Skip to content
2000
image of Consanguine Marriage Leads to Hierarchical Imbalance of ABO and STR Frequency and Affects the Genetic Diversity

Abstract

Consanguinity marriages pose a serious social issue for civil society, leading to genetic syndromes, depression, and imbalanced ABO blood types and STR frequencies. Analyzing dermatoglyphics in regions with prevalent consanguineous marriages can establish a correlation with ABO frequency. Consanguineous marriages complicate forensic DNA analysis due to reduced genetic diversity. Inbreeding within a closed, small population tends to accelerate the loss of genetic diversity and decrease the heterozygosity of genes, ultimately leading to complete homozygosity, fixation of rare alleles, and potential misidentification in inbred populations. Forensic investigations require careful consideration of population structure. Short Tandem Repeat (STR) profiling is effective but should be complemented with population-specific databases, additional genetic markers, and advanced statistical methods to address the effects of inbreeding. Understanding the genetic nuances in inbred populations can enhance the accuracy and reliability of DNA profiling.

Loading

Article metrics loading...

/content/journals/cfs/10.2174/0126664844350819241231050738
2025-01-14
2025-06-21
Loading full text...

Full text loading...

References

  1. Bittles A.H. Black M.L. Consanguineous marriage and human evolution. Annu. Rev. Anthropol. 2010 39 1 193 207 10.1146/annurev.anthro.012809.105051
    [Google Scholar]
  2. Cummins H. Midlo C. Palmar and plantar epidermal ridge configurations (dermatoglyphics) in European‐Americans. Am. J. Phys. Anthropol. 1926 9 4 471 502 10.1002/ajpa.1330090422
    [Google Scholar]
  3. Bittles A.H. Consanguinity and its relevance to clinical genetics. Clin. Genet. 2001 60 2 89 98 10.1034/j.1399‑0004.2001.600201.x 11553039
    [Google Scholar]
  4. Sathyanarayana Rao T.S. Zecca L. Rao K.J. Tracemetals, neuromelanin and neurodegeneration: An interesting area for research. Indian J. Psychiatry 2007 49 3 154 156 10.4103/0019‑5545.37310 20661375
    [Google Scholar]
  5. Blicher J.U. Nielsen J.F. Does long-term outcome after intensive inpatient rehabilitation of acquired brain injury depend on etiology? NeuroRehabilitation 2008 23 2 175 183 10.3233/NRE‑2008‑23207 18525139
    [Google Scholar]
  6. Keerti A. Ninave S. DNA fingerprinting: Use of autosomal short tandem repeats in forensic DNA typing. Cureus 2022 14 10 e30210 10.7759/cureus.30210 36381887
    [Google Scholar]
  7. Lowe A.L. Urquhart A. Foreman L.A. Evett I.W. Inferring ethnic origin by means of an STR profile. Forensic Sci. Int. 2001 119 1 17 22 10.1016/S0379‑0738(00)00387‑X 11348789
    [Google Scholar]
  8. Al-Awadi SJ Genetic variation of 15 autosomal Short Tandem Repeat (STR) Loci in the diyala- Iraqi population. Int J Biol Pharm Res 2014 11 131 135 10.1016/j.legalmed.2009.02.072
    [Google Scholar]
  9. Bittles A.H. Mason W.M. Greene J. Rao N.A. Reproductive behavior and health in consanguineous marriages. Science 1991 252 5007 789 794 10.1126/science.2028254 2028254
    [Google Scholar]
  10. Acharya S. Sahoo H. Consanguineous marriages in India: Prevalence and determinants. J. Health Manag. 2021 23 4 631 648 10.1177/09720634211050458
    [Google Scholar]
  11. Khalil A.M. Arabization and islamization of consanguineous marriages: Is it right? Med. J. Islam. World Acad. Sci. 2022 29 1 4 14 10.5505/ias.2022.09735
    [Google Scholar]
  12. Ghasemi N. Ayatollahi J. Zadehrahmani M. Nasiri A. Abedi A. Shokraneh S. Frequency of ABO and Rh blood groups in middle school students of Yazd province Iran. J. Pediatr. Hematol. Oncol. 1939 1 27 30
    [Google Scholar]
