Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-4844
  • E-ISSN: 2666-4852

Abstract

Changes in enamel during teeth development are permanently recorded, and some, like enamel hypoplasia (EH), can be linked with stressful events. As males and females may respond differently to stress, EH may have a different prevalence between the sexes. The present work mainly aims to identify which factors may lead to the different EH types, analyse how they manifest between sexes, and check if, in the presence of EH, one can infer about a person’s sex. Our results point to occasional differences in EH prevalence in deciduous dentition between sexes, with males displaying more EH. As for permanent dentition, EH prevalence appears to be strongly associated with the living conditions, namely nutrition, occluding any possible sex bias. Therefore, EH in deciduous teeth can be useful for sex estimation; yet, in permanent dentition, other factors may be responsible for the differences and more studies, with control of environmental factors (for example, twin studies) are needed to understand if sex differences exist as well.

Loading

Article metrics loading...

/content/journals/cfs/10.2174/2666484401666220411124251
2023-01-01
2025-02-17
Loading full text...

Full text loading...

References

  1. KrishanK. ChatterjeeP.M. KanchanT. KaurS. BaryahN. SinghR.K. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework.Forensic Sci. Int.2016261165.e1165.e810.1016/j.forsciint.2016.02.00726926105
    [Google Scholar]
  2. BalachanderN. BabuN.A. JimsonS. PriyadharsiniC. MasthanK.M. Evolution of forensic odontology: An overview.J. Pharm. Bioallied Sci.20157Suppl. 1S176S18026015703
    [Google Scholar]
  3. NovakM VyroubalV KrnčevićŽ Assessing childhood stress in early mediaeval Croatia by using multiple lines of inquiry.Anthropol. Anz.201875215516710.1127/anthranz/2018/081929542802
    [Google Scholar]
  4. Ten CateA.R. Oral histology: Development, structure, and function.4th edSt. LouisCV Mosby1994
    [Google Scholar]
  5. GreulichW.W. The growth and developmental status of Guamanian school children in 1947.Am. J. Phys. Anthropol.195191557010.1002/ajpa.133009010514819268
    [Google Scholar]
  6. GreulichW.W. CrismonC.S. TurnerM.L. GreulichM.L. OkumotoY. The physical growth and development of children who survived the atomic bombing of Hiroshima or Nagasaki.J. Pediatr.195343212114510.1016/S0022‑3476(53)80001‑613070125
    [Google Scholar]
  7. StiniW.A. Reduced sexual dimorphism in upper arm muscle circumference associated with protein-deficient diet in a South American population.Am. J. Phys. Anthropol.197236334135110.1002/ajpa.13303603045035060
    [Google Scholar]
  8. WolanskiW. KasprzakE. Stature as a measure of the effects of environmental change.Curr. Anthropol.197617354855210.1086/201790
    [Google Scholar]
  9. StiniW.A. Growth rates and sexual dimorphism in evolutionary perspective.The analysis of prehistoric diets.Orlando, FLAcademic Press1985191226
    [Google Scholar]
  10. BrabinL. Sex differentials in susceptibility to lymphatic filariasis and implications for maternal child immunity.Epidemiol. Infect.1990105233535310.1017/S09502688000479322209738
    [Google Scholar]
  11. LamplM. GotschF. KusanovicJ.P. Sex differences in fetal growth responses to maternal height and weight.Am. J. Hum. Biol.201022443144310.1002/ajhb.2101419950190
    [Google Scholar]
  12. CutressT.W. SucklingG.W. The assessment of non-carious defects of enamel.Int. Dent. J.19823221171226956547
