesin proteins and targeting kinesin therapy.Cancer Sci.2013104665165610.1111/cas.1213823438337
    [Google Scholar]
  73. DaigoK. TakanoA. ManhT. YoshitakeY. ShinoharaM. TohnaiI. MurakamiY. MaegawaJ. DaigoY. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer.Int. J. Oncol.201752115516510.3892/ijo.2017.418129115586
    [Google Scholar]
  74. WuB. HuC. KongL. ASPM combined with KIF11 promotes the malignant progression of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway.Exp. Ther. Med.2021224115410.3892/etm.2021.1058834504599
    [Google Scholar]
  75. KomuraK. InamotoT. TsujinoT. MatsuiY. KonumaT. NishimuraK. UchimotoT. TsutsumiT. MatsunagaT. MaenosonoR. YoshikawaY. TaniguchiK. TanakaT. UeharaH. HirataK. HiranoH. NomiH. HiroseY. OnoF. AzumaH. Increased BUB1B/BUBR1 expression contributes to aberrant DNA repair activity leading to resistance to DNA-damaging agents.Oncogene202140436210622210.1038/s41388‑021‑02021‑y34545188
    [Google Scholar]
  76. QinL.T. HuangS.W. HuangZ.G. DangY.W. FangY.Y. HeJ. NiuY.T. LinC.X. WuJ.Y. WeiZ.X. Clinical value and potential mechanisms of BUB1B up-regulation in nasopharyngeal carcinoma.BMC Med. Genomics202215127210.1186/s12920‑022‑01412‑836577966
    [Google Scholar]
  77. GengA. QiuR. MuraiK. LiuJ. WuX. ZhangH. FarhoodiH. DuongN. JiangM. YeeJ. TsarkW. LuQ. KIF20A/MKLP2 regulates the division modes of neural progenitor cells during cortical development.Nat. Commun.201891270710.1038/s41467‑018‑05152‑130006548
    [Google Scholar]
  78. NakamuraM. TakanoA. ThangP. TsevegjavB. ZhuM. YokoseT. YamashitaT. MiyagiY. DaigoY. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer.Int. J. Oncol.202057127728810.3892/ijo.2020.506032467984
    [Google Scholar]
  79. AnX. XuF. LuoR. ZhengQ. LuJ. YangY. QinT. YuanZ. ShiY. JiangW. WangS. The prognostic significance of topoisomerase II alpha protein in early stage luminal breast cancer.BMC Cancer201818133110.1186/s12885‑018‑4170‑729587760
    [Google Scholar]
  80. GanY. LiY. LiT. ShuG. YinG. CCNA2 acts as a novel biomarker in regulating the growth and apoptosis of colorectal cancer.Cancer Manag. Res.2018105113512410.2147/CMAR.S17683330464611
    [Google Scholar]
  81. JiangA. ZhouY. GongW. PanX. GanX. WuZ. LiuB. QuL. WangL. CCNA2 as an Immunological Biomarker Encompassing Tumor Microenvironment and Therapeutic Response in Multiple Cancer Types.Oxid. Med. Cell. Longev.2022202213510.1155/2022/591057535401923
    [Google Scholar]
  82. ShangJ. ZhangX. HouG. QiY. HMMR potential as a diagnostic and prognostic biomarker of cancer—speculation based on a pan-cancer analysis.Front. Surg.2023999859810.3389/fsurg.2022.99859836704516
    [Google Scholar]
  83. GuoK. LiuC. ShiJ. LaiC. GaoZ. LuoJ. LiZ. TangZ. LiK. XuK. HMMR promotes prostate cancer proliferation and metastasis via AURKA/mTORC2/E2F1 positive feedback loop.Cell Death Discov.2023914810.1038/s41420‑023‑01341‑036750558
    [Google Scholar]
  84. HuangY. LiD. WangL. SuX. TangX. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle.J. Transl. Med.20222017810.1186/s12967‑022‑03277‑y35123514
    [Google Scholar]