  13. Storry J.R. Castilho L. Chen Q. Daniels G. Denomme G. Flegel W.A. Gassner C. de Haas M. Hyland C. Keller M. Lomas-Francis C. Moulds J.M. Nogues N. Olsson M.L. Peyrard T. van der Schoot C.E. Tani Y. Thornton N. Wagner F. Wendel S. Westhoff C. Yahalom V. International society of blood transfusion working party on red cell immunogenetics and terminology: Report of the Seoul and London meetings. ISBT Sci. Ser. 2016 11 2 118 122 10.1111/voxs.12280 29093749
    [Google Scholar]
  14. Chandra T. Prevalence of ABO and Rhesus blood groups in northern India. J. Blood Disord. Transfus. 2013 3 5 10.4172/2155‑9864.1000132
    [Google Scholar]
  15. Shakir M. Khan S.A. Ghani E. Frequency of ABO and Rh (D) blood groups among blood donors in Rawalpindi/Islamabad area. Pak. Armed Forces Med. J. 2012 62 304 306
    [Google Scholar]
  16. Andalibi M. Dehnavi Z. Afshari A. Tayefi M. Esmaeili H. Azarpazhooh M. Mouhebati M. Nematy M. Heidari-Bakavoli A. Shokri M. Ferns G. Ghayour-Mobarhan M. Tayyebi M. Prevalence of ABO and Rh blood groups and their association with demographic and anthropometric factors in an Iranian population: Mashad study. East. Mediterr. Health J. 2020 26 8 916 922 10.26719/emhj.20.048 32896886
    [Google Scholar]
  17. Garratty G. Dzik W. Issitt P.D. Lublin D.M. Reid M.E. Zelinski T. Terminology for blood group antigens and genes—historical origins and guidelines in the new millennium. Transfusion 2000 40 4 477 489 10.1046/j.1537‑2995.2000.40040477.x 10773062
    [Google Scholar]
  18. Mollison P.L. The genetic basis of the Rh blood group system. Transfusion 1994 34 6 539 541 10.1046/j.1537‑2995.1994.34694295073.x 8023398
    [Google Scholar]
  19. Talib Z.M.A. Al-Nuaim L.A. El-Hazmi M.A.F. Warsy A.S. Blood groups in Saudi obstetrics patients. Saudi Med. J. 1998 19 3 260 264 27701538
    [Google Scholar]
  20. Anees M. Jawad A. Hashmi I. Hospital D. Bahauddin M. Distribution of Abo and Rh blood group alleles in Mandi Bahauddin District of Punjab, Pakistan 1. Proc Pakistan Acad Sci 2007 44 289 294
    [Google Scholar]
  21. Lyko J. Gaertner H. Kaviti J.N. Kariithi M.W. Akoto B. Blood-group systems ABO and RH in the Kenyan population. Folia Med. Cracov. 1992 33 1-4 85 92 1343005
    [Google Scholar]
  22. Tauszik T. Heterogeneity in the distribution of ABO blood groups in Hungary. Gene Geogr. 1995 9 2 169 176 8634218
    [Google Scholar]
  23. Periyavan S. Sangeetha S.K. Marimuthu P. Manjunath B.K. Seema D.N. Distribution of ABO and Rhesus-D blood groups in and around Bangalore. Asian J. Transfus. Sci. 2010 4 1 41 10.4103/0973‑6247.59391 20376267
    [Google Scholar]
  24. Shahid A.B. Tahir H. Faiz M. Younus A. Larayb H. Aslam S. Gill S. ABO and Rh blood group phenotype frequency in healthy blood donors. Asian J. Transfus. Sci. 2022 0 0 0 10.4103/ajts.ajts_141_21
    [Google Scholar]
  25. Ajayi D.O. Omon E.A. Orekoya A. Oluwayomi O. Haemoglobin genotype, ABO and rhesus blood group pattern among students of Bamidele Olumilua University of Education, Science and Technology Ikere, Ekitis state, Nigeria. Int. J. Res. Med. Sci. 2022 10 12 2750 10.18203/2320‑6012.ijrms20223076
    [Google Scholar]
  26. Bernhard W. Distribution of ABO blood groups and incidence of Rh factor (D) in various ethnic groups in the Hindu Kush region (Kafirs, Kalash Chitrali). Anthropol. Anz. 1980 37 4 251 265 6773468
    [Google Scholar]
  27. Hussain R. Fareed M. Shah A. Afzal M. Prevalence and gene frequencies of A1A2BO and Rh(D) blood group alleles among some Muslim populations of North India. Egypt. J. Med. Hum. Genet. 2013 14 1 69 76 10.1016/j.ejmhg.2012.06.001
    [Google Scholar]
  28. Wasil M. Hartiansyah F.R. Alifia I. Algebraic structures in heredity human blood group system. J. Fundam. Math. Appl. (JFMA) 2024 7 1 87 102 10.14710/jfma.v7i1.20552