    [Google Scholar]
  13. ArrowP. Risk factors in the occurrence of enamel defects of the first permanent molars among schoolchildren in Western Australia.Community Dent. Oral Epidemiol.200937540541510.1111/j.1600‑0528.2009.00480.x19694775
    [Google Scholar]
  14. Corrêa-FariaP. Martins-JúniorP.A. Vieira-AndradeR.G. Oliveira-FerreiraF. MarquesL.S. Ramos-JorgeM.L. Developmental defects of enamel in primary teeth: Prevalence and associated factors.Int. J. Paediatr. Dent.201323317317910.1111/j.1365‑263X.2012.01241.x22548676
    [Google Scholar]
  15. CruvinelV.R. GravinaD.B. AzevedoT.D. RezendeC.S. BezerraA.C. ToledoO.A. Prevalence of enamel defects and associated risk factors in both dentitions in preterm and full term born children.J. Appl. Oral Sci.201220331031710.1590/S1678‑7757201200030000322858696
    [Google Scholar]
  16. EnwonwuC.O. Influence of socio-economic conditions on dental development in Nigerian children.Arch. Oral Biol.19731819510710.1016/0003‑9969(73)90024‑14513116
    [Google Scholar]
  17. Guatelli-SteinbergD. LukacsJ.R. Interpreting sex differences in enamel hypoplasia in human and non-human primates: Developmental, environmental, and cultural considerations.Am. J. Phys. Anthropol.1999110S29Suppl. 297312610.1002/(SICI)1096‑8644(1999)110:29+<73::AID‑AJPA4>3.0.CO;2‑K10601984
    [Google Scholar]
  18. MollerI.J. PindborgJ.J. Roed-PetersenB. The prevalence of dental caries, enamel opacities and enamel hypoplasia in Ugandans.Arch. Oral Biol.197217192210.1016/0003‑9969(72)90129‑X4403032
    [Google Scholar]
  19. KollarE.J. FisherC. Tooth induction in chick epithelium: Expression of quiescent genes for enamel synthesis.Science1980207443499399510.1126/science.73523027352302
    [Google Scholar]
  20. SlavkinH.C. Craniofacial genetics and developmental biology: Research implications for the near future.J. Craniofac. Genet. Dev. Biol.198441356736218
    [Google Scholar]
  21. SimmerJ.P. HuJ.C. Dental enamel formation and its impact on clinical dentistry.J. Dent. Educ.200165989690510.1002/j.0022‑0337.2001.65.9.tb03438.x11569606
    [Google Scholar]
  22. ShawashyM. YagerJ. Orban’s Oral Histology and Embrology.St. Louis, MoC.V. Mosby1986
    [Google Scholar]
  23. BoydeA. ForteliusM. LesterK.S. MartinL.B. Basis of the structure and development of mammalian enamel as seen by scanning electron microscopy.Scanning Microsc.198823147914903059475
    [Google Scholar]
  24. BeynonA.D. WoodB.A. Patterns and rates of enamel growth in the molar teeth of early hominids.Nature1987326611249349610.1038/326493a03104794
    [Google Scholar]
  25. BromageT.G. DeanM.C. Re-evaluation of the age at death of immature fossil hominids.Nature1985317603752552710.1038/317525a019093314
    [Google Scholar]
  26. HillsonS. BondS. Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion.Am. J. Phys. Anthropol.199710418910310.1002/(SICI)1096‑8644(199709)104:1<89::AID‑AJPA6>3.0.CO;2‑89331455
    [Google Scholar]
  27. ReithE.J. CottyV.F. The absorptive activity of ameloblasts during the maturation of enamel.Anat. Rec.1967157457758710.1002/ar.10915704044166537
    [Google Scholar]
  28. NelsonS. AshM.M.Jr Wheeler’s Dental Anatomy, Physiology and Occlusion.9th edMissouriSaunders2009
    [Google Scholar]
  29. LoganW.H.G. KronfeldR. Development of the human jaws and surrounding structures from birth to the age of fifteen years.J. Am. Dent. Assoc.1933203379427
    [Google Scholar]
  30. SeowW.K. Clinical diagnosis of enamel defects: Pitfalls and practical guidelines.Int. Dent. J.199747317318210.1002/j.1875‑595X.1997.tb00783.x9448804
