Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background: Popular gene set enrichment analysis approaches assumed that genes in the gene set contributed to the statistics equally. However, the genes in the transcription factors (TFs) derived gene sets, or gene sets constructed by TF targets identified by the ChIP-Seq experiment, have a rank attribute, as each of these genes have been assigned with a p-value which indicates the true or false possibilities of the ownerships of the genes belong to the gene sets. Objectives: Ignoring the rank information during the enrichment analysis will lead to improper statistical inference. We address this issue by developing of new method to test the significance of ranked gene sets in genome-wide transcriptome profiling data. Methods: A method was proposed by first creating ranked gene sets and gene lists and then applying weighted Kendall's tau rank correlation statistics to the test. After introducing top-down weights to the genes in the gene set, a new software called "Flaver" was developed. Results: Theoretical properties of the proposed method were established, and its differences over the GSEA approach were demonstrated when analyzing the transcriptome profiling data across 55 human tissues and 176 human cell-lines. The results indicated that the TFs identified by our method have higher tendency to be differentially expressed across the tissues analyzed than its competitors. It significantly outperforms the well-known gene set enrichment analyzing tools, GOStats (9%) and GSEA (17%), in analyzing well-documented human RNA transcriptome datasets. Conclusions: The method is outstanding in detecting gene sets of which the gene ranks were correlated with the expression levels of the genes in the transcriptome data.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029280470240306044159
2024-05-01
2025-06-11
Loading full text...

Full text loading...

/content/journals/cg/10.2174/0113892029280470240306044159
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test