  85. ShahidM. LeeM.Y. PiplaniH. AndresA.M. ZhouB. YeonA. KimM. KimH.L. KimJ. Centromere protein F (CENPF), a microtubule binding protein, modulates cancer metabolism by regulating pyruvate kinase M2 phosphorylation signaling.Cell Cycle201817242802281810.1080/15384101.2018.155749630526248
    [Google Scholar]
  86. DavezacN. BaldinV. BlotJ. DucommunB. TassanJ.P. Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: A potential role for pEg3 in cell cycle regulation.Oncogene200221507630764110.1038/sj.onc.120587012400006
    [Google Scholar]
  87. LiuY. LiR. WangX. XueZ. YangX. TangB. Comprehensive Analyses of MELK-Associated ceRNA Networks Reveal a Potential Biomarker for Predicting Poor Prognosis and Immunotherapy Efficacy in Hepatocellular Carcinoma.Front. Cell Dev. Biol.20221082493810.3389/fcell.2022.82493835693941
    [Google Scholar]
  88. HuangH. YangY. ZhangW. LiuX. YangG. TTK regulates proliferation and apoptosis of gastric cancer cells through the Akt-mTOR pathway.FEBS Open Bio20201081542154910.1002/2211‑5463.1290932530571
    [Google Scholar]
  89. YuJ. GaoG. WeiX. WangY. TTK Protein Kinase promotes temozolomide resistance through inducing autophagy in glioblastoma.BMC Cancer202222178610.1186/s12885‑022‑09899‑135850753
    [Google Scholar]
  90. WuS. SuR. JiaH. Cyclin B2 (CCNB2) stimulates the proliferation of Triple-Negative Breast Cancer (TNBC) cells in vitro and in vivo. Dis. Markers202120211910.1155/2021/551104134354775
    [Google Scholar]
  91. LiM.J. YanS.B. ChenG. LiG.S. YangY. WeiT. HeD.S. YangZ. CenG.Y. WangJ. LiuL.Y. LiangZ.J. ChenL. YinB.T. XuR.X. HuangZ.G. Upregulation of CCNB2 and its perspective mechanisms in cerebral ischemic stroke and all subtypes of lung cancer: A comprehensive study.Front. Integr. Nuerosci.20221685454010.3389/fnint.2022.85454035928585
    [Google Scholar]
  92. MaoP. BaoG. WangY.C. DuC.W. YuX. GuoX.Y. LiR.C. WangM.D. PDZ-Binding Kinase-Dependent Transcriptional Regulation of CCNB2 Promotes Tumorigenesis and Radio-Resistance in Glioblastoma.Transl. Oncol.202013228729410.1016/j.tranon.2019.09.01131874375
    [Google Scholar]
  93. Bolanos-GarciaV.M. BlundellT.L. BUB1 and BUBR1: Multifaceted kinases of the cell cycle.Trends Biochem. Sci.201136314115010.1016/j.tibs.2010.08.00420888775
    [Google Scholar]
  94. ZhuL.J. PanY. ChenX.Y. HouP.F. BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation.Oncol. Lett.20201953506351210.3892/ol.2020.1144532269624
    [Google Scholar]
  95. LiH. ZhangW. YanM. QiuJ. ChenJ. SunX. ChenX. SongL. ZhangY. Nucleolar and spindle associated protein 1 promotes metastasis of cervical carcinoma cells by activating Wnt/β-catenin signaling.J. Exp. Clin. Cancer Res.20193813310.1186/s13046‑019‑1037‑y30678687
    [Google Scholar]
  96. IyerJ. MogheS. FurukawaM. TsaiM.Y. What’s Nu(SAP) in mitosis and cancer?Cell. Signal.201123699199810.1016/j.cellsig.2010.11.00621111812
    [Google Scholar]
  97. RibbeckK. RaemaekersT. CarmelietG. MattajI.W. A role for NuSAP in linking microtubules to mitotic chromosomes.Curr. Biol.200717323023610.1016/j.cub.2006.11.05017276916
    [Google Scholar]