    [Google Scholar]
  31. Commission on Oral Health, Research and EpidemiologyA review of the developmental defects of enamel index (DDE Index). Report of an FDI Working Group.Int. Dent. J.19924264114261286924
    [Google Scholar]
  32. Commission on Oral Health, Research and EpidemiologyAn epidemiological index of developmental defects of dental enamel (DDE Index). Commission on Oral Health, Research and Epidemiology.Int. Dent. J.19823221591676956548
    [Google Scholar]
  33. DurayS.M. Dental indicators of stress and reduced age at death in prehistoric Native Americans.Am. J. Phys. Anthropol.199699227528610.1002/(SICI)1096‑8644(199602)99:2<275::AID‑AJPA5>3.0.CO;2‑Y8967328
    [Google Scholar]
  34. WinterG.B. BrookA.H. Enamel hypoplasia and anomalies of the enamel.Dent. Clin. North Am.1975191324162891
    [Google Scholar]
  35. StewartR.E. PooleA.E. The orofacial structures and their association with congenital abnormalities.Pediatr. Clin. North Am.198229354758410.1016/S0031‑3955(16)34181‑57045798
    [Google Scholar]
  36. HimelhochD.A. ScottB.J. OlsenR.A. Dental defects in incontinentia pigmenti: Case report.Pediatr. Dent.1987932362393333828
    [Google Scholar]
  37. HoffM. van GrunsvenM.F. JongebloedW.L. GravenmadeE.J. Enamel defects associated with tuberous sclerosis. A clinical and scanning-electron-microscope study.Oral Surg. Oral Med. Oral Pathol.197540226126910.1016/0030‑4220(75)90158‑91057151
    [Google Scholar]
  38. LopesC.M.I. CavalcantiM.C. AlvesE. LunaA.C. Marques KMG, Rodrigues MJ, DE Menezes VA. Enamel defects and tooth eruption disturbances in children with sickle cell anemia.Braz. Oral Res.2018320e8710.1590/1807‑3107bor‑2018.vol32.008730110085
    [Google Scholar]
  39. TorresL.H.S. de-Azevedo-VazS.L. BarrosoD.R.C. SilvaD.N. VellosoT.R.G. de BarrosL.A.P. Enamel-renal-syndrome: Case report.Spec. Care Dentist.201838317217510.1111/scd.1228829672880
    [Google Scholar]
  40. CookD.C. Hereditary enamel hypoplasia in a prehistoric Indian child.J. Dent. Res.1980599152210.1177/002203458005900916016995509
    [Google Scholar]
  41. SeowW.K. Developmental defects of enamel and dentine: Challenges for basic science research and clinical management.Aust. Dent. J.201459Suppl. 114315410.1111/adj.1210424164394
    [Google Scholar]
  42. FreimanA. BorsukD. BarankinB. SperberG.H. KrafchikB. Dental manifestations of dermatologic conditions.J. Am. Acad. Dermatol.200960228929810.1016/j.jaad.2008.09.05619027989
    [Google Scholar]
  43. McCauleyL.K. MartinT.J. Twenty-five years of PTHrP progress: From cancer hormone to multifunctional cytokine.J. Bone Miner. Res.20122761231123910.1002/jbmr.161722549910
    [Google Scholar]
  44. GoodmanA.H. ArmelagosG.J. RoseJ.C. Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois.Hum. Biol.19805235155287005071
    [Google Scholar]
  45. GoodmanA.H. ArmelagosG.J. RoseJ.C. The chronological distribution of enamel hypoplasias from prehistoric Dickson Mounds populations.Am. J. Phys. Anthropol.198465325926610.1002/ajpa.13306503056393775
    [Google Scholar]
  46. GoodmanA.H. RoseJ.C. Dental enamel hypoplasias as indicators of nutritional status.Advances in dental anthropology.New YorkAlan R. Liss1991279293
    [Google Scholar]
  47. Nik-HusseinN.N.M.K. MutalibK.A. AddullahF. AbangA. WanM.N. Prevalence of development defects of enamel among 16-year-old children in Malaysia.Annal Dent Univ Malaya199961116
    [Google Scholar]
