Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-4844
  • E-ISSN: 2666-4852

Abstract

Background

Cone-Beam Computer Tomography (CBCT) is a non-invasive, rapid, cost-effective, and low-radiation technique. Being a three-dimensional (3D) imaging process, it is better suited for the analysis of 3D structures like teeth, bones, or facial sinuses. CBCT is already widely used in dentistry and its application in forensic odontology is promising.

Objective

This study aimed to provide an overview of CBCT use in forensic dentistry.

Methods

A bibliographic search using PUBMED was performed with the following keyword combinations: and on the Scopus platform using the keywords Considering the inclusion and exclusion criteria, the final selection resulted in 68 studies.

Results

Articles subjects were as follows: 11 studies (16%) on comparative identification, 4 (5%) on identification by bitemarks, 30 (44%) on age estimation, 20 (29%) on sex estimation, and 7 (10%) on facial reconstruction. CBCT technology proved to be an accurate tool for age estimation (particularly in the pulp narrowing technique), sex estimation, bitemarks analysis, and facial reconstruction.

Conclusion

CBCT's increasing use in dental clinics makes a huge quantity of data available. Professionals should examine how to organize and disseminate these valuable antemortem data. Training is mandatory to understand CBCT’s technical limitations as well as manage the presence of artifacts. Further studies should be made on larger samples to fully understand the potential of CBCT technology in forensics.

Loading

Article metrics loading...