  98. SimonettiG. PadellaA. do ValleI.F. FontanaM.C. FonziE. BrunoS. BaldazziC. GuadagnuoloV. ManfriniM. FerrariA. PaoliniS. PapayannidisC. MarconiG. FranchiniE. ZuffaE. LaginestraM.A. ZanottiF. AstolfiA. IacobucciI. BernardiS. SazziniM. FicarraE. HernandezJ.M. VandenbergheP. CoolsJ. BullingerL. OttavianiE. TestoniN. CavoM. HaferlachT. CastellaniG. RemondiniD. MartinelliG. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery.Cancer2019125571272510.1002/cncr.3183730480765
    [Google Scholar]
  99. WangY. JuL. XiaoF. LiuH. LuoX. ChenL. LuZ. BianZ. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses liver cancer cell function.Exp. Ther. Med.20191742969297810.3892/etm.2017.490530936967
    [Google Scholar]
  100. BassalS. NomuraN. VenterD. BrandK. McKayM.J. van der SpekP.J. Characterization of a novel human cell-cycle-regulated homologue of Drosophila dlg1.Genomics2001771-25710.1006/geno.2001.657011543626
    [Google Scholar]
  101. TsouA.P. YangC.W. HuangC.Y.F. YuR.C.T. LeeY.C.G. ChangC.W. ChenB.R. ChungY.F. FannM.J. ChiC.W. ChiuJ.H. ChouC.K. Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma.Oncogene200322229830710.1038/sj.onc.120612912527899
    [Google Scholar]
  102. SzászA.M. LánczkyA. NagyÁ. FörsterS. HarkK. GreenJ.E. BoussioutasA. BusuttilR. SzabóA. GyőrffyB. Cross- validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients.Oncotarget2016731493224933310.18632/oncotarget.1033727384994
    [Google Scholar]
  103. JefferyJ. SinhaD. SrihariS. KalimuthoM. KhannaK.K. Beyond cytokinesis: The emerging roles of CEP55 in tumorigenesis.Oncogene201635668369010.1038/onc.2015.12825915844
    [Google Scholar]
  104. TaoJ. ZhiX. TianY. LiZ. ZhuY. WangW. XieK. TangJ. ZhangX. WangL. XuZ. CEP55 contributes to human gastric carcinoma by regulating cell proliferation.Tumour Biol.20143554389439910.1007/s13277‑013‑1578‑124390615
    [Google Scholar]
  105. ChenC-H. LuP-J. ChenY-C. FuS-L. WuK-J. TsouA-P. LeeY-C.G. LinT-C.E. HsuS-L. LinW-J. HuangC-Y.F. ChouC-K. FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway.Oncogene200726294272428310.1038/sj.onc.121020717237822
    [Google Scholar]
  106. MurphyL.A. SargeK.D. Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis.Biochem. Biophys. Res. Commun.200837731007101110.1016/j.bbrc.2008.10.11418977199
    [Google Scholar]
  107. RyuB. KimD.S. DeLucaA.M. AlaniR.M. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.PLoS One200727e59410.1371/journal.pone.000059417611626
    [Google Scholar]
  108. GongC. AiJ. FanY. GaoJ. LiuW. FengQ. LiaoW. WuL. NCAPG Promotes The Proliferation Of Hepatocellular Carcinoma Through PI3K/AKT Signaling.OncoTargets Ther.2019128537855210.2147/OTT.S21791631802891
    [Google Scholar]
  109. LuoX.Y. WuK.M. HeX.X. Advances in drug development for hepatocellular carcinoma: Clinical trials and potential therapeutic targets.J. Exp. Clin. Cancer Res.202140117210.1186/s13046‑021‑01968‑w34006331
    [Google Scholar]
/content/journals/cg/10.2174/0113892029308243240709073945
Loading
/content/journals/cg/10.2174/0113892029308243240709073945
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test