  48. AngelilloI.F. RomanoF. FortunatoL. MontanaroD. Prevalence of dental caries and enamel defects in children living in areas with different water fluoride concentrations.Community Dent. Health1990732292362076499
    [Google Scholar]
  49. LoG.L. BagramianR.A. Prevalence of dental fluorosis in children in Singapore.Community Dent. Oral Epidemiol.1996241252710.1111/j.1600‑0528.1996.tb00807.x8833510
    [Google Scholar]
  50. MasumoR. BårdsenA. AstrømA.N. Developmental defects of enamel in primary teeth and association with early life course events: A study of 6-36 month old children in Manyara, Tanzania.BMC Oral Health20131312110.1186/1472‑6831‑13‑2123672512
    [Google Scholar]
  51. ProkocimerT. AmirE. BlumerS. PeretzB. Birth-weight, pregnancy term, pre-natal and natal complications related to child’s dental anomalies.J. Clin. Pediatr. Dent.201539437137610.17796/1053‑4628‑39.4.37126161610
    [Google Scholar]
  52. SchamschulaR.G. CooperM.H. WrightM.C. AgusH.M. UnP.S. Oral health of adolescent and adult Australian aborigines.Community Dent. Oral Epidemiol.19808737037410.1111/j.1600‑0528.1980.tb01310.x6937284
    [Google Scholar]
  53. SawyerD.R. NwokuA.L. Malnutrition and the oral health of children in Ogbomosho, Nigeria.ASDC J. Dent. Child.19855221411453857247
    [Google Scholar]
  54. JelliffeD.B. JelliffeE.F. Linear hypoplasia of deciduous incisor teeth in malnourished children.Am. J. Clin. Nutr.197124889310.1093/ajcn/24.8.8935564668
    [Google Scholar]
  55. InfanteP.F. GillespieG.M. An epidemiologic study of linear enamel hypoplasia of deciduous anterior teeth in Guatemalan children.Arch. Oral Biol.197419111055106110.1016/0003‑9969(74)90095‑84531858
    [Google Scholar]
  56. SweeneyE.A. SaffirA.J. De LeonR. Linear hypoplasia of deciduous incisor teeth in malnourished children.Am. J. Clin. Nutr.1971241293110.1093/ajcn/24.1.295539052
    [Google Scholar]
  57. PsoterW.J. ReidB.C. KatzR.V. Malnutrition and dental caries: A review of the literature.Caries Res.200539644144710.1159/00008817816251787
    [Google Scholar]
  58. DirkmaatD.C. CaboL.L. OusleyS.D. SymesS.A. New perspectives in forensic anthropology.Am. J. Phys. Anthropol.200847S47Suppl. 47335210.1002/ajpa.2094819003882
    [Google Scholar]
  59. KlalesA.R. Sex estimation using pelvis morphology. In:Sex estimation of the human skeleton: History, Techniques and Emerging Methods.Elsevier: Amsterdam20207593
    [Google Scholar]
  60. KlalesA.R. OusleyS.D. VollnerJ.M. A revised method of sexing the human innominate using Phenice’s nonmetric traits and statistical methods.Am. J. Phys. Anthropol.2012149110411410.1002/ajpa.2210222714398
    [Google Scholar]
  61. ListiG.A. BassettH.E. Test of an alternative method for determining sex from the os coxae: Applications for modern Americans.J. Forensic Sci.200651224825210.1111/j.1556‑4029.2006.00080.x16566757
    [Google Scholar]
  62. StockM.K. Analyses of the postcranial skeleton for sex estimation.Sex estimation of the human skeleton: History, Techniques and Emerging Methods.Elsevier202096130
    [Google Scholar]
  63. GarvinH.M. Adult sex estimation from cranial morphological traits. In:Sex Estimation of the Human Skeleton: History, Techniques and Emerging Methods.Elsevier: Amsterdam.202095111
    [Google Scholar]
  64. CarneiroJ.L. SantosA. MagalhãesT. AfonsoA. CaldasI.M. Human identification using dental techniques: A case report.Med. Sci. Law2015552788110.1177/002580241453175224757022
    [Google Scholar]
  65. RaoN.G. RaoN.N. PaiM.L. KotianM.S. Mandibular canine index--a clue for establishing sex identity.Forensic Sci. Int.198942324925410.1016/0379‑0738(89)90092‑32792982