/content/journals/cfs/10.2174/2666484401666230516103852
2023-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. American Academy of Forensic SciencesOdontology.2016Available From: https://aafs.org/Home/Resources/Students/Sections/Odontology.aspx
  2. GambaT.O. AlvesM.C. Haiter-NetoF. Mandibular sexual dimorphism analysis in CBCT scans.J. Forensic Leg. Med.20163810611010.1016/j.jflm.2015.11.02426773251
    [Google Scholar]
  3. GambaT.O. YamasakiM.C. GroppoF.C. Validation study of a new method for sexual prediction based on CBCT analysis of maxillary sinus and mandibular canal.Arch. Oral Biol.20178311812310.1016/j.archoralbio.2017.07.01028755634
    [Google Scholar]
  4. AndradeV.M. FonteneleR.C. de SouzaA.C.B. Age and sex estimation based on pulp cavity volume using cone beam computed tomography: Development and validation of formulas in a Brazilian sample.Dentomaxillofac. Radiol.20194872019005310.1259/dmfr.2019005331322923
    [Google Scholar]
  5. AsifM.K. NambiarP. ManiS.A. IbrahimN.B. KhanI.M. SukumaranP. Dental age estimation employing CBCT scans enhanced with Mimics software: Comparison of two different approaches using pulp/tooth volumetric analysis.J. Forensic Leg. Med.201854536110.1016/j.jflm.2017.12.01029324319
    [Google Scholar]
  6. AsifM.K. NambiarP. IbrahimN. Al-AmeryS.M. KhanI.M. Three-dimensional image analysis of developing mandibular third molars apices for age estimation: A study using CBCT data enhanced with Mimics & 3-Matics software.Leg. Med.20193991410.1016/j.legalmed.2019.05.00331158731
    [Google Scholar]
  7. PortoL.V.M.G. Celestino da Silva NetoJ. Anjos PontualA. CatundaR.Q. Evaluation of volumetric changes of teeth in a Brazilian population by using cone beam computed tomography.J. Forensic Leg. Med.2015364910.1016/j.jflm.2015.07.00726320003
    [Google Scholar]
  8. AsifM.K. NambiarP. ManiS.A. IbrahimN.B. KhanI.M. LokmanN.B. Dental age estimation in Malaysian adults based on volumetric analysis of pulp/tooth ratio using CBCT data.Leg. Med.201936505810.1016/j.legalmed.2018.10.00530415192
    [Google Scholar]
  9. GulsahiA. KulahC.K. BakirararB. GulenO. KamburogluK. Age estimation based on pulp/tooth volume ratio measured on cone-beam CT images.Dentomaxillofac. Radiol.20184712017023910.1259/dmfr.2017023928991500
    [Google Scholar]
  10. EsmaeilyfardR. PaknahadM. DokohakiS. Sex classification of first molar teeth in cone beam computed tomography images using data mining.Forensic Sci. Int.202131811063310.1016/j.forsciint.2020.11063333279763
    [Google Scholar]
  11. WanzelerA.M.V. Alves-JúniorS.M. AyresL. da Costa PrestesM.C. GomesJ.T. TujiF.M. Sex estimation using paranasal sinus discriminant analysis: A new approach via cone beam computerized tomography volume analysis.Int. J. Legal Med.201913361977198410.1007/s00414‑019‑02100‑631236677
    [Google Scholar]
  12. Marroquin PenalozaT.Y. KarkhanisS. KvaalS.I. Application of the Kvaal method for adult dental age estimation using Cone Beam Computed Tomography (CBCT).J. Forensic Leg. Med.20164417818210.1016/j.jflm.2016.10.01327821308
    [Google Scholar]
  13. NemsiH. Haj SalemN. BouaneneI. Age assessment in canine and premolar by cervical axial sections of cone-beam computed tomography.Leg. Med.201728313610.1016/j.legalmed.2017.07.00428756305
    [Google Scholar]
  14. PinchiV. PradellaF. ButiJ. BaldinottiC. FocardiM. NorelliG.A. A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: A pilot study.J. Forensic Leg. Med.20153615015710.1016/j.jflm.2015.09.01526458182
    [Google Scholar]
  15. EliášováH. DostálováT. 3D multislice and cone-beam computed tomography systems for dental identification.Prague Med. Rep.20171181142510.14712/23362936.2017.228364571
    [Google Scholar]