    [Google Scholar]
  29. Patidar G.K. Dhiman Y. Distribution of ABO and Rh (D) Blood groups in India: A systematic review. ISBT Sci. Ser. 2021 16 1 37 48 10.1111/voxs.12576
    [Google Scholar]
  30. Wigginton J.E. Cutler D.J. Abecasis G.R. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 2005 76 5 887 893 10.1086/429864 15789306
    [Google Scholar]
  31. Khayat A.M. Alshareef B.G. Alharbi S.F. AlZahrani M.M. Alshangity B.A. Tashkandi N.F. Consanguineous marriage and its association with genetic disorders in Saudi Arabia: A review. Cureus 2024 16 2 e53888 10.7759/cureus.53888 38465157
    [Google Scholar]
  32. Nietlisbach P. Keller L.F. Postma E. Genetic variance components and heritability of multiallelic heterozygosity under inbreeding. Heredity 2016 116 1 1 11 10.1038/hdy.2015.59 26174022
    [Google Scholar]
  33. Bosse M. Megens H.J. Derks M.F.L. de Cara Á.M.R. Groenen M.A.M. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol. Appl. 2019 12 1 6 17 10.1111/eva.12691 30622631
    [Google Scholar]
  34. Kanaka K.K. Sukhija N. Goli R.C. Singh S. Ganguly I. Dixit S.P. Dash A. Malik A.A. On the concepts and measures of diversity in the genomics era. Curr. Plant Biol. 2023 33 100278 10.1016/j.cpb.2023.100278
    [Google Scholar]
  35. Charlesworth D. Morgan M.T. Charlesworth B. Mutation accumulation in finite outbreeding and inbreeding populations. Genet. Res. 1993 61 1 39 56 10.1017/S0016672300031086
    [Google Scholar]
  36. Rudan I. Rudan D. Campbell H. Carothers A. Wright A. Smolej-Narancic N. Janicijevic B. Jin L. Chakraborty R. Deka R. Rudan P. Inbreeding and risk of late onset complex disease. J. Med. Genet. 2003 40 12 925 932 10.1136/jmg.40.12.925 14684692
    [Google Scholar]
  37. Alvarez G. Quinteiro C. Inbreeding C.F. Inbreeding and genetic disorder. Adv. Study Genet. Disord. 2011 10.5772/18373
    [Google Scholar]
  38. Chakraborty R. Kidd K.K. The utility of DNA typing in forensic work. Science 1991 254 5039 1735 1739 10.1126/science.1763323 1763323
    [Google Scholar]
  39. Kim J. Rosenberg N.A. Record-matching of STR profiles with fragmentary genomic SNP data. Eur. J. Hum. Genet. 2023 31 11 1283 1290 10.1038/s41431‑023‑01430‑9 37567955
    [Google Scholar]
  40. Weir B.S. The rarity of DNA profiles. Ann. Appl. Stat. 2007 1 2 358 370 10.1214/07‑AOAS128 19030117
    [Google Scholar]
  41. Ullah M.A. Husseni A.M. Mahmood S.U. Consanguineous marriages and their detrimental outcomes in Pakistan: An urgent need for appropriate measures. Int. J. Community Med. Public Health 2017 5 1 1 10.18203/2394‑6040.ijcmph20175757
    [Google Scholar]
  42. Pontes L. Sousa J.C. Medeiros R. SNPs and STRs in forensic medicine. A strategy for kinship evaluation. Arch. Med. Sadowej Kryminol. 2017 67 3 226 240 10.5114/amsik.2017.73194 29460612
    [Google Scholar]
  43. Merheb M. Matar R. Hodeify R. Siddiqui S.S. Vazhappilly C.G. Marton J. Azharuddin S. AL Zouabi H. Mitochondrial DNA, a powerful tool to decipher ancient human civilization from domestication to music, and to uncover historical murder cases. Cells 2019 8 5 433 10.3390/cells8050433 31075917
    [Google Scholar]
  44. Budowle B. The effects of inbreeding on DNA profile frequency estimates using PCR-based loci. Genetica 1995 96 1-2 21 25 10.1007/BF01441148 7607455
    [Google Scholar]
/content/journals/cfs/10.2174/0126664844350819241231050738
Loading
/content/journals/cfs/10.2174/0126664844350819241231050738
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: short tandem repeat (STR) ; consanguine ; consanguinity marriages ; ABO group ; Inbreeding ; DNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test