    [Google Scholar]
  66. SilvaA.M. PereiraM.L. GouveiaS. TavaresJ.N. AzevedoÁ. CaldasI.M. A new approach to sex estimation using the mandibular canine index.Med. Law201656171210.1177/002580241557541525802199
    [Google Scholar]
  67. VicianoJ. TangaC. D’AnastasioR. BelcastroM.G. CapassoL. Sex estimation by odontometrics of nonadult human remains from a contemporary Italian sample.Am. J. Phys. Anthropol.20211751598010.1002/ajpa.2413232869297
    [Google Scholar]
  68. AngadiP.V. HemaniS. PrabhuS. AcharyaA.B. Analyses of odontometric sexual dimorphism and sex assessment accuracy on a large sample.J. Forensic Leg. Med.201320667367710.1016/j.jflm.2013.03.04023910859
    [Google Scholar]
  69. SWAGANTHSex assessment.2010Available from: https://www.nist.gov/system/files/documents/2018/03/13/swganth_sex_assessment.pdf
  70. KingT. HillsonS. HumphreyL.T. A detailed study of enamel hypoplasia in a post-medieval adolescent of known age and sex.Arch. Oral Biol.2002471293910.1016/S0003‑9969(01)00091‑711743929
    [Google Scholar]
  71. KingT. HumphreyL.T. HillsonS. Linear enamel hypoplasias as indicators of systemic physiological stress: Evidence from two known age-at-death and sex populations from postmedieval London.Am. J. Phys. Anthropol.2005128354755910.1002/ajpa.2023215861429
    [Google Scholar]
  72. RiversJ.P.W. The nutritional biology of famine.Famine.Oxford University Press: England.198857106
    [Google Scholar]
  73. StiniW.A. Nutritional stress and growth: Sex difference in adaptive response.Am. J. Phys. Anthropol.196931341742610.1002/ajpa.13303103164313260
    [Google Scholar]
  74. StiniW.A. Body composition and nutrient reserves in evolutionary perspective.World Rev. Nutr. Diet.198137558310.1159/0003979977051581
    [Google Scholar]
  75. MonteroM.D. Mora-UrdaA.I. AnzidK. CherkaouiM. MarrodanM.D. Diet quality of moroccan adolescents living in Morocco and in Spain.J. Biosoc. Sci.201649211427170427
    [Google Scholar]
  76. RiopelleA.J. Postnatal protein deprivation in rhesus monkeys.Am. J. Phys. Anthropol.199083223925210.1002/ajpa.13308302122248382
    [Google Scholar]
  77. HoyengaK.B. HoyengaK.T. Gender and energy balance: Sex differences in adaptations for feast and famine.Physiol. Behav.198228354556310.1016/0031‑9384(82)90153‑67043508
    [Google Scholar]
  78. CookD.C. BuikstraJ.E. Health and differential survival in prehistoric populations: Prenatal dental defects.Am. J. Phys. Anthropol.197951464966410.1002/ajpa.1330510415391061
    [Google Scholar]
  79. SciulliP.W. Developmental abnormalities of the permanent dentition in prehistoric Ohio Valley Amerindians.Am. J. Phys. Anthropol.19784829310810.1002/ajpa.1330480211
    [Google Scholar]
  80. StinsonS. Sex differences in environmental sensitivity during growth and development.Am. J. Phys. Anthropol.198528S612314710.1002/ajpa.1330280507
    [Google Scholar]
  81. SkinnerM.F. HungJ.T. Social and biological correlates of localized enamel hypoplasia of the human deciduous canine tooth.Am. J. Phys. Anthropol.198979215917510.1002/ajpa.13307902042742003
    [Google Scholar]
  82. SilbermanS.L. TrubmanA. DuncanW.K. MeydrechE.F. Prevalence of primary canine hypoplasia of the mandibular teeth.Pediatr. Dent.19911363563601843992
    [Google Scholar]
/content/journals/cfs/10.2174/2666484401666220411124251
Loading
/content/journals/cfs/10.2174/2666484401666220411124251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test