  16. MowafeyB. Van de CasteeleE. YoussefJ.M. Can mandibular lingual canals be used as a forensic fingerprint?J. Forensic Odontostomatol.2015332263526851636
    [Google Scholar]
  17. MurphyM. DrageN. CarabottR. AdamsC. Accuracy and reliability of cone beam computed tomography of the jaws for comparative forensic identification: A preliminary study.J. Forensic Sci.201257496496810.1111/j.1556‑4029.2012.02076.x22390716
    [Google Scholar]
  18. MarquesJ. MusseJ. CaetanoC. Corte-RealF. Corte-RealA.T. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.J. Forensic Odontostomatol.20133111724776435
    [Google Scholar]
  19. TrochessetD.A. SerchukR.B. ColosiD.C. Generation of intra-oral-like images from cone beam computed tomography volumes for dental forensic image comparison.J. Forensic Sci.201459251051310.1111/1556‑4029.1233624328928
    [Google Scholar]
  20. Uğur AydınZ BayrakS. Relationship between pulp tooth area ratio and chronological age using cone‐beam computed tomography images.J. Forensic Sci.20196441096109910.1111/1556‑4029.1398630562410
    [Google Scholar]
  21. AsifM.K. IbrahimN. Al-AmeryS.M. JohnJ. NambiarP. Juvenile vs. adult: A new approach for age estimation from 3-dimensional analyses of the mandibular third molar apices.J Forensic Radio and Imaging20191910034710.1016/j.jofri.2019.100347
    [Google Scholar]
  22. HelmyM.A. OsamaM. ElhindawyM.M. MowafeyB. Volume analysis of second molar pulp chamber using cone beam computed tomography for age estimation in Egyptian adults.J. Forensic Odontostomatol.2020338253433507164
    [Google Scholar]
  23. BayrakS. HalıcıogluS KoseG HalıcıogluK. Evaluation of the relationship between mandibular condyle cortication and chronologic age with cone beam computed tomography.J. Forensic Leg. Med.201855394410.1016/j.jflm.2018.02.01429459097
    [Google Scholar]
  24. Rivera-MendozaF. Martín-de-las-HerasS. Navarro-CáceresP. FonsecaG.M. Bite mark analysis in foodstuffs and inanimate objects and the underlying proofs for validity and judicial acceptance.J. Forensic Sci.201863244945910.1111/1556‑4029.1358628691774
    [Google Scholar]
  25. MarroquinT.Y. KarkhanisS. KvaalS.I. VasudavanS. KrugerE. TennantM. Age estimation in adults by dental imaging assessment systematic review.Forensic Sci. Int.201727520321110.1016/j.forsciint.2017.03.00728410514
    [Google Scholar]
  26. CapitaneanuC. WillemsG. ThevissenP. A systematic review of odontological sex estimation methods.J. Forensic Odontostomatol.201735211929384732
    [Google Scholar]
  27. Nunes RochaM.F. Dietrichkeit PereiraJ.G. Alves da SilvaR.H. Sex estimation by maxillary sinus using computed tomography: A systematic review.J. Forensic Odontostomatol.2021139354434057156
    [Google Scholar]
  28. ShaheenE. MowafyB. PolitisC. JacobsR. Semi-automatic forensic approach using mandibular midline lingual structures as fingerprint: A pilot study.J. Forensic Odontostomatol.2017352354129384735
    [Google Scholar]
  29. CuriJ.P. BeainiT.L. SilvaR.H.A. MelaniR.F.H. ChilvarquerI. CrosatoE.M. Guidelines for reproducing geometrical aspects of intra-oral radiographs images on cone-beam computed tomography.Forensic Sci. Int.2017271687410.1016/j.forsciint.2016.12.01528068573
    [Google Scholar]
  30. EliasovaH. DostalovaT. ProchazkaA. Comparison of 2D OPG image versus orthopantomogram from 3D CBCT from the forensic point of view.Leg. Med.20214810180210.1016/j.legalmed.2020.10180233478657
    [Google Scholar]
  31. FrancoA. OrestesS.G.F. CoimbraE.F. ThevissenP. FernandesÂ. Comparing dental identifier charting in cone beam computed tomography scans and panoramic radiographs using INTERPOL coding for human identification.Forensic Sci. Int.201930210986010.1016/j.forsciint.2019.06.01831310942
    [Google Scholar]
  32. MikiY. MuramatsuC. HayashiT. Classification of teeth in cone-beam CT using deep convolutional neural network.Comput. Biol. Med.201780242910.1016/j.compbiomed.2016.11.00327889430
    [Google Scholar]
  33. Corte-RealA. KatoR.M. NunesT. ValeF. GaribD. Reproducibility of mandibular landmarks for three-dimensional assessment.Forensic Sci. Int: Rep2020210014410.1016/j.fsir.2020.100144
    [Google Scholar]
  34. FujimotoH. Dental radiographic identification using ante-mortem CT, cone-beam CT, and MRI head and neck assessments.Forensic Imaging20212620046510.1016/j.fri.2021.200465
    [Google Scholar]
  35. Corte-RealA. PedrosaD. SaraivaJ. CaetanoC. VieiraD.N. Tri-dimensional pattern analysis of foodstuff bitemarks - A pilot study of tomographic database.Forensic Sci. Int.201828830430910.1016/j.forsciint.2018.04.02229843082
    [Google Scholar]
  36. AliI.K. SansareK. KarjodkarF.R. Analysis of intercanine distance and dimensional changes in bite marks on foodstuffs using cone beam computed tomography.Am. J. Forensic Med. Pathol.201839321321710.1097/PAF.000000000000039929652674
    [Google Scholar]
  37. GiriS. TripathiA. PatilR. KhannaV. SinghV. Analysis of bite marks in food stuffs by CBCT 3D-reconstruction.J. Oral Biol. Craniofac. Res.201991242710.1016/j.jobcr.2018.08.00630197860
    [Google Scholar]
  38. VossoughiM. MovahhedianN. The impact of age mimicry bias on the accuracy of methods for age estimation based on Kvaal’s pulp/tooth ratios: A bootstrap study.Int. J. Legal Med.20221361269278
    [Google Scholar]
  39. LeeS.M. OhS. KimJ. Age estimation using the maxillary canine pulp/tooth ratio in Korean adults: A CBCT buccolingual and horizontal section image analysis.J Forensic Radiol Imaging201791510.1016/j.jofri.2016.12.001
    [Google Scholar]
  40. Al-OmoushS.A. AlhadidiA. Al-KayedA. SaoudH. AlsoleihatF. Do upper third molars provide more accurate age estimation in the adult based on the pulp-to-tooth ratio than lower third molars? A cone-beam CT study.Saudi Dent. J.202133770270610.1016/j.sdentj.2020.04.00634803322
    [Google Scholar]
  41. PiresA.C. Vargas de Sousa SantosR.F. PereiraC.P. Dental age assessment by the pulp/tooth area proportion in cone beam computed tomography: is medico-legal application for age estimation reliable?J. Forensic Odontostomatol.202123921434419940
    [Google Scholar]
  42. ZhangZ. YanC. MinQ. Age estimation using pulp/enamel volume ratio of impacted mandibular third molars measured on CBCT images in a northern Chinese population.Int. J. Legal Med.201913361925193310.1007/s00414‑019‑02112‑231273446
    [Google Scholar]
  43. MolinaA. BravoM. FonsecaG.M. Márquez-GrantN. Martín-de-las-HerasS. Dental age estimation based on pulp chamber/crown volume ratio measured on CBCT images in a Spanish population.Int. J. Legal Med.2021135135936410.1007/s00414‑020‑02377‑y32676887
    [Google Scholar]
  44. GeZ. MaR. LiG. ZhangJ. MaX. Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images.Forensic Sci. Int.2015253133.e1133.e710.1016/j.forsciint.2015.05.00426031807
    [Google Scholar]
  45. KazmiS. MânicaS. RevieG. ShepherdS. HectorM. Age estimation using canine pulp volumes in adults: A CBCT image analysis.Int. J. Legal Med.201913361967197610.1007/s00414‑019‑02147‑531471652
    [Google Scholar]
  46. DuH. LiG. ZhengQ. YangJ. Population-specific age estimation in Black Americans and Chinese people based on pulp chamber volume of first molars from cone beam computed tomography.Int. J. Legal Med.2022136381181910.1007/s00414‑022‑02776‑335044511
    [Google Scholar]
  47. Marroquin PenalozaT.Y. KarkhanisS. KvaalS.I. Reliability and repeatability of pulp volume reconstruction through three different volume calculations.J. Forensic Odontostomatol.2016342354628520562
    [Google Scholar]
  48. KohK.K. TanJ.S. NambiarP. IbrahimN. MutalikS. Khan AsifM. Age estimation from structural changes of teeth and buccal alveolar bone level.J. Forensic Leg. Med.201748152110.1016/j.jflm.2017.03.00428407514
    [Google Scholar]
  49. AsifM.K. IbrahimN. Al-AmeryS.M. MuhammadA.M.A. KhanA.A. NambiarP. A novel method of age estimation in children using three-dimensional surface area analyses of maxillary canine apices.Leg. Med.20204410169010.1016/j.legalmed.2020.10169032135489
    [Google Scholar]
  50. CantekinK. SekerciA.E. BuyukS.K. Dental computed tomographic imaging as age estimation: morphological analysis of the third molar of a group of Turkish population.Am. J. Forensic Med. Pathol.201334435736210.1097/PAF.000000000000005424189628
    [Google Scholar]
  51. CoelhoJ. Armelim AlmiroP. NunesT. Sex and age biological variation of the mandible in a Portuguese population- a forensic and medico-legal approaches with three-dimensional analysis.Sci. Justice202161670471310.1016/j.scijus.2021.08.00434802644
    [Google Scholar]
  52. MotaweiS.M. HelalyA.M.N. AboelmaatyW.M. ElmahdyK. ShabkaO.A. LiuH. Length of the ramus of the mandible as an indicator of chronological age and sex: A study in a group of Egyptians.Forensic Science International: Reports2020210006610.1016/j.fsir.2020.100066
    [Google Scholar]
  53. TeixeiraL. LimaC. ÂngeloW.L. ElenD.S.T. LilianI. VessoniC. Three-dimensional analysis of the maxillary sinus for determining sex and age in human identification.Forensic Imaging202022200395
    [Google Scholar]
  54. FrancoA. VetterF. CoimbraE.F. FernandesÂ. ThevissenP. Comparing third molar root development staging in panoramic radiography, extracted teeth, and cone beam computed tomography.Int. J. Legal Med.2020134134735310.1007/s00414‑019‑02206‑x31754774
    [Google Scholar]
  55. TassokerM. AkinD. Aydin KabakciA.D. SenerS. Comparison of cone-beam computed tomography and panoramic radiography for mandibular morphometry.Folia Morphol.201978486287010.5603/FM.a2019.003130888681
    [Google Scholar]
  56. MousaA. El DessoukyS. El BeshlawyD. Sex determination by radiographic localization of the inferior alveolar canal using cone-beam computed tomography in an Egyptian population.Imaging Sci. Dent.202050211712410.5624/isd.2020.50.2.11732601586
    [Google Scholar]
  57. OkkesimA. Sezen ErhamzaT. Assessment of mandibular ramus for sex determination: Retrospective study.J. Oral Biol. Craniofac. Res.202010456957210.1016/j.jobcr.2020.07.01932939335
    [Google Scholar]
  58. AlamM. ShahidF. PurmalK. KhamisM. Cone-beam computed tomography evaluation of Pont′s index predictability for Malay population in orthodontics.J. Nat. Sci. Biol. Med.201563Suppl. 111310.4103/0976‑9668.16610626604597
    [Google Scholar]
  59. GambaT.O. AlvesM.C. Haiter-NetoF. Analysis of sexual dimorphism by locating the mandibular canal in images of cone-beam computed tomography.J Forensic Radiol Imaging201422727610.1016/j.jofri.2013.12.007
    [Google Scholar]
  60. Farias GomesA. de Oliveira GambaT. YamasakiM.C. GroppoF.C. Haiter NetoF. PossobonR.F. Development and validation of a formula based on maxillary sinus measurements as a tool for sex estimation: A cone beam computed tomography study.Int. J. Legal Med.201913341241124910.1007/s00414‑018‑1869‑629943120
    [Google Scholar]
  61. SoaresC.B.R.B. Miranda-VianaM. PontualA.A. Morphological and dimensional assessment of the maxillary sinus for human identification and sexual dimorphism: A study using CBCT.Forensic Imaging20202320040910.1016/j.fri.2020.200409
    [Google Scholar]
  62. Miranda-VianaM. FreitasD.Q. MachadoA.H. GomesA.F. NejaimY. Do different sexes, skeletal and breathing patterns influence the maxillary sinuses volume? A retrospective study.Forensic Imaging20212720047910.1016/j.fri.2021.200479
    [Google Scholar]
  63. WaluyoR. PriaminiartiM. YuniastutiM. SoedarsonoN. SusiloB. Measurements of sex-related differences in maxillary sinus and mandibular canal characteristic using cone beam computed tomography.Forensic Imaging.20202120037110.1016/j.fri.2020.200371
    [Google Scholar]
  64. CostaE.D. de Oliveira ReisL. Gaêta-AraujoH. MartinsL.A.C. Oliveira-SantosC. FreitasD.Q. Comparison of distance of upper central incisor root and incisive canal in different sagittal and vertical skeletal patterns and sex: A retrospective CBCT study.Int. Orthod.202119346247010.1016/j.ortho.2021.07.00134312102
    [Google Scholar]
  65. Manhaes-CaldasD. OliveiraM.L. GroppoF.C. Haiter-NetoF. Volumetric assessment of the dental crown for sex estimation by means of cone-beam computed tomography.Forensic Sci. Int.201930310992010.1016/j.forsciint.2019.10992031442711
    [Google Scholar]
  66. PaknahadM. DokohakiS. KhojastepourL. ShahidiS. HaghnegahdarA. A radio-odontometric analysis of sexual dimorphism in first molars using cone-beam computed tomography.Am. J. Forensic Med. Pathol.2022431465110.1097/PAF.000000000000073534999601
    [Google Scholar]
  67. HwangH.S. ChoeS.Y. HwangJ.S. Reproducibility of facial soft tissue thickness measurements using cone-beam CT images according to the measurement methods.J. Forensic Sci.201560495796510.1111/1556‑4029.1276625845397
    [Google Scholar]
  68. Farias GomesA. MoreiraD.D. ZanonM.F. GroppoF.C. Haiter-NetoF. FreitasD.Q. Soft tissue thickness in Brazilian adults of different skeletal classes and facial types: A cone beam CT - Study.Leg. Med.20204710174310.1016/j.legalmed.2020.10174332659706
    [Google Scholar]
  69. HwangH.S. ParkM.K. LeeW.J. ChoJ.H. KimB.K. WilkinsonC.M. Facial soft tissue thickness database for craniofacial reconstruction in Korean adults.J. Forensic Sci.20125761442144710.1111/j.1556‑4029.2012.02192.x22621203
    [Google Scholar]
  70. BeainiT.L. MiamotoP. Duailibi-NetoE.F. Tedeschi-OliveiraS.V. ChilvarquerI. MelaniR.F.H. Facial soft tissue depth measurements in cone-beam computed tomography: A study of a Brazilian sample.Leg. Med.20215010186610.1016/j.legalmed.2021.10186633667933
    [Google Scholar]
  71. BarrosF. de KuhnenB FilhoS GonçalvesM FernandesCMS. Midsagittal and bilateral facial soft tissue thickness: A cone-beam computed tomography assessment of Brazilian living adults.Forensic Imaging.20212520044410.1016/j.fri.2021.200444
    [Google Scholar]
  72. KuhnenB. MaiaC. FernandesS. BarrosD. GonçalvesM. Facial soft tissue thickness of Brazilian living sub-adults. A cone-beam computed tomography study.Forensic Imaging202124200434
    [Google Scholar]
  73. KatsumuraS. SatoK. IkawaT. “High-precision, reconstructed 3D model” of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data.Leg. Med.201618374310.1016/j.legalmed.2015.11.00726832374
    [Google Scholar]
  74. MukhiaN. BirurN.P. ShubhasiniA.R. ShubhaG. KeerthiG. Dimensional measurement accuracy of 3-dimensional models from cone beam computed tomography using different voxel sizes.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2021132336136910.1016/j.oooo.2021.05.00934246615
    [Google Scholar]
  75. KatkarR. SteffyD.D. NoujeimM. DeahlS.T.II GehaH. The effect of milliamperage, number of basis images, and export slice thickness on contrast-to-noise ratio and detection of mandibular canal on cone beam computed tomography scans: An in vitro study.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2016122564665310.1016/j.oooo.2016.08.00627765335
    [Google Scholar]
  76. WoodR.E. GardnerT. Use of dental CBCT software for evaluation of medical CT‐acquired images in a multiple fatality incident: Proof of principles.J. Forensic Sci.202166273774210.1111/1556‑4029.1460733136292
    [Google Scholar]
  77. Muinelo-LorenzoJ. Fernández-AlonsoA. Smyth-ChamosaE. Suárez-QuintanillaJ.A. Varela-MallouJ. Suárez-CunqueiroM.M. Predictive factors of the dimensions and location of mental foramen using cone beam computed tomography.PLoS One2017128e017970410.1371/journal.pone.017970428817595
    [Google Scholar]
  78. KumagaiA. IzumisawaM. TakahashiN. BiwasakaH. Effectiveness and limitations of human identification from cremains: A report of two cases.Leg. Med.20215310193310.1016/j.legalmed.2021.10193334175579
    [Google Scholar]
  79. VinerM.D. RobsonJ. Post-mortem forensic dental radiography - a review of current techniques and future developments. JForensic Radiol.Imaging20178223710.1016/j.jofri.2017.03.007
    [Google Scholar]
  80. NguyenE. DoyleE. Dental post-mortem computed tomography for disaster victim identification: A literature review.J. Forensic Radiol Imaging20181351110.1016/j.jofri.2018.03.002
    [Google Scholar]
  81. KvaalS.I. KolltveitK.M. ThomsenI.O. SolheimT. Age estimation of adults from dental radiographs.Forensic Sci. Int.199574317518510.1016/0379‑0738(95)01760‑G7557754
    [Google Scholar]
  82. GeZ. YangP. LiG. ZhangJ. MaX. Age estimation based on pulp cavity/chamber volume of 13 types of tooth from cone beam computed tomography images.Int. J. Legal Med.201613041159116710.1007/s00414‑016‑1384‑627221534
    [Google Scholar]
  83. ŠtamfeljI. HitijT. Leben-SeljakP. Dental ancestry estimation in a 1500 years old human skeleton from Slovenia using a new web-based application rASUDAS.J. Forensic Odontostomatol.20193722831589590
    [Google Scholar]
  84. DhamoB. KragtL. GrgicO. Ancestry and dental development: A geographic and genetic perspective.Am. J. Phys. Anthropol.2018165229930810.1002/ajpa.2335129139104
    [Google Scholar]
  85. OlzeA. SchmelingA. TaniguchiM. Forensic age estimation in living subjects: The ethnic factor in wisdom tooth mineralization.Int. J. Legal Med.2004118317017310.1007/s00414‑004‑0434‑714767777
    [Google Scholar]
  86. LiversidgeH.M. PeariasamyK. FolayanM.O. A radiographic study of the mandibular third molar root development in different ethnic groups.J. Forensic Odontostomatol.20173529710829384741
    [Google Scholar]
  87. ManciniA.X.M. SantosM.U.C. Gaêta-AraujoH. TirapelliC. PauwelsR. Oliveira-SantosC. Artefacts at different distances from titanium and zirconia implants in cone-beam computed tomography: Effect of tube current and metal artefact reduction.Clin. Oral Investig.20212585087509410.1007/s00784‑021‑03821‑y33544197
    [Google Scholar]
  88. Gaêta-AraujoH. NascimentoE.H.L. Oliveira-SantosN. PinheiroM.C.R. Coelho-SilvaF. Oliveira-SantosC. Influence of adjacent teeth restored with metal posts in the detection of simulated internal root resorption using CBCT.Int. Endod. J.20205391299130610.1111/iej.1334832535964
    [Google Scholar]
  89. PauwelsR. SeynaeveL. HenriquesJ.C.G. Optimization of dental CBCT exposures through mAs reduction.Dentomaxillofac. Radiol.20154492015010810.1259/dmfr.2015010826090934
    [Google Scholar]
  90. NascimentoE.H.L. Gaêta-AraujoH. FonteneleR.C. Oliveira-SantosN. Oliveira-SantosC. FreitasD.Q. Do the number of basis images and metal artifact reduction affect the production of artifacts near and far from zirconium dental implants in CBCT?Clin. Oral Investig.20212595281529110.1007/s00784‑021‑03836‑533625608
    [Google Scholar]
/content/journals/cfs/10.2174/2666484401666230516103852
Loading
/content/journals/cfs/10.2174/2666484401666230516103852
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test